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Abstract

We consider learning representations (features)
in the setting in which we have access to mul-
tiple unlabeled views of the data for representa-
tion learning while only one view is available at
test time. Previous work on this problem has pro-
posed several techniques based on deep neural
networks, typically involving either autoencoder-
like networks with a reconstruction objective or
paired feedforward networks with a correlation-
based objective. We analyze several techniques
based on prior work, as well as new variants, and
compare them experimentally on visual, speech,
and language domains. To our knowledge this
is the first head-to-head comparison of a vari-
ety of such techniques on multiple tasks. We
find an advantage for correlation-based represen-
tation learning, while the best results on most
tasks are obtained with our new variant, deep
canonically correlated autoencoders (DCCAE).
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guages VYinokourov et al, 2003 Haghighi et al. 2008
Chandar et al2014 Faruqui & Dyet 2014, but may also

be different information extracted from the same source,
such as words + contexénnington et al2014) or docu-
ment text + text of inbound hyperlink8ickel & Scheffer
2004. The presence of multiple information sources
presents an opportunity to learn better representatieas (f
tures) by analyzing multiple views simultaneously. Typica
approaches are based on learning a feature transformation
of the “primary” view (the one available at test time) that
captures useful information from the second view using a
paired two-view training set. Under certain assumptions,
theoretical results exist showing the advantages of multi-
view techniques for downstream task&akade & Foster
2007 Foster et al.2009 Chaudhuri et a).2009.

Several recently proposed approaches for multi-view
representation learning are based on deep neural net-
works (DNNs), inspired by their success in typ-
ical unsupervised (single-view) feature learning set-
tings Hinton & Salakhutdinoy2006. Compared to kernel
methods, DNNs can more easily process large amounts of
training data and, as a parameteric method, do not require
referring to the training set at test time.

In many applications, we have access to multiple “Views"there are two main training criteria (objectives) that have

of data at training time while only one view is avail-

been applied for DNN-based multi-view representation

able at test time. The views can be multiple mea-joaming. One is based on autoencoders, where the ob-
surement modalities, such as simultaneously recordeﬂ_zctive is to learn a compact representation that best

audio + video Kidronetal, 2005 Chaudhurietal.
2009, audio + articulation Arora & Livescy 2013, im-
ages + text Klardoon etal. 2004 Socher & Li 201Q
Hodosh etal. 2013, or parallel text in two lan-

Proceedings of the?2™? International Conference on Machine

reconstructs the inputsNfiam et al, 2011). The sec-
ond approach is based on canonical correlation analysis
(CCA, Hotelling, 1936, which learns features in two views
that are maximally correlated. CCA and its kernel ex-
tension [ai & Fyfe, 200Q Akaho, 2001, Bach & Jordan

Learning Lille, France, 2015. JMLR: W&CP volume 37. Copy- 2002 Hardoon et a].2004 have long been the workhorse

right 2015 by the author(s).

for multi-view feature learning and dimensionality re-



On Deep Multi-View Representation Learning

Recongtructe& Reconstructegr Recongtructect Recongtructeg
rTop ag o oP do. 1.5
b X o‘o
&=
s
f o -
0.
< b
(a) SplitAE (b) DCCA (c) DCCAE/CorrAE/DistAE

Figure 1.Schematic diagram of DNN-based multi-view representation learning Isxode

duction {/inokourov et al, 2003 Kakade & Foster2007, learning algorithms considered here, with corresponding
Socher & Li 201Q Dhillon et al, 2011). Multiple neu-  schematic diagrams given in Fiby.

ral network based CCA-like models have been pro- ) )

posed (ai& Fyfe, 1999 Hsieh 2000, but the full 2.1 Split autoencoders (SplitAE)

DNN extension of CCA, termed deep CCA (DCCA, Ngiam et al.(2011) propose to extract shared representa-
Andrew et al, 2013 has been developed only recently.  tions by reconstructing both views from the one view that
is available at test time. In this approach, the featureaextr

The contrlbutlonls Ing:\IhItS) pager are ash fOIIOV\F' W?[Hon networkf is shared while the reconstruction networks
compare severa -hased approaches, —ajong Wi p andq are separate for each view. We refer to this model
linear and kernel CCA, in the unsupervised multi-

. feat | . i h h d vi as a split autoencoder (SplitAE), shown schematically in
view feature ‘earning setting where {he secon V'eWFig. 1 (a). The objective of this model is the sum of recon-
is not available at test time. Prior work has shown

