
Deep Canonical Correlation Analysis

Galen Andrew galen@cs.washington.edu

University of Washington

Raman Arora arora@ttic.edu

Toyota Technological Institute at Chicago

Jeff Bilmes bilmes@ee.washington.edu

University of Washington

Karen Livescu klivescu@ttic.edu

Toyota Technological Institute at Chicago

Abstract

We introduce Deep Canonical Correlation
Analysis (DCCA), a method to learn com-
plex nonlinear transformations of two views
of data such that the resulting representations
are highly linearly correlated. Parameters of
both transformations are jointly learned to
maximize the (regularized) total correlation.
It can be viewed as a nonlinear extension of
the linear method canonical correlation analy-
sis (CCA). It is an alternative to the nonpara-
metric method kernel canonical correlation
analysis (KCCA) for learning correlated non-
linear transformations. Unlike KCCA, DCCA
does not require an inner product, and has
the advantages of a parametric method: train-
ing time scales well with data size and the
training data need not be referenced when
computing the representations of unseen in-
stances. In experiments on two real-world
datasets, we find that DCCA learns represen-
tations with significantly higher correlation
than those learned by CCA and KCCA. We
also introduce a novel non-saturating sigmoid
function based on the cube root that may be
useful more generally in feedforward neural
networks.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

Canonical correlation analysis (CCA) (Hotelling, 1936;
Anderson, 1984) is a standard statistical technique
for finding linear projections of two random vectors
that are maximally correlated. Kernel canonical cor-
relation analysis (KCCA) (Akaho, 2001; Melzer et al.,
2001; Bach & Jordan, 2002; Hardoon et al., 2004) is
an extension of CCA in which maximally correlated
nonlinear projections, restricted to reproducing kernel
Hilbert spaces with corresponding kernels, are found.
Both CCA and KCCA are techniques for learning rep-
resentations of two data views, such that each view’s
representation is simultaneously the most predictive of,
and the most predictable by, the other.

CCA and KCCA have been used for unsupervised data
analysis when multiple views are available (Hardoon
et al., 2007; Vinokourov et al., 2003; Dhillon et al.,
2011); learning features for multiple modalities that are
then fused for prediction (Sargin et al., 2007); learn-
ing features for a single view when another view is
available for representation learning but not at pre-
diction time (Blaschko & Lampert, 2008; Chaudhuri
et al., 2009; Arora & Livescu, 2012); and reducing sam-
ple complexity of prediction problems using unlabeled
data (Kakade & Foster, 2007). The applications range
broadly across a number of fields, including medicine,
meteorology (Anderson, 1984), chemometrics (Mon-
tanarella et al., 1995), biology and neurology (Vert &
Kanehisa, 2002; Hardoon et al., 2007), natural language
processing (Vinokourov et al., 2003; Haghighi et al.,
2008; Dhillon et al., 2011), speech processing (Choukri
& Chollet, 1986; Rudzicz, 2010; Arora & Livescu, 2013),
computer vision (Kim et al., 2007), and multimodal
signal processing (Sargin et al., 2007; Slaney & Covell,

Deep Canonical Correlation Analysis

2000). An appealing property of CCA for prediction
tasks is that, if there is noise in either view that is
uncorrelated with the other view, the learned represen-
tations should not contain the noise in the uncorrelated
dimensions.

While kernel CCA allows learning of nonlinear repre-
sentations, it has the drawback that the representation
is limited by the fixed kernel. Also, as it is a nonpara-
metric method, the time required to train KCCA or
compute the representations of new datapoints scales
poorly with the size of the training set. In this paper,
we consider learning flexible nonlinear representations
via deep networks. Deep networks do not suffer from
the aforementioned drawbacks of nonparametric mod-
els, and given the empirical success of deep models on
a wide variety of tasks, we may expect to be able to
learn more highly correlated representations. Deep net-
works have been used widely to learn representations,
for example using deep Boltzmann machines (Salakhut-
dinov & Hinton, 2009), deep autoencoders (Hinton &
Salakhutdinov, 2006), and deep nonlinear feedforward
networks (Hinton et al., 2006). These have been very
successful for learning representations of a single data
view. In this work we introduce deep CCA (DCCA),
which simultaneously learns two deep nonlinear map-
pings of two views that are maximally correlated. This
can be loosely thought of as learning a kernel for KCCA,
but the mapping function is not restricted to live in a
reproducing kernel Hilbert space.

The most closely related work is that of Ngiam et
al. on multimodal autoencoders (Ngiam et al., 2011)
and of Srivastava and Salakhutdinov on multimodal
restricted Boltzmann machines (Srivastava & Salakhut-
dinov, 2012). In these approaches, there is a single
network being learned with one or more layers con-
nected to both views (modalities); in the absence of
one of the views, it can be predicted from the other view
using the learned network. The key difference is that
in our approach we learn two separate deep encodings,
with the objective that the learned encodings are as
correlated as possible. These different objectives may
have advantages in different settings. In the current
work, we are interested specifically in the correlation
objective, that is in extending CCA with learned non-
linear mappings. Our approach is therefore directly
applicable in all of the settings where CCA and KCCA
are used, and we compare its ability relative to CCA
and KCCA to generalize the correlation objective to
new data, showing that DCCA achieves much better
results.

