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Abstract
We consider learning representations (features)
in the setting in which we have access to mul-
tiple unlabeled views of the data for representa-
tion learning while only one view is available at
test time. Previous work on this problem has pro-
posed several techniques based on deep neural
networks, typically involving either autoencoder-
like networks with a reconstruction objective or
paired feedforward networks with a correlation-
based objective. We analyze several techniques
based on prior work, as well as new variants, and
compare them experimentally on visual, speech,
and language domains. To our knowledge this
is the first head-to-head comparison of a vari-
ety of such techniques on multiple tasks. We
find an advantage for correlation-based represen-
tation learning, while the best results on most
tasks are obtained with our new variant, deep
canonically correlated autoencoders (DCCAE).

1. Introduction
In many applications, we have access to multiple “views”
of data at training time while only one view is avail-
able at test time. The views can be multiple mea-
surement modalities, such as simultaneously recorded
audio + video (Kidron et al., 2005; Chaudhuri et al.,
2009), audio + articulation (Arora & Livescu, 2013), im-
ages + text (Hardoon et al., 2004; Socher & Li, 2010;
Hodosh et al., 2013), or parallel text in two lan-
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guages (Vinokourov et al., 2003; Haghighi et al., 2008;
Chandar et al., 2014; Faruqui & Dyer, 2014), but may also
be different information extracted from the same source,
such as words + context (Pennington et al., 2014) or docu-
ment text + text of inbound hyperlinks (Bickel & Scheffer,
2004). The presence of multiple information sources
presents an opportunity to learn better representations (fea-
tures) by analyzing multiple views simultaneously. Typical
approaches are based on learning a feature transformation
of the “primary” view (the one available at test time) that
captures useful information from the second view using a
paired two-view training set. Under certain assumptions,
theoretical results exist showing the advantages of multi-
view techniques for downstream tasks (Kakade & Foster,
2007; Foster et al., 2009; Chaudhuri et al., 2009).

Several recently proposed approaches for multi-view
representation learning are based on deep neural net-
works (DNNs), inspired by their success in typ-
ical unsupervised (single-view) feature learning set-
tings (Hinton & Salakhutdinov, 2006). Compared to kernel
methods, DNNs can more easily process large amounts of
training data and, as a parameteric method, do not require
referring to the training set at test time.

There are two main training criteria (objectives) that have
been applied for DNN-based multi-view representation
learning. One is based on autoencoders, where the ob-
jective is to learn a compact representation that best
reconstructs the inputs (Ngiam et al., 2011). The sec-
ond approach is based on canonical correlation analysis
(CCA,Hotelling, 1936), which learns features in two views
that are maximally correlated. CCA and its kernel ex-
tension (Lai & Fyfe, 2000; Akaho, 2001; Bach & Jordan,
2002; Hardoon et al., 2004) have long been the workhorse
for multi-view feature learning and dimensionality re-
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Figure 1.Schematic diagram of DNN-based multi-view representation learning models.

duction (Vinokourov et al., 2003; Kakade & Foster, 2007;
Socher & Li, 2010; Dhillon et al., 2011). Multiple neu-
ral network based CCA-like models have been pro-
posed (Lai & Fyfe, 1999; Hsieh, 2000), but the full
DNN extension of CCA, termed deep CCA (DCCA,
Andrew et al., 2013) has been developed only recently.

The contributions of this paper are as follows. We
compare several DNN-based approaches, along with
linear and kernel CCA, in the unsupervised multi-
view feature learning setting where the second view
is not available at test time. Prior work has shown
the benefit of multi-view methods on tasks such as
retrieval (Vinokourov et al., 2003; Hardoon et al., 2004;
Socher & Li, 2010; Hodosh et al., 2013), clustering
(Blaschko & Lampert, 2008; Chaudhuri et al., 2009)
and classification/recognition (Dhillon et al., 2011;
Arora & Livescu, 2013; Ngiam et al., 2011). However, to
our knowledge no head-to-head comparison on multiple
tasks has previously been done. We address this gap by
comparing approaches based on prior work, as well as
new variants developed here. Empirically, we find that
CCA-based approaches tend to outperform unconstrained
reconstruction-based approaches. One of the new methods
we propose, a DNN-based model combining CCA and
autoencoder-based terms, is the consistent winner across
several tasks. To facilitate future work, we release our im-
plementations and a new benchmark dataset of simulated
two-view data based on MNIST.