. S struction errors for the two views (we omit tife weight
the benefit of multi-view methods on tasks such as ( € 9

decay term for all models in this section):
retrieval {inokourov et al, 2003 Hardoon et al. 2004 y L& i o)
Socher & Li 2010 Hodoshetal. 2013, clustering min = — Z(Hxi —pE)? + llys — alE(x:)]?).
(Blaschko & Lampert 2008 Chaudhurieta). 2009 WeWeWa N

znd 8(3 IE.S S|f|cat;)(;1 irgec,:\?gmtlont [I)hZ”(')Oln etgl, 201],[" The intuition for this model is that the shared represeoati
rora & Livescy glam €t al, 3. However, to can be extracted from a single view, and can be used to re-

f;;k:nﬁ;vsleig\e,i:fghesgéf'gfﬁ: C\(l)vrgF:g('jsrzgsot?]i;nug'plgconstruct all views! The autoencoder loss is the empirical
P Y ' gap éﬁ(pectation of the loss incurred at each training samptg, an

comparing approaches based on prior work, as well athus stochastic gradient descent (SGD) can be used to op-
new variants developed here. Empirically, we find that,.

. timize the objective efficiently, with the gradient estieat
CCA-based approaches tend to outperform unconstrain JecH Y 9

. om a small minibatch of samples.
reconstruction-based approaches. One of the new methods

we propose, a DNN-based model combining CCA and2. 2. Deep canonical correlation analysis (DCCA)
autoencoder-based t_e.rms, is the consistent winner ac,mi\?]drew etal.(2013 propose a DNN extension of CCA
several ta_sks. To facilitate future work, we release .our iMermed deep CCA (DCCA: see Figj.(b). In DCCA, two
plementations and a new benchmark dataset of simulatégns £ and g are used to extract nonlinear features for
two-view data based on MNIST. each view and the canonical correlation between the ex-

- . tracted feature§(X) andg(Y) i imized:
2. DNN-based multiview feature learning racted featureB(X) andg(Y) is maximize

Notations Inthe multi-view feature learning scenario, we max = tr (UTf(X)g(Y)'V) 1)
have access to paired observations from two views, de- WoWeUV N
noted(x1,y1),. .., (xx,yn), WhereN is the sample size, T(1 T _
) ) ’ st. U —f(XOf(X 1)U =1,
x; € RP= andy; € RPv fori =1,..., N. We also denote N (X)EX) " +r
the data matrices for each view By = [x;,...,xy] and /(1 -
Y = [y1,...,yn]. We use bold-face letters, ef.to de- v (Ng(Y)g(Y) + TyI) V=I

note mappings implemented by kernel machines or DNNs,
with a corresponding set of learnable parameters, denoted,

e.g., We. We write thef-projected (_VieW :_L) da_ta matrix 1The authors also propose a bimodal deep autoencoder com-
asf(X) = [f(x1),...,f(xn)]. The dimensionality of the  pining DNN transformed features from both views; this model is
projection (feature) is denoted more natural for the multimodal fusion setting where both views

. o are available at test time. Empiricalljjgiam et al.(2011) report
We now describe the DNN-based multi-view featurethat SplitAE tends to work better in the multi-view setting.

=
£,
=

X)g(Y)'v; =0, for i#j,
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whereU = [uy,...,uz] and'V = [vq,...,vy] are across views on the other. Intuitively, this is the same-prin
the CCA directions that project the DNN outputs andciple as the information bottleneck methoEighby et al,
(rz,7my) > 0 are regularization parameters for sample1999, and indeed, in the case of Gaussian variables, the
covariance estimatiorBfe & Moor, 2003 Hardoon etal.  information bottleneck method finds the same subspaces as
2004. In DCCA, U Tf(.) is the final projection mapping CCA (Chechik et al.2005.
used for testing. One intuition for CCA-based objectives
is that, while it may be difficult to accurately reconstruct 2-4- Correlated autoencoders (Corr AE)
one view from the other view, it may be easier, and may bdn the next model, we replace the CCA term in the DC-
sufficient, to learn a predictor of fanction (or subspace  CAE objective with the sum of the scalar correlations be-
of the second view. In addition, it should be helpful for the tween the pairs of learned dimensions across views, which
learned dimensions within each view to be uncorrelated sés an alternative measure of agreement between views. In
that they provide complementary information. other words, the feature dimensions within each view are
L o o not constrained to be uncorrelated with each other. This
Optimization The DCCA objective couples all training mqdel is intended to test how important the original CCA
samples through the whitening constraints, so stochastigynsiraint is. We call this model correlated autoencoders
gradient descent (SGD) cannot be applied in a standar, oITAE), shown in Figl (c). Its objective can be equiva-

way. It has been observed BiYang et al. (2015 that lently written in a constrained form as
DCCA can still be optimized efficiently as long as the gra- 1
- —tr (UTf(X)g(Y)'V)

dient. is estimated usi_ng a §ufficiently large minibatch fwit wf,wg,vnx}lpr,lwq,u,v N
gradient formulas given irAndrew et al, 2013. Intu-