In the following sections, we review CCA and KCCA,
introduce deep CCA, and describe experiments on two
data sets comparing the three methods. In principle

we could evaluate the learned representations on any
task in which CCA or KCCA have been used. However,
in this paper we focus on the most direct measure of
performance, namely correlation between the learned
representations on unseen test data.

2. Background: CCA, KCCA, and deep
representations

Let (X1, X2) ∈ Rn1 × Rn2 denote random vectors
with covariances (Σ11,Σ22) and cross-covariance Σ12.
CCA finds pairs of linear projections of the two views,
(w′1X1, w

′
2X2) that are maximally correlated:

(w∗1 , w
∗
2) = argmax

w1,w2

corr(w′1X1, w
′
2X2) (1)

= argmax
w1,w2

w′1Σ12w2√
w′1Σ11w1w′2Σ22w2

. (2)

Since the objective is invariant to scaling of w1 and w2,
the projections are constrained to have unit variance:

(w∗1 , w
∗
2) = argmax

w′
1Σ11w1=w′

2Σ22w2=1

w′1Σ12w2 (3)

When finding multiple pairs of vectors (wi1, w
i
2), sub-

sequent projections are also constrained to be un-
correlated with previous ones, that is wi1Σ11w

j
1 =

wi2Σ22w
j
2 = 0 for i < j. Assembling the top k

projection vectors wi1 into the columns of a matrix
A1 ∈ Rn1×k, and similarly placing wi2 into A2 ∈ Rn2×k,
we obtain the following formulation to identify the top
k ≤ min(n1, n2) projections:

maximize: tr(A′1Σ12A2)
subject to: A′1Σ11A1 = A′2Σ22A2 = I.

(4)

There are several ways to express the solution to this
objective; we follow the one in (Mardia et al., 1979).

Define T , Σ
−1/2
11 Σ12Σ

−1/2
22 , and let Uk and Vk be

the matrices of the first k left- and right- singular
vectors of T . Then the optimal objective value is
the sum of the top k singular values of T (the Ky
Fan k-norm of T) and the optimum is attained at

(A∗1, A
∗
2) = (Σ

−1/2
11 Uk,Σ

−1/2
22 Vk). Note that this solu-

tion assumes that the covariance matrices Σ11 and Σ22

are nonsingular, which is satisfied in practice because
they are estimated from data with regularization: given
centered data matrices H̄1 ∈ Rn1×m, H̄2 ∈ Rn2×m, one
can estimate, e.g.

Σ̂11 =
1

m− 1
H̄1H̄

′
1 + r1I, (5)

where r1 > 0 is a regularization parameter. Estimating
the covariance matrices with regularization also reduces
the detection of spurious correlations in the training
data, a.k.a. “overfitting” (De Bie & De Moor, 2003).

Deep Canonical Correlation Analysis

2.1. Kernel CCA

Kernel CCA finds pairs of nonlinear projections of the
two views (Hardoon et al., 2004). The Reproducing
Kernel Hilbert Spaces (RKHS) of functions on Rn1 ,Rn2

are denoted H1, H2 and the associated positive definite
kernels are denoted κ1, κ2. The optimal projections
are those functions f∗1 ∈ H1, f

∗
2 ∈ H2 that maximize

the correlation between f∗1 (X1) and f∗2 (X2):

(f∗1 , f
∗
2) = argmax

f1∈H1,f2∈H2

corr (f1(X1), f2(X2)) (6)

= argmax
f1∈H1,f2∈H2

cov (f1(X1), f2(X2))√
var (f1(X1)) var (f2(X2))

,

To solve the nonlinear KCCA problem, the “kernel
trick” is used: Since the nonlinear maps f1 ∈ H1,
f2 ∈ H2 are in RKHS, the solutions can be expressed
as linear combinations of the kernels evaluated at the
data: f1(x) = α′1κ1(x, ·), where κ1(x, ·) is a vector
whose ith element is κ1(x, xi) (resp. for f2(x)). KCCA
can then be written as finding vectors α1, α2 ∈ Rm
that solve the optimization problem

(α∗1, α
∗
2) = argmax

α1,α2

α′1K1K2α2√
(α′1K

2
1α2) (α′1K

2
2α2)

= argmax
α′

1K
2
1α1=α′

2K
2
2α2=1

α′1K1K2α2, (7)

where K1 ∈ Rm×m is the centered Gram matrix
K1 = K − K1 − 1K + 1K1, Kij = κ1(xi, xj) and
1 ∈ Rm×m is an all-1s matrix, and similarly for K2.
Subsequent vectors (αj1, α

j
2) are solutions of (7) with

the constraints that (f j1 (X1), f j2 (X2)) are uncorrelated
with the previous ones.