2. DNN-based multiview feature learning
Notations In the multi-view feature learning scenario, we
have access to paired observations from two views, de-
noted(x1,y1), . . . , (xN ,yN ), whereN is the sample size,
xi ∈ R

Dx andyi ∈ R
Dy for i = 1, . . . , N . We also denote

the data matrices for each view byX = [x1, . . . ,xN ] and
Y = [y1, . . . ,yN ]. We use bold-face letters, e.g.f , to de-
note mappings implemented by kernel machines or DNNs,
with a corresponding set of learnable parameters, denoted,
e.g.,Wf . We write thef -projected (view 1) data matrix
asf(X) = [f(x1), . . . , f(xN )]. The dimensionality of the
projection (feature) is denotedL.

We now describe the DNN-based multi-view feature

learning algorithms considered here, with corresponding
schematic diagrams given in Fig.1.

2.1. Split autoencoders (SplitAE)
Ngiam et al.(2011) propose to extract shared representa-
tions by reconstructing both views from the one view that
is available at test time. In this approach, the feature extrac-
tion networkf is shared while the reconstruction networks
p andq are separate for each view. We refer to this model
as a split autoencoder (SplitAE), shown schematically in
Fig. 1 (a). The objective of this model is the sum of recon-
struction errors for the two views (we omit theℓ2 weight
decay term for all models in this section):

min
Wf ,Wp,Wq

1

N

N
∑

i=1

(‖xi − p(f(xi))‖
2

+ ‖yi − q(f(xi))‖
2
).

The intuition for this model is that the shared representation
can be extracted from a single view, and can be used to re-
construct all views.1 The autoencoder loss is the empirical
expectation of the loss incurred at each training sample, and
thus stochastic gradient descent (SGD) can be used to op-
timize the objective efficiently, with the gradient estimated
from a small minibatch of samples.

2.2. Deep canonical correlation analysis (DCCA)
Andrew et al.(2013) propose a DNN extension of CCA
termed deep CCA (DCCA; see Fig.1 (b). In DCCA, two
DNNs f andg are used to extract nonlinear features for
each view and the canonical correlation between the ex-
tracted featuresf(X) andg(Y) is maximized:

max
Wf ,Wg,U,V

1

N
tr

(

U⊤f(X)g(Y)⊤V
)

(1)

s.t. U⊤

(

1

N
f(X)f(X)⊤ + rxI

)

U = I,

V⊤

(

1

N
g(Y)g(Y)⊤ + ryI

)

V = I,

u⊤
i f(X)g(Y)⊤vj = 0, for i 6= j,

1The authors also propose a bimodal deep autoencoder com-
bining DNN transformed features from both views; this model is
more natural for the multimodal fusion setting where both views
are available at test time. Empirically,Ngiam et al.(2011) report
that SplitAE tends to work better in the multi-view setting.
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where U = [u1, . . . ,uL] and V = [v1, . . . ,vL] are
the CCA directions that project the DNN outputs and
(rx, ry) > 0 are regularization parameters for sample
covariance estimation (Bie & Moor, 2003; Hardoon et al.,
2004). In DCCA, U⊤f(·) is the final projection mapping
used for testing. One intuition for CCA-based objectives
is that, while it may be difficult to accurately reconstruct
one view from the other view, it may be easier, and may be
sufficient, to learn a predictor of afunction (or subspace)
of the second view. In addition, it should be helpful for the
learned dimensions within each view to be uncorrelated so
that they provide complementary information.

Optimization The DCCA objective couples all training
samples through the whitening constraints, so stochastic
gradient descent (SGD) cannot be applied in a standard
way. It has been observed byWang et al.(2015) that
DCCA can still be optimized efficiently as long as the gra-
dient is estimated using a sufficiently large minibatch (with
gradient formulas given inAndrew et al., 2013). Intu-
itively, this approach works because a large minibatch con-
tains enough information for estimating the covariances.

2.3. Deep canonically correlated autoencoders
(DCCAE)

Inspired by both CCA and reconstruction-based objectives,
we propose a new model that consists of two autoencoders
and optimizes the combination of canonical correlation be-
tween the learned bottleneck representations and the recon-
struction errors of the autoencoders. In other words, we
optimize the following objective

min
Wf ,Wg,Wp,Wq,U,V

−
1

N
tr

(

U⊤f(X)g(Y)⊤V
)

+
λ

N

N
∑

i=1

(‖xi − p(f(xi))‖
2

+ ‖yi − q(g(yi))‖
2
) (2)

s.t. the same constraints in (1),

whereλ > 0 is a trade-off parameter. Alternatively, this
approach can be seen as adding an autoencoder regulariza-
tion term to DCCA. We call this approach deep canonically
correlated autoencoders (DCCAE). Similarly to DCCA, we
apply stochastic optimization to the DCCAE objective; the
stochastic gradient is the sum of the gradient for the au-
toencoder term and the gradient for the DCCA term.