N
itively, this approach works because a large minibatch con- A Z(”X" —pEE)IE Iy — aley)?)  (3)
tains enough information for estimating the covariances. N&="" ’ '

T T T T -
2.3. Deep canonically correlated autoencoders situy fF(X)f(X) u; =v; g(Y)g(Y) vi=N, 1<i<L

(DCCAE) where) > 0 is a trade-off parameter. It is clear that the
Inspired by both CCA and reconstruction-based objectivesgonstraint set in3) is a relaxed version of that o). We
we propose a new model that consists of two autoencodesgill demonstrate that this difference results in a large per
and optimizes the combination of canonical correlation beformance gap. We apply the same optimization strategy of
tween the learned bottleneck representations and the+ecoDCCAE to CorrAE.

struction errors of the autoencoders. In other words, we L
optimize the following objective CorrAE is similar to the model o€handar et al(2014),

who try to learn vectorial word representations using par-
allel corpora from two languages. They use DNNs in each

Wf,wg,vns}g,lwq,u,v N tr (UT£(X)g(Y) V) view (I_anguage) to predict the bag-of-W(_)rds represemntatio
R of the input sentences, or that of the paired sentences from
+ ~ Z(”Xi —pEE)NI? + lly: —a(gly:))|?) (2) the other view, V\{hl|e encouraging the learned bottleneck
=1 layer representations to be highly correlated.

s.t. the same constraints ih)(
2.5. Minimum-distance autoencoder s (DistAE)

whereX > 0 is a trade-off parameter. Alternatively, this The CCA objective can be seen as minimzing the dis-
approach can be seen as adding an autoencoder regularizance between the learned projections of the two views,
tion term to DCCA. We call this approach deep canonicallywhile satisfying the whitening constraints for the projec-
correlated autoencoders (DCCAE). Similarly to DCCA, wetions Hardoon et al.2004. The constraints complicate
apply stochastic optimization to the DCCAE objective; thethe optimization of CCA-based objectives, as pointed out
stochastic gradient is the sum of the gradient for the auabove. This observation motivates us to consider additiona
toencoder term and the gradient for the DCCA term. objectives that decompose into sums over training exam-
ples, while maintaining the intuition of the CCA objective
as a reconstruction error between two mappings. Here we
consider a variant we refer to as minimum-distance autoen-

Interpretations CCA maximizes the mutual informa-
tion between the projected views for certain distributions
(Borga 2001, while training an autoencoder to minimize : N i L
reconstruction error amounts to maximizing a lower bound°ders (DIStAE) that c])vpt|m|zes the foIIowu;g objective:
on the mutual information between inputs and learned fea- min 1 >y [f(x:) — gyl

tures Vincent et al, 2010. The DCCAE objective offers WeWe, Wo Wo N < |If(x,)[|* + [lg(y:)|?

a trade-off between the information captured in the (in- N

put, feature) mapping within each view on the one hand, + — Z(Hxi —p(EE)I° + llyi —algly)?) @)
and the information in the (feature, feature) relationship i=1
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which is a weighted combination of reconstruction errorstrained separately, so there is no unified objective.

of two autoencoders and the average discrepancy betwe%m et al. (2012 propose an algorithm that first uses deep

glnecprg;arﬁt?esdussirgggekp;egrsihZhg dt?r::icgtligit?rro?rf]tﬁ dr:(/:irnepéelief networks and the autoencoder objective to extract
y P P P Yeatures for two languages independently, and then applies

the objective by simply scaling down the projections (al'linear CCA to the learned features (activations at the bot-

though they can never become identically zero due to th :
4 . A : eneck layer of the autoencoders) to learn the final repre-
reconstruction terms). This objective is unconstrainedl an . . .
sentation. In this two-step approach, the DNN weight pa-

Is the expectation of_Ioss ”."C“”ed at eac h training samplel’ameters are not updated to optimize the CCA objective.
so normal SGD applies using small minibatches.