Proper regularization may be critical to the perfor-
mance of KCCA, since the spaces H1, H2 could have
high complexity. Since α′1f1(·) plays the role of w1 in
KCCA, the generalization of w′1w1 would be α′1K1α.
Therefore the correct generalization of (5) is to use
K2

1 + r1K1 in place of K2
1 in the constraints of (7), for

regularization parameter r1 > 0 (resp. for K2
2).

The optimization is in principle simple: The objective
is maximized by the top eigenvectors of the matrix

(K1 + r1I)
−1

K2 (K2 + r2I)
−1

K1. (8)

The regularization coefficients r1 and r2, as well as
any parameters of the kernel in KCCA, can be tuned
using held-out data. Often a further regularization is
done by first projecting the data onto an intermediate-
dimensionality space, between the target and original
dimensionality (Ek et al., 2008; Arora & Livescu, 2012).
In practice solving KCCA may not be straightforward,
as the kernel matrices become very large for real-world

data sets of interest, and iterative SVD algorithms for
the initial dimensionality reduction can be used (Arora
& Livescu, 2012).

2.2. Deep learning

“Deep” networks, having more than two layers, are
capable of representing nonlinear functions involving
multiply nested high-level abstractions of the kind that
may be necessary to accurately model complex real-
world data. There has been a resurgence of interest in
such models following the advent of various successful
unsupervised methods for initializing the parameters
(“pretraining”) in such a way that a useful solution can
be found (Hinton et al., 2006; Hinton & Salakhutdinov,
2006). Contrastive divergence (Bengio & Delalleau,
2009) has had great success as a pretraining technique,
as have many variants of autoencoder networks, includ-
ing the denoising autoencoder (Vincent et al., 2008)
used in the present work. The growing availability of
both data and compute resources also contributes to
the resurgence, because empirically the performance of
deep networks seems to scale very well with data size
and complexity.

While deep networks are more commonly used for learn-
ing classification labels or mapping to another vector
space with supervision, here we use them to learn non-
linear transformations of two datasets to a space in
which the data is highly correlated, just as KCCA does.
The same properties that may account for deep net-
works’ success in other tasks—high model complexity,
the ability to concisely represent a hierarchy of features
for modeling real-world data distributions—could be
particularly useful in a setting where the output space
is significantly more complex than a single label.

3. Deep Canonical Correlation Analysis

Deep CCA computes representations of the two views
by passing them through multiple stacked layers of
nonlinear transformation (see Figure 1). Assume for
simplicity that each intermediate layer in the network
for the first view has c1 units, and the final (output)
layer has o units. Let x1 ∈ Rn1 be an instance of
the first view. The outputs of the first layer for the
instance x1 are h1 = s(W 1

1 x1 + b11) ∈ Rc1 , where W 1
1 ∈

Rc1×n1 is a matrix of weights, b11 ∈ Rc1 is a vector of
biases, and s : R 7→ R is a nonlinear function applied
componentwise. The outputs h1 may then be used to
compute the outputs of the next layer as h2 = s(W 1

2 h1+
b12) ∈ Rc1 , and so on until the final representation
f1(x1) = s(W 1

dhd−1 + b1d) ∈ Ro is computed, for a
network with d layers. Given an instance x2 of the
second view, the representation f2(x2) is computed the

Deep Canonical Correlation Analysis

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

�� ��Canonical Correlation Analysis

m

View 1

m

View 2

Figure 1. A schematic of deep CCA, consisting of two deep
networks learned so that the output layers (topmost layer
of each network) are maximally correlated. Blue nodes
correspond to input features (n1 = n2 = 3), grey nodes
are hidden units (c1 = c2 = 4), and the output layer is red
(o = 2). Both networks have d = 4 layers.

same way, with different parameters W 2
l and b2l (and

potentially different architectural parameters c2 and d).
The goal is to jointly learn parameters for both views
W v
l and bvl such that corr(f1(X1), f2(X2)) is as high

as possible. If θ1 is the vector of all parameters W 1
l

and b1l of the first view for l = 1, . . . , d, and similarly
for θ2, then

(θ∗1 , θ
∗
2) = argmax

(θ1,θ2)

corr(f1(X1; θ1), f2(X2; θ2)). (9)

To find (θ∗1 , θ
∗
2), we follow the gradient of the correlation

objective as estimated on the training data. Let H1 ∈
Ro×m, H2 ∈ Ro×m be matrices whose columns are the
top-level representations produced by the deep models
on the two views, for a training set of size m. Let H̄1 =
H1− 1

mH11 be the centered data matrix (resp. H̄2), and

define Σ̂12 = 1
m−1H̄1H̄

′
2, and Σ̂11 = 1

m−1H̄1H̄
′
1 + r1I

for regularization constant r1 (resp. Σ̂22). Assume that

r1 > 0 so that Σ̂11 is positive definite.

As discussed in section 2 for CCA, the total correlation
of the top k components of H1 and H2 is the sum of the

top k singular values of the matrix T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 .