Interpretations CCA maximizes the mutual informa-
tion between the projected views for certain distributions
(Borga, 2001), while training an autoencoder to minimize
reconstruction error amounts to maximizing a lower bound
on the mutual information between inputs and learned fea-
tures (Vincent et al., 2010). The DCCAE objective offers
a trade-off between the information captured in the (in-
put, feature) mapping within each view on the one hand,
and the information in the (feature, feature) relationship

across views on the other. Intuitively, this is the same prin-
ciple as the information bottleneck method (Tishby et al.,
1999), and indeed, in the case of Gaussian variables, the
information bottleneck method finds the same subspaces as
CCA (Chechik et al., 2005).

2.4. Correlated autoencoders (CorrAE)
In the next model, we replace the CCA term in the DC-
CAE objective with the sum of the scalar correlations be-
tween the pairs of learned dimensions across views, which
is an alternative measure of agreement between views. In
other words, the feature dimensions within each view are
not constrained to be uncorrelated with each other. This
model is intended to test how important the original CCA
constraint is. We call this model correlated autoencoders
(CorrAE), shown in Fig.1 (c). Its objective can be equiva-
lently written in a constrained form as

min
Wf ,Wg,Wp,Wq,U,V

−
1

N
tr

(

U⊤f(X)g(Y)⊤V
)

+
λ

N

N
∑

i=1

(‖xi − p(f(xi))‖
2

+ ‖yi − q(g(yi))‖
2
) (3)

s.t.u⊤
i f(X)f(X)⊤ui = v⊤

i g(Y)g(Y)⊤vi = N, 1 ≤ i ≤ L.

whereλ > 0 is a trade-off parameter. It is clear that the
constraint set in (3) is a relaxed version of that of (2). We
will demonstrate that this difference results in a large per-
formance gap. We apply the same optimization strategy of
DCCAE to CorrAE.

CorrAE is similar to the model ofChandar et al.(2014),
who try to learn vectorial word representations using par-
allel corpora from two languages. They use DNNs in each
view (language) to predict the bag-of-words representation
of the input sentences, or that of the paired sentences from
the other view, while encouraging the learned bottleneck
layer representations to be highly correlated.

2.5. Minimum-distance autoencoders (DistAE)
The CCA objective can be seen as minimzing the dis-
tance between the learned projections of the two views,
while satisfying the whitening constraints for the projec-
tions (Hardoon et al., 2004). The constraints complicate
the optimization of CCA-based objectives, as pointed out
above. This observation motivates us to consider additional
objectives that decompose into sums over training exam-
ples, while maintaining the intuition of the CCA objective
as a reconstruction error between two mappings. Here we
consider a variant we refer to as minimum-distance autoen-
coders (DistAE) that optimizes the following objective:

min
Wf ,Wg,Wp,Wq

1

N

N
∑

i=1

‖f(xi) − g(yi)‖
2

‖f(xi)‖
2

+ ‖g(yi)‖
2

+
λ

N

N
∑

i=1

(‖xi − p(f(xi))‖
2

+ ‖yi − q(g(yi))‖
2
) (4)
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which is a weighted combination of reconstruction errors
of two autoencoders and the average discrepancy between
the projected sample pairs. The denominator of the discrep-
ancy term is used to keep the optimization from improving
the objective by simply scaling down the projections (al-
though they can never become identically zero due to the
reconstruction terms). This objective is unconstrained and
is the expectation of loss incurred at each training sample,
so normal SGD applies using small minibatches.

3. Related work
We focus on related work based on feed-forward
neural networks and the kernel extension of CCA.
There has also been work using deep Boltzmann ma-
chines (Srivastava & Salakhutdinov, 2014; Sohn et al.,
2014), where several layers of restricted Boltzmann ma-
chines (RBM) are stacked to represent each view, with an
additional top layer that provides the joint representation.
These are probabilistic graphical models, for which the
maximum likelihood objective is intractable and the train-
ing procedures are more complex. Although probabilistic
models have some advantages (e.g., dealing with missing
values and generating samples in a natural way), DNN-
based models are tractable and efficient to train.