3.2. Kernel CCA
3. Related work Another nonlinear extension of CCA is kernel CCA
We focus on related work based on feed-forward(KCCA, Lai & Fyfe, 200Q Akaho 2001, Melzer et al,
neural networks and the kernel extension of CCA.2001 Bach & Jordan2002 Hardoon et al.2004. KCCA
There has also been work using deep Boltzmann maeorresponds to using (potentially infinite-dimensional)
chines Grivastava & Salakhutdingv2014 Sohnetal. feature mappings induced by positive-definite kernels
2014, where several layers of restricted Boltzmann ma-k,(-,-), k,(-,-) (e.g., Gaussian RBF kernelga,b) =
chines (RBM) are stacked to represent each view, with ap—lla=Pl*/25* \yhere s is the kernel width), and learning
additional top layer that provides the joint representatio a linear CCA on them with linear projectiondJ, V).
These are probabilistic graphical models, for which theFrom the representer theorem of reproducing kernel Hilbert
maximum likelihood objective is intractable and the train- spaces$chjlkopf & Smola 2001), the final projection can
ing procedures are more complex. Although probabilistiche written as linear combinations of kernel functions evalu
models have some advantages (e.g., dealing with missingted on the training set, i.d] " f(-) = Eifil ik (%, %;)
values and generating samples in a natural way), DNNwherea; € R, = 1,..., N: one can then work with
based models are tractable and efficient to train. the kernel matrices and directly solve for the linear coef-

, , , I~ ficients {a;})¥.;,. KCCA involves anN x N eigenvalue
3.1. DNN feature learning using CCA-like objectives

h h b | h iovi eEroblem and so is challenging in both memory (storing the
ere have been several approaches to multi-view reprez, | matrices) and time (solving the eigenvalue system

s_en_tation learning using neural networks vyith an ObjECtiverwa'vely costsO(N?)). To alleviate these issues, various
similar tg that of CCA. Under the assurgptlohn that the oy o 6] approximation techniques have been proposed, such
VIEWS ? aredfa common hcaus&fa .(e.g., eﬁ’(t IS & COMMOLs random Fourier featuretgpez-Paz et al.2014 and
cause for a J_acent patches o mag@@:c er& H|nto.n the Nystbm approximation\(Villiams & Seeger200)). In
(1992 maximize a sample-based estimate of mutual 'nfor'random Fourier features, we randomly sampieD,/D, -

’ x Y

rr:catlon bletween tkhefcorﬂmon S|gnal ar:d_thle average ﬁl:tpufﬁmensional vectors from a Gaussian distribution and map
of neural networks for the two views. It is less straightfor- original inputs taR™ by computing the dot product

Ward_, howev_er, FO d.evelop.samp_le-based estimates of Mith the random samples followed by an elementwise co-
tual information in higher dimensions. sine; the inner products between transformed samples ap-
Lai & Fyfe (1999 propose to optimize the correlation proximate kernel similarities between original inputs. In
(rather than canonical correlation) between the outputs othe Nystdm approximation, we randomly seletf train-
networks for each view, subject to scale constraints on eackig samples and construct thié x M kernel matrix for
output dimension. Instead of directly solving this con-these samples, and use its eigen-decomposition to obtain
strained formulation, the authors apply Lagrangian relaxa rankd\/ approximation of the full kernel matrix. Both
ation and solve the resulting unconstrained objectivegusintechniques produce rankt approximations of the kernel
SGD. The objective in this work is different from that of matrices with computational complexi€}(M?® + M>N);
CCA, as there are no constraints that the learned dimerbut random Fourier features are data independent and more
sions within each view be uncorrelatadsieh(2000 pro-  efficient to generate. Other approximation techniques such
poses a neural network based model involving three modas incomplete Cholesky decompositioBath & Jordan
ules: one module for extracting a pair of maximally cor- 2003, partial Gram-SchmidtHardoon et al. 2004, and
related one-dimensional features for the two views; and ahcremental SVD Arora & Livescy 2012 have also been
second and third module for reconstructing the original in-proposed. However, for very large training sets, as in
puts of the two views from the learned features. In thissome of our tasks below, it remains difficult and costly
model, the feature dimensions can be learned one after ate approximate KCCA well. Although iterative algorithms
other, each learned using as input the reconstruction-residnave recently been introduced for very large CCA problems
ual from previous dimensions. The three modules are eacti-u & Foster, 2014, they are aimed at sparse matrices and
do not have a natural out-of-sample extension.
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\ /= / Table 1.Performance of several representation learning methods
Y2 on the test set of noisy MNIST digits. Performance measures
7358 are clustering accuracy (ACQ_), n_ormalized mutual i_nformation
(NMI) of clustering, and classification error rates of a linear SVM
S« \& A é on the projections. The selected feature dimensionalit/given
6 b in parentheses. Results are averaged dvandom seeds.
(W Ae IV Method | ACC (%) | NMI (%) | Error (%)
TIPS Baseline 47.0 50.6 13.1
: CCA (L =10) 72.9 56.0 19.6
Figure 2.Selection of view 1 images (left) and their correspond- SPHItAE (L = 10) 64.0 69.0 11.9
ing view 2 images (right) from our noisy MNIST dataset. C,O”AE (L = 10) 65.5 67.2 12.9
DistAE (L = 20) 53.5 60.2 16.0
FKCCA(L = 10) 94.7 87.3 51
4. Experiments NKCCA(L = 10) 95.1 88.3 4.5
We compare the following methods in the multi-view learn- DCCA (L = 10) 97.0 92.0 2.9
ing setting, focusing on several downstream tasks: noisy DCCAE (L =10) | 97.5 93.4 2.2