If we take k = o, then this is exactly the matrix trace
norm of T , or1

corr(H1, H2) = ||T ||tr = tr(T ′T)1/2. (10)

The parameters W v
l and bvl of DCCA are trained to

1Here we abuse notation slightly, writing corr(H1, H2)
as the empirical correlation of the data represented by the
matrices H1 and H2.

optimize this quantity using gradient-based optimiza-
tion. To compute the gradient of corr(H1, H2) with
respect to all parameters W v

l and bvl , we can compute
its gradient with respect to H1 and H2 and then use
backpropagation. If the singular value decomposition
of T is T = UDV ′, then

∂corr(H1, H2)

∂H1
=

1

m− 1

(
2∇11H̄1 +∇12H̄2

)
. (11)

where
∇12 = Σ̂

−1/2
11 UV ′Σ̂

−1/2
22 (12)

and

∇11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 , (13)

and ∂corr(H1, H2)/∂H2 has a symmetric expression.
The derivation of the gradient is not entirely straight-
forward (involving, for example, the gradient of the
trace of the matrix square-root, which we could not find
in standard references such as (Petersen & Pedersen,
2012)) and is given in the appendix. We also regularize
(10) by adding to it a quadratic penalty with weight
λb > 0 for all parameters.

Because the correlation objective is a function of the
entire training set that does not decompose into a sum
over data points, it is not clear how to use a stochastic
optimization procedure that operates on data points
one at a time. We experimented with a stochastic
method based on mini-batches, but obtained much
better results with full-batch optimization using the
L-BFGS second-order optimization method (Nocedal
& Wright, 2006) which has been found to be useful for
deep learning in other contexts (Le et al., 2011).

As discussed in section 2.2 for deep models in general,
the best results will in general not be obtained if param-
eter optimization is started from random initialization—
some form of pretraining is necessary. In our experi-
ments, we initialize the parameters of each layer with
a denoising autoencoder (Vincent et al., 2008). Given
centered input training data assembled into a matrix
X ∈ Rn×m, a distorted matrix X̃ is created by adding
i.i.d. zero-mean Gaussian noise with variance σ2

a . For
parameters W ∈ Rc×n and b ∈ Rc, the reconstructed
data X̂ = W ′s(WX̃ + b1̄′) is formed. Then we use
L-BFGS to find a local minimum of the total squared
error from the reconstruction to the original data, plus
a quadratic penalty:

la(W, b) = ||X̂ −X||2F + λa(||W ||2F + ||b||22), (14)

where || · ||F is the matrix Frobenius norm. The min-
imizing values W ∗ and b∗ are used to initialize opti-
mization of the DCCA objective, and to produce the
representation for pretraining the next layer. σ2

a and
λa are treated as hyperparameters, and optimized on
a development set, as described in section 4.1.

Deep Canonical Correlation Analysis

3.1. Non-saturating nonlinearity

Any form of sigmoid nonlinearity could be used to deter-
mine the output of the nodes in a DCCA network, but
in our experiments we obtained the best results using
a novel non-saturating sigmoid function based on the
cube root. If g : R 7→ R is the function g(y) = y3/3+y,
then our function is s(x) = g−1(x). Like the more pop-
ular logistic (σ) and tanh nonlinearities, s has sigmoid
shape and has unit slope at x = 0. Like tanh, it is
an odd function. However, logistic and tanh approach
their asymptotic value very quickly, at which point
the derivative drops to essentially zero (i.e., they sat-
urate). On the other hand, s is not bounded, and its
derivative falls off much more gradually with x. We hy-
pothesize that these properties make s better-suited for
batch optimization with second-order methods which
might otherwise get stuck on a plateau early during
optimization. In figure 2 we plot s alongside tanh for
comparison.

Figure 2. Comparison of our modified cube-root sigmoid
function (red) with the more standard tanh (blue).

Another property that our nonsaturating sigmoid func-
tion shares with logistic and tanh is that its deriva-
tive is a simple function of its value. For example,
σ′(x) = σ(x)(1− σ(x)), and tanh′(x) = 1 − tanh2(x).
This property is convenient in implementations, be-
cause it means the input to a unit can be overwritten
by its output. Also, as it turns out, it is more efficient
to compute the derivatives as a function of the value in
all of these cases (e.g., given y = tanh(x), 1− y2 can
be computed more efficiently than 1 − tanh2(x)). In
the case of s, we have s′(x) = (s2(x) + 1)−1 as is easily
shown with implicit differentiation. If y = s(x), then

x = y3/3 + y,
dx

dy
= y2 + 1, and

dy

dx
=

1

y2 + 1
.

To compute s(x), we use Newton’s method. To solve

for g(y)− x = 0, iterate

yn+1 = yn −
g(yn)− x
g′(yn)

= yn −
y3
n/3 + yn − x
y2
n + 1

=
2y3
n/3 + x

y2
n + 1

.

For positive x, initializing y0 = x, the iteration de-
creases monotonically, so convergence is guaranteed.
In the range of values in our experiments, it converges
to machine precision in just a few iterations. When
x is negative, we use the property that s is odd, so
s(x) = −s(−x). As a further optimization, we wrote a
vectorized implementation.