3.1. DNN feature learning using CCA-like objectives
There have been several approaches to multi-view repre-
sentation learning using neural networks with an objective
similar to that of CCA. Under the assumption that the two
views share a common cause (e.g., depth is a common
cause for adjacent patches of images),Becker & Hinton
(1992) maximize a sample-based estimate of mutual infor-
mation between the common signal and the average outputs
of neural networks for the two views. It is less straightfor-
ward, however, to develop sample-based estimates of mu-
tual information in higher dimensions.

Lai & Fyfe (1999) propose to optimize the correlation
(rather than canonical correlation) between the outputs of
networks for each view, subject to scale constraints on each
output dimension. Instead of directly solving this con-
strained formulation, the authors apply Lagrangian relax-
ation and solve the resulting unconstrained objective using
SGD. The objective in this work is different from that of
CCA, as there are no constraints that the learned dimen-
sions within each view be uncorrelated.Hsieh(2000) pro-
poses a neural network based model involving three mod-
ules: one module for extracting a pair of maximally cor-
related one-dimensional features for the two views; and a
second and third module for reconstructing the original in-
puts of the two views from the learned features. In this
model, the feature dimensions can be learned one after an-
other, each learned using as input the reconstruction resid-
ual from previous dimensions. The three modules are each

trained separately, so there is no unified objective.

Kim et al. (2012) propose an algorithm that first uses deep
belief networks and the autoencoder objective to extract
features for two languages independently, and then applies
linear CCA to the learned features (activations at the bot-
tleneck layer of the autoencoders) to learn the final repre-
sentation. In this two-step approach, the DNN weight pa-
rameters are not updated to optimize the CCA objective.

3.2. Kernel CCA
Another nonlinear extension of CCA is kernel CCA
(KCCA, Lai & Fyfe, 2000; Akaho, 2001; Melzer et al.,
2001; Bach & Jordan, 2002; Hardoon et al., 2004). KCCA
corresponds to using (potentially infinite-dimensional)
feature mappings induced by positive-definite kernels
kx(·, ·), ky(·, ·) (e.g., Gaussian RBF kernelsk(a,b) =

e−‖a−b‖2/2s2

wheres is the kernel width), and learning
a linear CCA on them with linear projections(U,V).
From the representer theorem of reproducing kernel Hilbert
spaces (Scḧolkopf & Smola, 2001), the final projection can
be written as linear combinations of kernel functions evalu-
ated on the training set, i.e.,U⊤f(·) =

∑N
i=1

αikx(x,xi)
whereαi ∈ R

L, i = 1, . . . , N ; one can then work with
the kernel matrices and directly solve for the linear coef-
ficients{αi}

N
i=1

. KCCA involves anN × N eigenvalue
problem and so is challenging in both memory (storing the
kernel matrices) and time (solving the eigenvalue system
näıvely costsO(N3)). To alleviate these issues, various
kernel approximation techniques have been proposed, such
as random Fourier features (Lopez-Paz et al., 2014) and
the Nystr̈om approximation (Williams & Seeger, 2001). In
random Fourier features, we randomly sampleM Dx/Dy-
dimensional vectors from a Gaussian distribution and map
the original inputs toRM by computing the dot product
with the random samples followed by an elementwise co-
sine; the inner products between transformed samples ap-
proximate kernel similarities between original inputs. In
the Nystr̈om approximation, we randomly selectM train-
ing samples and construct theM × M kernel matrix for
these samples, and use its eigen-decomposition to obtain
a rank-M approximation of the full kernel matrix. Both
techniques produce rank-M approximations of the kernel
matrices with computational complexityO(M3 + M2N);
but random Fourier features are data independent and more
efficient to generate. Other approximation techniques such
as incomplete Cholesky decomposition (Bach & Jordan,
2002), partial Gram-Schmidt (Hardoon et al., 2004), and
incremental SVD (Arora & Livescu, 2012) have also been
proposed. However, for very large training sets, as in
some of our tasks below, it remains difficult and costly
to approximate KCCA well. Although iterative algorithms
have recently been introduced for very large CCA problems
(Lu & Foster, 2014), they are aimed at sparse matrices and
do not have a natural out-of-sample extension.
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Figure 2.Selection of view 1 images (left) and their correspond-
ing view 2 images (right) from our noisy MNIST dataset.