digit image classification, speech recognition, and word
pair semantic similarity.

DNN-based models, including SplitAE, CorrAE, DCCA, ~ be able to extract features that disregard the noise. We mea-
DCCAE, and DistAE. sure the class separation in the learned feature spaces by

Linear CCA (CCA), corresponding to DCCA with only a clusterl!’lg the projected view 1 inputs mIO.cIusters and
. . . . evaluating how well the clusters agree with ground-truth
linear network without hidden layers for both views.

A o labels. We use spectral clusteringg et al, 2002 so as
Kernel CCA approximations. Exact KCCAis intractable 14 account for possibly non-convex cluster shapes. Specifi-

for our tasks; we instead implement two kernel approxima—ca”y’ we first build ak-nearest-neighbor graph on the pro-

tion techni'ques, using Gaussian RBF kernels. Thg first imj‘ected view 1 tuning/test samples with a binary weighting
plementation, denoteBK CCA, uses random Fourier fea- scheme (edges connecting neighboring samples have a con-
tures (opez-Paz et al.2014 and the second implemen- giant weight oft), then embed these samplesii’ using

tation, denotedNKCCA, uses the Nysim approxima-  gjgenvectors of the normalized graph Laplacian, and finally
tion (Williams & Seeger200]). As described in Se&.2  yn K-means in the embedding to obtain a hard partition of

in FKCCA/NKCCA we transform the original inputs 0 the samples. In the last stefs;means is rur0 times with
an M-dimensional feature space where the inner prodiangom initialization and the run with the bektmeans
ucts between samples approximate the kernel similaritiegbjective is used. The size of the neighborhood graj
(Yang etal, 2012. We apply linear CCA to the trans- gelected from{5, 10, 20,30, 50} using the tuning set. We
formed inputs to obtain the approximate KCCA solution.  measyre clustering performance with two criteria, cluster

i . ing accuracy (ACC) and normalized mutual information
4.1. Noisy MNIST digits (NMI) (Cali et al, 2005.
In this task, we generate two-view data using the MNIST
dataset l(eCun et al, 1998, which consists o228 x 28
grayscale digit images, with0K/10K images for train-
ing/testing. We generate a more challenging version o
the dataset as follows (see Ffor examples). We first
rescale the pixel values {0, 1]. We then randomly rotate

the images at gng[es uniformly sampled fr@mr/fl,w/zl] to r,/r,), do grid search for the Gaussian kernel width
and the resulting images are used as view 1 inputs. Fofror each view at rankl/ — 5.000. and then test with

each view 1 image, we randomly select an image of the = i .
same identity (0-9) from the original dataset, add indepen(?w = 20,000. For DNN-based models, feature mappings

dent random noise uniformly sampled frdfh 1] to each (f,g) are |mplgmen.ted py network; af hidden layers,
) . . ; each of1, 024 sigmoid units, and a linear output layer of
pixel, and truncate the pixel final values[fp 1] to obtain

the corresponding view 2 sample. The original training SeﬁyumtS; reconstruction mappingg, q) are implemented

. o T . ; networks of3 hidden layers, each of, 024 sigmoid
is further split into training/tuning sets of siZ28 K/10K . units, and an output layer af4 sigmoid units. We fix