4. Experiments

We perform experiments on two datasets to demon-
strate that DCCA learns transformations that are not
only dramatically more correlated than a linear CCA
baseline, but also significantly more correlated than
well-tuned KCCA representations. We refer to a DCCA
model with an output size of o and d layers (including
the output) as DCCA-o-d.

Because the total correlation of two transformed views
grows with dimensionality, it is important to compare
only equal-dimensionality representations. In addition,
in order to compare the test correlation of the top k
components of two representations of dimensionality
o1, o2 ≥ k, the components must be ordered by their
correlation on the training data. In the case of CCA
and KCCA, the dimensions are always ordered in this
way; but in DCCA, there is no ordering to the output
nodes. Therefore, we derive such an ordering by per-
forming a final (linear) CCA on the output layers of
the two views on the training data. This final CCA
produces two projection matrices A1, A2, which are
applied to the DCCA test output before computing
test set correlation. Another way would be to compute
a new DCCA representation at each target dimension-
ality; this is not done here for expediency but should,
if anything, improve performance.

4.1. Hyperparameter optimization

Each of the DCCA models we tested has a fixed num-
ber of layers and output size, and the parameters W v

l

and bvl are trained as discussed in section 3. Several
other values are treated as hyperparameters. Specifi-
cally, for each view, we have σ2

a and λa for autoencoder
pretraining, c, the width of all hidden layers (a large
integer parameter treated as a real value) and r, the
CCA regularization hyperparameter. Finally there is a
single hyperparameter λb, the fine-tuning regulariza-
tion weight. These values were chosen to optimize total

Deep Canonical Correlation Analysis

correlation on a development set using a derivative-free
optimization method.

4.2. MNIST handwritten digits

For our first experiments, we learn correlated repre-
sentations of the left and right halves of handwritten
digit images. We use the MNIST handwritten image
dataset (LeCun & Cortes, 1998), which consists of
60,000 train images and 10,000 test images. We ran-
domly selected 10% (6,000) images from the training
set to use for hyperparameter tuning. Each image is
a 28x28 matrix of pixels, each representing one of 256
grayscale values. The left and right 14 columns are sepa-
rated to form the two views, making 392 features in each
view. For KCCA, we use a radial basis function (RBF)

kernel for both views: k1(xi, xj) = e−‖xi−xj‖2/2σ2
1 and

similarly for k2. The bandwidth parameters σ1, σ2 are
tuned over the range [0.25, 64]. Regularization parame-
ters r1, r2 for CCA and KCCA are tuned over the range
[10−8, 10]. The four parameters were jointly tuned to
maximize correlation at k = 50 on the development set.
We use a scalable KCCA algorithm based on incremen-
tal SVD (Arora & Livescu, 2012). The selected widths
of the hidden layers for the DCCA-50-2 model were
2038 (left half-images) and 1608 (right half-images).
Table 1 compares the total correlation on the develop-
ment and test sets obtained for the 50 most correlated
dimensions with linear CCA, KCCA, and DCCA.

CCA KCCA DCCA
(RBF) (50-2)

Dev 28.1 33.5 39.4
Test 28.0 33.0 39.7

Table 1. Correlation captured in the 50 most correlated
dimensions on the split MNIST dataset.

4.3. Articulatory speech data

The second set of experiments uses speech data from the
Wisconsin X-ray Microbeam Database (XRMB) (West-
bury, 1994) of simultaneous acoustic and articulatory
recordings. The articulatory data consist of hori-
zontal and vertical displacements of eight pellets on
the speaker’s lips, tongue, and jaws, yielding a 16-
dimensional vector at each time point. The baseline
acoustic features consist of standard 13-dimensional
mel-frequency cepstral coefficients (MFCCs) (Davis &
Mermelstein, 1980) and their first and second deriva-
tives computed every 10ms over a 25ms window. The
articulatory measurements are downsampled to match
the MFCC frame rate.

The input features X1 and X2 to CCA/KCCA/DCCA

are the acoustic and articulatory features concatenated
over a 7-frame window around each frame, giving
acoustic vectors X1 ∈ R273 and articulatory vectors
X2 ∈ R112. We discard frames that are missing any of
the articulatory data (e.g., due to mistracked pellets),
resulting in m ≈ 50, 000 frames for each speaker. For
KCCA, besides an RBF kernel (described in the previ-
ous section) we also use a polynomial kernel of degree

d, with k1(xi, xj) =
(
xTi xj + c

)d
and similarly for k2.

We run five independent experiments, each using 60%
of the utterances for learning projections, 20% for tun-
ing hyperparameters (regularization parameters and
kernel bandwidths), and 20% for final testing. For this
set of experiments, kernel bandwidths for the RBF
kernel were fixed at σ1 = 4 × 106, σ2 = 2 × 104 to
match the variance in the un-normalized data. For the
polynomial kernel we tuned the degree d over the set
{2, 3} and the offset parameter c over the range [0.25, 2]
to optimize development set correlation at k = 110.
Hyperparameter optimization selected the number of
hidden units per layer in the DCCA-50-2 model as
1641 and 1769 for the MFCC and XRMB views respec-
tively. In the DCCA-112-3 model, 1811 and 1280 units
per layer, respectively, were chosen. The widths for
the DCCA-112-8 model were fixed at 781 and 552 as
discussed in the last paragraph of this section.