4. Experiments
We compare the following methods in the multi-view learn-
ing setting, focusing on several downstream tasks: noisy
digit image classification, speech recognition, and word
pair semantic similarity.

DNN-based models, including SplitAE, CorrAE, DCCA,
DCCAE, and DistAE.

Linear CCA (CCA), corresponding to DCCA with only a
linear network without hidden layers for both views.

Kernel CCA approximations. Exact KCCA is intractable
for our tasks; we instead implement two kernel approxima-
tion techniques, using Gaussian RBF kernels. The first im-
plementation, denotedFKCCA, uses random Fourier fea-
tures (Lopez-Paz et al., 2014) and the second implemen-
tation, denotedNKCCA, uses the Nystr̈om approxima-
tion (Williams & Seeger, 2001). As described in Sec.3.2,
in FKCCA/NKCCA we transform the original inputs to
an M -dimensional feature space where the inner prod-
ucts between samples approximate the kernel similarities
(Yang et al., 2012). We apply linear CCA to the trans-
formed inputs to obtain the approximate KCCA solution.

4.1. Noisy MNIST digits

In this task, we generate two-view data using the MNIST
dataset (LeCun et al., 1998), which consists of28 × 28
grayscale digit images, with60K/10K images for train-
ing/testing. We generate a more challenging version of
the dataset as follows (see Fig.2 for examples). We first
rescale the pixel values to[0, 1]. We then randomly rotate
the images at angles uniformly sampled from[−π/4, π/4]
and the resulting images are used as view 1 inputs. For
each view 1 image, we randomly select an image of the
same identity (0-9) from the original dataset, add indepen-
dent random noise uniformly sampled from[0, 1] to each
pixel, and truncate the pixel final values to[0, 1] to obtain
the corresponding view 2 sample. The original training set
is further split into training/tuning sets of size50K/10K.

Since, given the digit identity, observing a view 2 image
does not provide any information about the corresponding
view 1 image, a good multi-view learning algorithm should

Table 1.Performance of several representation learning methods
on the test set of noisy MNIST digits. Performance measures
are clustering accuracy (ACC), normalized mutual information
(NMI) of clustering, and classification error rates of a linear SVM
on the projections. The selected feature dimensionalityL is given
in parentheses. Results are averaged over5 random seeds.

Method ACC (%) NMI (%) Error (%)

Baseline 47.0 50.6 13.1
CCA (L = 10) 72.9 56.0 19.6
SplitAE (L = 10) 64.0 69.0 11.9
CorrAE (L = 10) 65.5 67.2 12.9
DistAE (L = 20) 53.5 60.2 16.0
FKCCA(L = 10) 94.7 87.3 5.1
NKCCA(L = 10) 95.1 88.3 4.5
DCCA (L = 10) 97.0 92.0 2.9
DCCAE (L = 10) 97.5 93.4 2.2

be able to extract features that disregard the noise. We mea-
sure the class separation in the learned feature spaces by
clustering the projected view 1 inputs into10 clusters and
evaluating how well the clusters agree with ground-truth
labels. We use spectral clustering (Ng et al., 2002) so as
to account for possibly non-convex cluster shapes. Specifi-
cally, we first build ak-nearest-neighbor graph on the pro-
jected view 1 tuning/test samples with a binary weighting
scheme (edges connecting neighboring samples have a con-
stant weight of1), then embed these samples inR

10 using
eigenvectors of the normalized graph Laplacian, and finally
runK-means in the embedding to obtain a hard partition of
the samples. In the last step,K-means is run20 times with
random initialization and the run with the bestK-means
objective is used. The size of the neighborhood graphk is
selected from{5, 10, 20, 30, 50} using the tuning set. We
measure clustering performance with two criteria, cluster-
ing accuracy (ACC) and normalized mutual information
(NMI) (Cai et al., 2005).

Each algorithm has hyperparameters that are selected us-
ing the tuning set. The final dimensionalityL is selected
from {5, 10, 20, 30, 50}. For CCA, the regularization pa-
rametersrx/ry are selected via grid search. For KC-
CAs, we fix rx/ry at a small positive value of10−4 (as
suggested byLopez-Paz et al.(2014), FKCCA is robust
to rx/ry), do grid search for the Gaussian kernel width
for each view at rankM = 5, 000, and then test with
M = 20, 000. For DNN-based models, feature mappings
(f ,g) are implemented by networks of3 hidden layers,
each of1, 024 sigmoid units, and a linear output layer of
L units; reconstruction mappings(p,q) are implemented
by networks of3 hidden layers, each of1, 024 sigmoid
units, and an output layer of784 sigmoid units. We fix
rx = ry = 10−4 for DCCA and DCCAE. For Spli-
tAE/CorrAE/DCCAE/DistAE we select the trade-off pa-
rameterλ via grid search. The two networks(f ,p) are
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Figure 3.t-SNE embedding of the projected test set of noisy
MNIST digits using different methods. Each sample is denoted
by a marker located at its coordinates of embedding and color
coded by its label. Neither the feature learning algorithms nor
t-SNE use the class information.