Since, given the digit identity, observing a view 2 imager, = r, = 10~* for DCCA and DCCAE. For Spli-
does not provide any information about the correspondindAE/CorrAE/DCCAE/DistAE we select the trade-off pa-
view 1 image, a good multi-view learning algorithm should rameter\ via grid search. The two network$, p) are

Each algorithm has hyperparameters that are selected us-
ing the tuning set. The final dimensionalilyis selected
From {5,10,20,30,50}. For CCA, the regularization pa-
rametersr, /r, are selected via grid search. For KC-
CAs, we fixr,/r, at a small positive value of0~* (as
suggested byopez-Paz et al(2014, FKCCA is robust
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(a) Inputs (b) LLE with best ACC on the tuning set, and report its results on
the test set. The ACC and NMI results (in percentage) for
each algorithm are given in Table As a baseline, we also
cluster the originar84-dimensional view 1 images.

O 0 o

QOONOUIARWNE

All of the multi-view feature learning algorithms achieve
some improvement over the baseline. The nonlinear CCA
algorithms perform similarly to each other and significantl
better than SplitAE/CorrAE/DistAE. We also qualitatively
investigate the features by embedding the projected fea-
tures in 2D using-SNE {van der Maaten & Hintoj2008);

the resulting visualizations are given in Fg&y.Overall, the
class separation in the visualizations qualitatively agre
with the relative clustering performances in Talble

(c) SplitAE

b

In the embedding of input images (Fig.(a)), samples of
each digit form an approximately one dimensional, stripe-
shaped manifold, and the degree of freedom along each
manifold corresponds roughly to the variation in rotation
angle (see supplementary material for embedding with im-
ages). This degree of freedom does not change the identity
of the image, which is common to both views. Projections
by SplitAE/CorrAE/DistAE do achieve somewhat better
separation for some classes, but the unwanted rotation vari
; , ation is still prominent in the embeddings. On the other
(g) FKCCA (h) NKCCA hand, without using any label information and with only
— paired noisy images, the nonlinear CCA algorithms man-
age to map digits of the same identity to similar locations
while supressing the rotational variation and separating i
ages of different identities (linear CCA also approximates
the same behavior, but fails to separate the classes, pre-
sumably because the input variations are too complex to be
captured by linear mappings). Overall, DCCAE gives the
cleanest embedding, with different digits pushed far apart

(f) CCA

The different behaviour of CCA-based methods from Spli-
tAE/CorrAE/DistAE suggests two things. First, when the
inputs are noisy, reconstructing the inputs faithfully may
still lead to unwanted degrees of freedom in the features
(DCCAE tends to select quite small trade-off parameter
A = 1072 or 10~2, further supporting that it is not nec-
essary to minimize reconstruction error). Second, the
Figure 3.4-SNE embedding of the projected test set of nOisyhard CCA constraints, which enforce uncorrelatedness be-
MNIST digits using different methods. Each sample is denotedtWeen different feature dimensions, appear essentiagthe
by a marker located at its coordinates of embedding and cologonstraints are the difference between DCCAE and Cor-
coded by its label. Neither the feature learning algorithms noirAE/DiStAE. However, the constraints without the multi-
t-SNE use the class information. view objective are insufficient. To see this, we also vi-
sualize al0-dimensional locally linear embedding (LLE,
pre-trained in a layerwise manner using restricted BoltzRoweis & Saul2000 of the test images in Fi@ (b). LLE
mann machinesHinton & Salakhutdinoy2006 and sim-  satisfies the same un-correlatedness constraints as in CCA-
ilarly for (g, q) with inputs from the corresponding view. based methods, but without access to the second view, it
For DNN-based models, we use SGD for optimization withdoes not separate the classes as nicely.
minibatch size, learning rate and momentum tuned on the , -
tuning set. A small weight decay parameteiof*isused 1 View of the embeddings in Fig3, one would expect
for all layers. We monitor the objective on the tuning se,[that a simple linear classifier can achieve high accuracy on

for early stopping. For each algorithm, we select the modePCCA/DCCAE projections. We train one-versus-one lin-
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ear SVMs Chang & Lin 2011) on the projected training Table 2.Mean and standard deviations of PERs over 6 folds ob-
set (now using the ground truth labels), and test on the protained by each algorithm on the XRMB test speakers.