Table 2 compares total correlation captured in the top
50 dimensions on the test data for all five folds with
CCA, KCCA with both kernels, and DCCA-50-2. The
pattern of performance across the folds is similar for
all four models, and DCCA consistently finds more
correlation.

CCA KCCA KCCA DCCA
(RBF) (Poly) (50-2)

Fold 1 16.8 29.2 32.3 38.2
Fold 2 15.8 25.3 29.1 34.1
Fold 3 16.9 30.8 34.0 39.4
Fold 4 16.6 28.6 32.4 37.1
Fold 5 16.2 26.2 29.9 34.0

Table 2. Correlation captured in the 50 most correlated
dimensions on the articulatory dataset.

Figure 3 shows correlation obtained using linear CCA,
KCCA with RBF kernel, KCCA with a polynomial
kernel (d = 2, c = 1), and various topologies of Deep
CCA, on the test set of one of the folds as a function
of number of dimensions. The KCCA models tend to
detect slightly more correlation in the first few compo-
nents, after which the Deep CCA models outperform
them by a large margin. We note that DCCA may
particularly have an advantage when k is equal to the

Deep Canonical Correlation Analysis

number of output units o. We found that DCCA mod-
els with only two or three output units can indeed find
more correlation than the top two or three components
of KCCA (results not shown). This is also consistent
with the observation that DCCA-50-2 has the highest
performance of any model at k = 50.

1 10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

Number of dimensions

S
um

 C
or

re
la

tio
n

DCCA−50−2
DCCA−112−8
DCCA−112−3
KCCA−POLY
KCCA−RBF
CCA

Figure 3. Correlation as a function of number of dimensions.
Note that DCCA-50-2 is truncated at k = o = 50.

To determine the impact of model depth (number of
layers) on performance, we conducted an experiment in
which we increased the number of layers from three to
eight, while reducing the number of hidden units in each
layer in order to keep the total number of parameters
approximately constant. The output width was fixed
at 112, and all hyperparameters other than the number
of hidden units were kept fixed at the values chosen for
DCCA-112-3. Table 3 gives the total correlation on the
first fold as a function of the number of layers. Note
that the total correlation of both datasets increases
monotonically with the depth of DCCA and even with
eight layers we have not reached saturation.

layers (d) 3 4 5 6 7 8

Dev set 66.7 68.1 70.1 72.5 76.0 79.1
Test set 80.4 81.9 84.0 86.1 88.5 88.6

Table 3. Total correlation captured, on one of the folds, by
DCCA-112-d, for d ranging from three to eight.

5. Discussion

We have shown that deep CCA can obtain improved
representations with respect to the correlation objective
measured on unseen data. DCCA provides a flexible
nonlinear alternative to KCCA. Another appealing fea-
ture of DCCA is that, like CCA, it does not require

an inner product. As a parametric model, representa-
tions of unseen datapoints can be computed without
reference to the training set.

In many applications of CCA, such as classification and
regression, maximizing the correlation is not the final
goal and the correlated representations are used in the
service of another task. A natural next step is therefore
to test the representations produced by deep CCA in
the context of prediction tasks and to compare against
other nonlinear multi-view representation learning ap-
proaches that optimize other objectives, e.g., (Ngiam
et al., 2011; Srivastava & Salakhutdinov, 2012).

6. Acknowledgments

This research was supported by NSF grant IIS-0905633
and by the Intel/UW ISTC. The opinions expressed in
this work are those of the authors and do not necessarily
reflect the views of the funders.

7. Appendix: Derivation of DCCA
Gradient

To perform backpropagation, we must be able to com-
pute the gradient of f = corr(H1, H2) defined in Equa-
tion (10). Denote by ∇ij the matrix of partial deriva-

tives of f with respect to the entries of Σ̂ij . Let the

singular value decomposition of T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22

be given as T = UDV ′. First we will show that

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 (15)

and
∇11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 (16)

(resp. ∇22). To prove (15), we use the fact that for a
matrix X, ∇||X||tr = UV ′, where X = UDV ′ is the
singular value decomposition of X (Bach, 2008). Using
the chain rule:

(∇12)ab =
∂f

∂(Σ̂12)ab

=
∑
cd

∂f

∂Tcd
· ∂Tcd

∂(Σ̂12)ab

=
∑
cd

(UV ′)cd · (Σ̂−1/2
11)ca(Σ̂

−1/2
22)bd

= (Σ̂
−1/2
11 UV ′Σ̂

−1/2
22)ab

For (16) we use the identity ∇ trX1/2 = 1
2X
−1/2. This

is easily derived from Theorem 1 of (Lewis, 1996):

Theorem 1. A matrix function f is called a spectral
function if it depends only on the set of eigenvalues of
its argument. That is, for any positive definite matrix