pre-trained in a layerwise manner using restricted Boltz-
mann machines (Hinton & Salakhutdinov, 2006) and sim-
ilarly for (g,q) with inputs from the corresponding view.
For DNN-based models, we use SGD for optimization with
minibatch size, learning rate and momentum tuned on the
tuning set. A small weight decay parameter of10−4 is used
for all layers. We monitor the objective on the tuning set
for early stopping. For each algorithm, we select the model

with best ACC on the tuning set, and report its results on
the test set. The ACC and NMI results (in percentage) for
each algorithm are given in Table1. As a baseline, we also
cluster the original784-dimensional view 1 images.

All of the multi-view feature learning algorithms achieve
some improvement over the baseline. The nonlinear CCA
algorithms perform similarly to each other and significantly
better than SplitAE/CorrAE/DistAE. We also qualitatively
investigate the features by embedding the projected fea-
tures in 2D usingt-SNE (van der Maaten & Hinton, 2008);
the resulting visualizations are given in Fig.3. Overall, the
class separation in the visualizations qualitatively agrees
with the relative clustering performances in Table1.

In the embedding of input images (Fig.3 (a)), samples of
each digit form an approximately one dimensional, stripe-
shaped manifold, and the degree of freedom along each
manifold corresponds roughly to the variation in rotation
angle (see supplementary material for embedding with im-
ages). This degree of freedom does not change the identity
of the image, which is common to both views. Projections
by SplitAE/CorrAE/DistAE do achieve somewhat better
separation for some classes, but the unwanted rotation vari-
ation is still prominent in the embeddings. On the other
hand, without using any label information and with only
paired noisy images, the nonlinear CCA algorithms man-
age to map digits of the same identity to similar locations
while supressing the rotational variation and separating im-
ages of different identities (linear CCA also approximates
the same behavior, but fails to separate the classes, pre-
sumably because the input variations are too complex to be
captured by linear mappings). Overall, DCCAE gives the
cleanest embedding, with different digits pushed far apart.

The different behaviour of CCA-based methods from Spli-
tAE/CorrAE/DistAE suggests two things. First, when the
inputs are noisy, reconstructing the inputs faithfully may
still lead to unwanted degrees of freedom in the features
(DCCAE tends to select quite small trade-off parameter
λ = 10−3 or 10−2, further supporting that it is not nec-
essary to minimize reconstruction error). Second, the
hard CCA constraints, which enforce uncorrelatedness be-
tween different feature dimensions, appear essential; these
constraints are the difference between DCCAE and Cor-
rAE/DistAE. However, the constraints without the multi-
view objective are insufficient. To see this, we also vi-
sualize a10-dimensional locally linear embedding (LLE,
Roweis & Saul, 2000) of the test images in Fig.3 (b). LLE
satisfies the same un-correlatedness constraints as in CCA-
based methods, but without access to the second view, it
does not separate the classes as nicely.

In view of the embeddings in Fig.3, one would expect
that a simple linear classifier can achieve high accuracy on
DCCA/DCCAE projections. We train one-versus-one lin-
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ear SVMs (Chang & Lin, 2011) on the projected training
set (now using the ground truth labels), and test on the pro-
jected test set, while using the projected tuning set for se-
lecting the SVM hyperparameter (the penalty parameter for
hinge loss). Test error rates on the optimal embedding of
each algorithm (with highest ACC) are provided in Table1
(last column). These error rates agree with the clustering
results. Multi-view feature learning makes classification
much easier on this task: Instead of using a heavily non-
linear classifier on the original inputs, a very simple linear
classifier that can be trained efficiently on low-dimensional
projections already achieves high accuracy.

4.2. Acoustic-articulatory data for speech recognition
We next experiment with the Wisconsin X-Ray Micro-
Beam (XRMB) corpus (Westbury, 1994) of simultaneously
recorded speech and articulatory measurements from 47
American English speakers. Multi-view feature learning
via CCA/KCCA has previously been shown to improve
phonetic recognition performance when tested on audio
alone (Arora & Livescu, 2013; Wang et al., 2015).