jected test set, while using the projected tuning set for se- Method | Mean (std) PER (%)
lecting the SVM hyperparameter (the penalty parameter for Baseline 34.8 (4.5)
hinge loss). Test error rates on the optimal embedding of CCA 26.7 (5.0)
each algorithm (with highest ACC) are provided in Table SplitAE 29.0 (4.7)
(last column). These error rates agree with the clustering CorrAE 30.6 (4.8)
results. Multi-view feature learning makes classification DistAE 33.2 (4.7)
much easier on this task: Instead of using a heavily non- FKCCA 26.0 (4.4)
linear classifier on the original inputs, a very simple linea NKCCA 26.6 (4.2)
classifier that can be trained efficiently on low-dimensiona DCCA 24.8 (4.9)
projections already achieves high accuracy. DCCAE 24.5 (3.9)

4.2. Acoustic-articulatory data for speech recognition

We next experiment with the Wisconsin X-Ray Micro- ) e
Beam (XRMB) corpus\estbury 1994 of simultaneously search. A small weight decay paramete§&f10 s usgd
recorded speech and articulatory measurements from 4" @l layers. For each algorithm, the dimensionalitys
American English speakers. Multi-view feature Iearningtl!ned over{30,50,70}. For DNN-based models, we use
via CCA/KCCA has previously been shown to improve hidden layers ot 500 ReITUs. qu DCCA, we tune the net-
phonetic recognition performance when tested on audid’'k depths (up (@ nonlinear hidden layers) and find that
alone @rora & Livescy 2013 Wang et al, 2015. in the best-performmg architecturg has3 h.|dden ReLU
layers followed by a linear output layer whigehas only a
We follow the setup ofVang et al(2019 and use learned |inear output layer. For SplitAE/CorrAE/DistAE/DCCAE,
features for speaker-independent phonetic recognition. | the same encoder architecture as that of DCCA performs
puts to multi-view feature learning are acoustic featurespest, and we set the decoders to have symmetric architec-
(39D features consisting of mel frequency cepstral coeffitures to the encoders (except for SplitAE which does not
cients (MFCCs) and their first and second derivatives) anthave an encodeg and its decoder is linear). We fix
articulatory features (horizontal/vertical displacemnef8  , — r, = 10~* for DCCAE (and FKCCA/NKCCA). The

pellets attached to several parts of the vocal tract) cencat trade-off parametek is tuned for each algorithm by grid
nated over a 7-frame window around each frame, givingsearch.

273D acoustic inputs and 112D articulatory inputs for each .
view. For FKCCA, we find it important to use a large number

of random featured/ to get a competitive result, consis-
We split the XRMB speakers into disjoint sets of tent with the findings oHuang et al.(2014 when using
35/8/2/2 speakers for feature learning/recognizer trainrandom Fourier features for speech data. We tune kernel
ing/tuning/testing. The 35 speakers for feature learningyidths atd/ = 5,000 with FKCCA, and test FKCCA with
are fixed; the remaining 12 are used in a 6-fold experi-\; = 30, 000 (the largest\/ we could afford to obtain an
ment (recognizer training on 4 2-speaker folds, tuning orexact SVD solution on a workstation with 32G main mem-
1 fold, and testing on the last fold). Each speaker hagry); we are not able to obtain results for NKCCA with
roughly 50K frames, giving 1.43M multi-view training A7 = 30,000 in 48 hours with our implementation, so we
frames. We remove the per-speaker mean and variang@port its test performance &f = 20, 000 with the optimal
of the articulatory measurements for each training speakeFKCCA hyper-parameters. Notice that FKCCA has about
All of the learned feature types are used in a “tandem” ap14.6 million parameters (random Gaussian samples + pro-
proach Hermansky et al.2000, i.e., they are appended jection matrices), which is more than the number of weight
to the original 39D features and used in a standard hidparameters in the largest DCCA model, so it is slower than
den Markov model (HMM)-based recognizer with Gauss-DCCA for testing (cost of obtaining test features is linear

ian mixture observation distributions. The baseline recogin the number of parameters for both KCCA and DNNSs).