Deep Canonical Correlation Analysis

X and any unitary matrix V , f(X) = f(V XV ′). If f
is a spectral function, and X is positive definite with
eigendecomposition X = UDU ′, then

∂f(X)

∂X
= U diag

∂f(D)

∂D
U ′ (17)

Now we can proceed

(∇11)ab =
∂f

∂(Σ̂11)ab

=
∑
cd

∂f

∂(T ′T)cd

∂(T ′T)cd

∂(Σ̂11)ab
(18)

=
∑
cd

(
1

2
(T ′T)−1/2

)
cd

∂(T ′T)cd

∂(Σ̂11)ab

Since T ′T = Σ̂
−1/2
22 Σ̂21Σ̂−1

11 Σ̂12Σ̂
−1/2
22 , and using Eq. 60

from (Petersen & Pedersen, 2012) for the derivative of
an inverse,

∂(T ′T)cd

∂(Σ̂11)ab
=
∑
ij

∂(T ′T)cd

∂(Σ̂−1
11)ij

∂(Σ̂−1
11)ij

∂(Σ̂11)ab

= −
∑
ij

(Σ̂
−1/2
22 Σ̂21)ci(Σ̂12Σ̂

−1/2
22)jd(Σ̂

−1
11)ia(Σ̂−1

11)bj

= −(Σ̂
−1/2
22 Σ̂21Σ̂−1

11)ca(Σ̂−1
11 Σ̂12Σ̂

−1/2
22)bd

= −(T ′Σ̂
−1/2
11)ca(Σ̂

−1/2
11 T)bd

So continuing from (18),

(∇11)ab = −1

2

∑
cd

(T ′Σ̂
−1/2
11)ca(T ′T)

−1/2
cd (Σ̂

−1/2
11 T)bd

= −1

2

∑
cd

(Σ̂
−1/2
11 T)ac(T

′T)
−1/2
cd (T ′Σ̂

−1/2
11)db

= −1

2

(
Σ̂
−1/2
11 T (T ′T)−1/2T ′Σ̂

−1/2
11

)
ab

= −1

2

(
Σ̂
−1/2
11 UDV ′(V D−1V ′)V DU ′Σ̂

−1/2
11

)
ab

= −1

2

(
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11

)
ab

Using ∇12 and ∇11, we are ready to compute ∂f/∂H1.

First (temporarily moving subscripts on H1 and Σ̂11

to superscripts so subscripts can index into matrices)

∂Σ̂11
ab

∂H1
ij

=


2

m−1

(
H1
ij − 1

m

∑
kH

1
ik

)
if a = i, b = i

1
m−1

(
H1
bj − 1

m

∑
kH

1
bk

)
if a = i, b 6= i

1
m−1

(
H1
aj − 1

m

∑
kH

1
ak

)
if a 6= i, b = i

0 if a 6= i, b 6= i

=
1

m− 1

(
1{a=i}H̄

1
bj + 1{b=i}H̄

1
aj

)
.

Also,

∂Σ̂12
ab

∂H1
ij

=
1

m− 1
1{a=i}

(
H2
bj −

1

m

∑
k

H2
bk

)

=
1

m− 1
1{a=i}H̄

2
bj .

Putting this together, we obtain

∂f

∂H1
ij

=
∑
ab

∇11
ab

∂Σ̂11
ab

∂H1
ij

+
∑
ab

∇12
ab

∂Σ̂12
ab

∂H1
ij

=
1

m− 1

(∑
b

∇11
ib H̄

1
bj +

∑
a

∇11
ai H̄

1
aj +

∑
b

∇12
ib H̄

2
bj

)

=
1

m− 1

((
∇11H̄1

)
ij

+
(
∇′11H̄1

)
ij

+
(
∇12H̄2

)
ij

)
.

Using the fact that ∇11 is symmetric, this can be
written more compactly as

∂f

∂H1
=

1

m− 1

(
2∇11H̄1 +∇12H̄2

)
.

References

Akaho, S. A kernel method for canonical correlation analysis.
In Proc. Int’l Meeting on Psychometric Society, 2001.

Anderson, T. W. An Introduction to Multivariate Statistical
Analysis (2nd edition). John Wiley and Sons, 1984.

Arora, R. and Livescu, K. Kernel CCA for multi-view learn-
ing of acoustic features using articulatory measurements.
In Symp. on Machine Learning in Speech and Language
Processing, 2012.

Arora, R. and Livescu, K. Multi-view CCA-based acoustic
features for phonetic recognition across speakers and
domains. In Int. Conf. on Acoustics, Speech, and Signal
Processing, 2013.

Bach, F. R. Consistency of trace norm minimization. J.
Mach. Learn. Res., 9:1019–1048, June 2008.

Bach, F. R. and Jordan, M. I. Kernel independent compo-
nent analysis. J. Mach. Learn. Res., 3:1–48, 2002.

Bengio, Y. and Delalleau, O. Justifying and generalizing
contrastive divergence. Neural Computation, 21(6):1601–
1621, 2009.