We follow the setup ofWang et al.(2015) and use learned
features for speaker-independent phonetic recognition. In-
puts to multi-view feature learning are acoustic features
(39D features consisting of mel frequency cepstral coeffi-
cients (MFCCs) and their first and second derivatives) and
articulatory features (horizontal/vertical displacement of 8
pellets attached to several parts of the vocal tract) concate-
nated over a 7-frame window around each frame, giving
273D acoustic inputs and 112D articulatory inputs for each
view.

We split the XRMB speakers into disjoint sets of
35/8/2/2 speakers for feature learning/recognizer train-
ing/tuning/testing. The 35 speakers for feature learning
are fixed; the remaining 12 are used in a 6-fold experi-
ment (recognizer training on 4 2-speaker folds, tuning on
1 fold, and testing on the last fold). Each speaker has
roughly 50K frames, giving 1.43M multi-view training
frames. We remove the per-speaker mean and variance
of the articulatory measurements for each training speaker.
All of the learned feature types are used in a “tandem” ap-
proach (Hermansky et al., 2000), i.e., they are appended
to the original 39D features and used in a standard hid-
den Markov model (HMM)-based recognizer with Gauss-
ian mixture observation distributions. The baseline recog-
nizer uses the original MFCC features. The recognizer has
one 3-state left-to-right HMM per phone and the same lan-
guage model as inWang et al.(2015)

For each fold, we select the hyperparameters based on
recognition accuracy on the tuning set. As before, models
based on neural networks are trained via SGD, with no pre-
training and with optimization parameters tuned by grid

Table 2.Mean and standard deviations of PERs over 6 folds ob-
tained by each algorithm on the XRMB test speakers.

Method Mean (std) PER (%)

Baseline 34.8 (4.5)
CCA 26.7 (5.0)
SplitAE 29.0 (4.7)
CorrAE 30.6 (4.8)
DistAE 33.2 (4.7)
FKCCA 26.0 (4.4)
NKCCA 26.6 (4.2)
DCCA 24.8 (4.4)
DCCAE 24.5 (3.9)

search. A small weight decay parameter of5×10−4 is used
for all layers. For each algorithm, the dimensionalityL is
tuned over{30, 50, 70}. For DNN-based models, we use
hidden layers of1 500 ReLUs. For DCCA, we tune the net-
work depths (up to3 nonlinear hidden layers) and find that
in the best-performing architecture,f has3 hidden ReLU
layers followed by a linear output layer whileg has only a
linear output layer. For SplitAE/CorrAE/DistAE/DCCAE,
the same encoder architecture as that of DCCA performs
best, and we set the decoders to have symmetric architec-
tures to the encoders (except for SplitAE which does not
have an encoderg and its decoderq is linear). We fix
rx = ry = 10−4 for DCCAE (and FKCCA/NKCCA). The
trade-off parameterλ is tuned for each algorithm by grid
search.

For FKCCA, we find it important to use a large number
of random featuresM to get a competitive result, consis-
tent with the findings ofHuang et al.(2014) when using
random Fourier features for speech data. We tune kernel
widths atM = 5, 000 with FKCCA, and test FKCCA with
M = 30, 000 (the largestM we could afford to obtain an
exact SVD solution on a workstation with 32G main mem-
ory); we are not able to obtain results for NKCCA with
M = 30, 000 in 48 hours with our implementation, so we
report its test performance atM = 20, 000 with the optimal
FKCCA hyper-parameters. Notice that FKCCA has about
14.6 million parameters (random Gaussian samples + pro-
jection matrices), which is more than the number of weight
parameters in the largest DCCA model, so it is slower than
DCCA for testing (cost of obtaining test features is linear
in the number of parameters for both KCCA and DNNs).