nizer uses the original MFCC features. The recognizer has ) )
Phone error rates (PERs) obtained by different feature

one 3-state left-to-right HMM per phone and the same lan- A : " :
guage model as iang et al(2015 learning algorithms are given in Tah?e We see the same
pattern as on MNIST: nonlinear CCA-based algorithms
For each fold, we select the hyperparameters based asutperform SplitAE/CorrAE/DistAE. Since the recognizer
recognition accuracy on the tuning set. As before, modelgiow is a nonlinear mapping (HMM), the performance of
based on neural networks are trained via SGD, with no prethe linear CCA features is highly competitive. Again, DC-
training and with optimization parameters tuned by gridCAE selects a relatively small = 0.01, indicating that the

canonical correlation term is more important.
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4.3. Multilingual data for word embeddings Table 3.Spearman’s correlation) for bigram similarities.
In this task, we learn a vectorial representation of Eng- Method ‘ AN VN ‘ AVg.
lish words from pairs of English-German word embed- Baseline| 45.0 39.1| 42.1
dings. We follow the setup dfaruqui & Dyer(2014 and CCA 46.6 37.7| 42.2
Lu et al.(2015, and use as inputst0-dimensional mono- SplitAE | 47.0 45.0 | 46.0
lingual word vectors trained via latent semantic analysis CorrAE | 43.0 42.0] 425
on the WMT 2011 monolingual news corpora and use DistAE | 43.6 39.4| 415
the same36 /K English-German word pairs for multi-view FKCCA | 46.4 42.9| 44.7
learning. The learned mappings are applied to the origi- NKCCA | 44.3 39.5| 41.9
nal English word embeddingd§0K words) and the pro- DCCA 48,5 425| 455
jections are used for evaluation. We evaluate on the bi- DCCAE | 49.1 43.2| 46.2

gram similarity dataset dflitchell & Lapata(2010, using

the adjective-noun (AN) and verb-object (VN) subsets, and

tuning and test splits (of size 649/1,972) for each subset (W(CorrAE) instead of canonical correlation. The best overal
exclude the noun-noun subset as it is observetibgt al.  Performeris a new DCCA extension introduced here, deep
(2015 that the NN human annotations often reflect “top- canonically correlated autoencoders (DCCAE).

ical” rather than *functional” similarity). We simply add n jight of the empirical results, it is interesting to cotei

the projections of the two words in each bigram to obtainggain the main features of each type of objective and cor-
an L-dimensional representation of the bigram, as done inesponding constraints. Autoencoder-based approaches ar
prior work (Blacoe & Lapata2012 Lu etal, 2013. We  pased on the idea that the learned features should be able
compute the cosine similarity between the two vectors ot accurately reconstruct the inputs (in the case of multi-
each bigram pair, order the pairs by similarity, and report g,y learning, the inputs in both views). The CCA objec-
the Spearman’s correlatiop)(between the model's rank- e on the other hand, focuses on how well each view’s
ing and human rankings. representation predicts the other’s, ignoring the abtlity

We fix the feature dimensionality &t = 384; other hyper- ~ feconstruct each view. CCA is expecteq to perform well
parameters are tuned as in previous experiments. DNNwhen the two views are uncorrelated given the class la-
based models use ReLU hidden layers of witlth80. A bel (Chaudhuri et a).2009. The noisy MNIST dataset
small weight decay parameter o~ is used for all lay- used here simulates exactly this scenario, and indeed this
ers. We use two ReLU hidden layers for encodérar(d is the task where CCA outperforms other objectives by the
g), and try both linear and nonlinear networks with two largest margins. Even in the other tasks, however, there is
hidden layers for decoderp (andq). FKCCA/NKCCA often no significant advantage to being able to reconstruct
are tested with\/ = 20,000 using kernel widths tuned at the inputs faithfully.

_ H _ _ —4 H . . .
M = 4,000. We fixr, =r, =107 for nonlinear CCAS.  The constraints in the various methods also have an

For each algorithm, we select the model with the highestmportant effect. The performance difference between
Spearman’s correlation on the 649 tuning bigram pairs, an®CCA and CorrAE demonstrates that uncorrelatedness
we report its performance on the 1,972 test pairs in Table between learned dimensions is important. On the other
(our baseline and DCCA results are different from that ofhand, the stronger DCCA constraint may still not be
Lu et al. (2015 due to a different normalization and better Sufficiently strong; an even better constraint may be to
tuning). Unlike MNIST and XRMB, it is important for the require the learned dimensions to be independent (or
features to reconstruct the input monolingual word embed@Pproximately so), and this is an interesting avenue
dings well, as can be seen from the superior performance dpr future work. ~Another future direction is to com-
SpIitAE over FKCCA/NKCCA/DCCA. This implies there Pare DNN-based models with models based on deep
is useful information in the original inputs that is not cor- Boltzmann machinesSfivastava & Salakhutding\2014
related across views. However, DCCAE still performs theSohn et al. 2014 and noise-constrastive learning criteria
best on the AN task, in this case using a relatively laxge  (Gutmann & Hy\arinen 2012.
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