Blaschko, M. B. and Lampert, C. H. Correlational spectral
clustering. In CVPR, 2008.

Chaudhuri, K., Kakade, S. M., Livescu, K., and Sridha-
ran, K. Multi-view clustering via canonical correlation
analysis. In ICML, 2009.

Choukri, K. and Chollet, G. Adaptation of automatic speech
recognizers to new speakers using canonical correlation
analysis techniques. Speech Comm., 1:95–107, 1986.

Deep Canonical Correlation Analysis

Davis, S. B. and Mermelstein, P. Comparison of paramet-
ric representations for monosyllabic word recognition in
continuously spoken sentences. IEEE Trans. Acoustics,
Speech, and Signal Proc., 28(4):357–366, 1980.

De Bie, T. and De Moor, B. On the regularization of
canonical correlation analysis. In Proc. Int’l Conf. on
Independent Component Analysis and Blind Source Sep-
aration, 2003.

Dhillon, P., Foster, D., and Ungar, L. Multi-view learning
of word embeddings via CCA. In NIPS, 2011.

Ek, C. H., Torr, P. H., , and Lawrence, N. D. Ambiguity
modelling in latent spaces. In MLMI, 2008.

Haghighi, A., Liang, P., Berg-Kirkpatrick, T., and Klein,
D. Learning bilingual lexicons from monolingual corpora.
In ACL-HLT, 2008.

Hardoon, D. R., Szedmák, S., and Shawe-Taylor, J. Canon-
ical correlation analysis: An overview with application
to learning methods. Neural Computation, 16(12):2639–
2664, 2004.

Hardoon, D. R., Mourao-Miranda, J., Brammer, M., and
Shawe-Taylor, J. Unsupervised analysis of fMRI data
using kernel canonical correlation. NeuroImage, 37(4):
1250–1259, 2007.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
algorithm for deep belief nets. Neural computation, 18
(7):1527–1554, 2006.

Hotelling, H. Relations between two sets of variates.
Biometrika, 28(3/4):321–377, 1936.

Kakade, S. M. and Foster, D. P. Multi-view regression via
canonical correlation analysis. In COLT, 2007.

Kim, T. K., Wong, S. F., and Cipolla, R. Tensor canonical
correlation analysis for action classification. In CVPR,
2007.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow,
B., and Ng, A. Y. On optimization methods for deep
learning. In ICML, 2011.

LeCun, Y. and Cortes, C. The MNIST database of hand-
written digits, 1998.

Lewis, A. S. Derivatives of spectral functions. Mathematics
of Operations Research, 21(3):576–588, 1996.

Mardia, K. V., Kent, J. T., and Bibby, J. M. Multivariate
Analysis. Academic Press, 1979.

Melzer, T., Reiter, M., and Bischof, H. Nonlinear feature ex-
traction using generalized canonical correlation analysis.
In ICANN, 2001.

Montanarella, L., Bassami, M., and Breas, O. Chemometric
classification of some European wines using pyrolysis
mass spectrometry. Rapid Communications in Mass
Spectrometry, 9(15):1589–1593, 1995.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng,
A. Y. Multimodal deep learning. In ICML, 2011.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

Petersen, K. B. and Pedersen, M. S. The matrix cook-
book, Nov 2012. URL http://www2.imm.dtu.dk/pubdb/
p.php?3274.

Rudzicz, F. Adaptive kernel canonical correlation analy-
sis for estimation of task dynamics from acoustics. In
ICASSP, 2010.

Salakhutdinov, R. and Hinton, G. E. Deep Boltzmann
machines. In AISTATS, 2009.

Sargin, M. E., Yemez, Y., and Tekalp, A. M. Audiovisual
synchronization and fusion using canonical correlation
analysis. IEEE. Trans. Multimedia, 9(7):1396–1403, 2007.

Slaney, M. and Covell, M. FaceSync: A linear operator
for measuring synchronization of video facial images and
audio tracks. In NIPS, 2000.

Srivastava, N. and Salakhutdinov, R. Multimodal learning
with deep Boltzmann machines. In NIPS, 2012.

Vert, J.-P. and Kanehisa, M. Graph-driven features extrac-
tion from microarray data using diffusion kernels and
kernel CCA. In NIPS, 2002.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In ICML. ACM, 2008.

Vinokourov, A., Shawe-Taylor, J., and Cristianini, N. Infer-
ring a semantic representation of text via cross-language
correlation analysis. In NIPS, 2003.

Westbury, J. R. X-ray microbeam speech production
database user’s handbook. Waisman Center on Men-
tal Retardation & Human Development, U. Wisconsin,
Madison, WI, version 1.0 edition, June 1994.

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

	Introduction
	Background: CCA, KCCA, and deep representations
	Kernel CCA
	Deep learning

	Deep Canonical Correlation Analysis
	Non-saturating nonlinearity

	Experiments
	Hyperparameter optimization
	MNIST handwritten digits
	Articulatory speech data

	Discussion
	Acknowledgments
	Appendix: Derivation of DCCA Gradient