Phone error rates (PERs) obtained by different feature
learning algorithms are given in Table2. We see the same
pattern as on MNIST: nonlinear CCA-based algorithms
outperform SplitAE/CorrAE/DistAE. Since the recognizer
now is a nonlinear mapping (HMM), the performance of
the linear CCA features is highly competitive. Again, DC-
CAE selects a relatively smallλ = 0.01, indicating that the
canonical correlation term is more important.
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4.3. Multilingual data for word embeddings
In this task, we learn a vectorial representation of Eng-
lish words from pairs of English-German word embed-
dings. We follow the setup ofFaruqui & Dyer(2014) and
Lu et al.(2015), and use as inputs640-dimensional mono-
lingual word vectors trained via latent semantic analysis
on the WMT 2011 monolingual news corpora and use
the same36K English-German word pairs for multi-view
learning. The learned mappings are applied to the origi-
nal English word embeddings (180K words) and the pro-
jections are used for evaluation. We evaluate on the bi-
gram similarity dataset ofMitchell & Lapata(2010), using
the adjective-noun (AN) and verb-object (VN) subsets, and
tuning and test splits (of size 649/1,972) for each subset (we
exclude the noun-noun subset as it is observed byLu et al.
(2015) that the NN human annotations often reflect “top-
ical” rather than “functional” similarity). We simply add
the projections of the two words in each bigram to obtain
anL-dimensional representation of the bigram, as done in
prior work (Blacoe & Lapata, 2012; Lu et al., 2015). We
compute the cosine similarity between the two vectors of
each bigram pair, order the pairs by similarity, and report
the Spearman’s correlation (ρ) between the model’s rank-
ing and human rankings.

We fix the feature dimensionality atL = 384; other hyper-
parameters are tuned as in previous experiments. DNN-
based models use ReLU hidden layers of width1, 280. A
small weight decay parameter of10−4 is used for all lay-
ers. We use two ReLU hidden layers for encoders (f and
g), and try both linear and nonlinear networks with two
hidden layers for decoders (p andq). FKCCA/NKCCA
are tested withM = 20, 000 using kernel widths tuned at
M = 4, 000. We fix rx = ry = 10−4 for nonlinear CCAs.

For each algorithm, we select the model with the highest
Spearman’s correlation on the 649 tuning bigram pairs, and
we report its performance on the 1,972 test pairs in Table3
(our baseline and DCCA results are different from that of
Lu et al.(2015) due to a different normalization and better
tuning). Unlike MNIST and XRMB, it is important for the
features to reconstruct the input monolingual word embed-
dings well, as can be seen from the superior performance of
SplitAE over FKCCA/NKCCA/DCCA. This implies there
is useful information in the original inputs that is not cor-
related across views. However, DCCAE still performs the
best on the AN task, in this case using a relatively largeλ.

5. Discussion
We have explored several approaches in the space of
DNN-based mutli-view representation learning. We have
found that on several tasks, CCA-based models outperform
autoencoder-based models (SplitAE) and models based
on between-view squared distance (DistAE) or correlation

Table 3.Spearman’s correlation (ρ) for bigram similarities.
Method AN VN Avg.

Baseline 45.0 39.1 42.1
CCA 46.6 37.7 42.2
SplitAE 47.0 45.0 46.0
CorrAE 43.0 42.0 42.5
DistAE 43.6 39.4 41.5
FKCCA 46.4 42.9 44.7
NKCCA 44.3 39.5 41.9
DCCA 48.5 42.5 45.5
DCCAE 49.1 43.2 46.2

(CorrAE) instead of canonical correlation. The best overall
performer is a new DCCA extension introduced here, deep
canonically correlated autoencoders (DCCAE).

In light of the empirical results, it is interesting to consider
again the main features of each type of objective and cor-
responding constraints. Autoencoder-based approaches are
based on the idea that the learned features should be able
to accurately reconstruct the inputs (in the case of multi-
view learning, the inputs in both views). The CCA objec-
tive, on the other hand, focuses on how well each view’s
representation predicts the other’s, ignoring the abilityto
reconstruct each view. CCA is expected to perform well
when the two views are uncorrelated given the class la-
bel (Chaudhuri et al., 2009). The noisy MNIST dataset
used here simulates exactly this scenario, and indeed this
is the task where CCA outperforms other objectives by the
largest margins. Even in the other tasks, however, there is
often no significant advantage to being able to reconstruct
the inputs faithfully.

The constraints in the various methods also have an
important effect. The performance difference between
DCCA and CorrAE demonstrates that uncorrelatedness
between learned dimensions is important. On the other
hand, the stronger DCCA constraint may still not be
sufficiently strong; an even better constraint may be to
require the learned dimensions to be independent (or
approximately so), and this is an interesting avenue
for future work. Another future direction is to com-
pare DNN-based models with models based on deep
Boltzmann machines (Srivastava & Salakhutdinov, 2014;
Sohn et al., 2014) and noise-constrastive learning criteria
(Gutmann & Hyv̈arinen, 2012).
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