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Lecture Objectives

= Quick recap
= Temporal Joint Representation

= Multivariate statistical analysis

= Basic concepts (multivariate, covariance,...)
= Principal component analysis (+SVD)

= Canonical Correlation Analysis
= Deep Correlation Networks

= Deep CCA, DCCA-AutoEncoder
= (Deep) Correlational neural networks

= Matrix Factorization
= Nonnegative Matrix Factorization
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Temporal Joint
Representation



Seguence Representation with LSTM
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Multimodal Sequence Representation — Early Fusion
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Multi-View Long Short-Term Memory (MV-LSTM)

MV- | Mv- | MV T M-
LSTM(l) > LSTM(z) D LSTM(S) """""" — LSTM(T)

&
& & &
CRCRS
CRCRE

Language Technologies Institute



Multi-View Long Short-Term Memory

| Multi-view topologies
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Topologies for Multi-View LSTM
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Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

Class labels Model Precision | Recall | F'1

Easy to engage LSTM (Early fusion) | 0.75 0.81 |0.78
MV-LSTM Full 0.81 0.81 |0.81
MV-LSTM Coupled |0.79 0.81 [0.80
MV-LSTM Hybrid | 0.80 0.86 |0.83

Difficult to engage | LSTM (Early fusion) |0.63 0.55 |0.59
MV-LSTM Full 0.68 0.68 |0.68
MV-LSTM Coupled |0.67 0.64 |0.65
MV-LSTM Hybrid  0.74 0.64 |0.68
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Quick Recap
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.
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Multimodal Representation Learning
Learn (unsupervised) a joint Text
representation between multiple 00 00 | |
modalities where similar unimodal f f
concepts are closely projected. (@@ -.-@@®) (00 ---0 0]

0 Deep Multimodal \/

Boltzmann machines (000 - 900
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

d Deep Multimodal
Boltzmann machines
] Stacked Autoencoder
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d Encoder-Decoder
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple e.g. Sentiment
modalities where similar unimodal (@@ - @®@) softmax
concepts are closely projected. )

Bimodal e

d Deep Multimodal
Boltzmann machines

[ Stacked Autoencoder h,@e -0 @0 .. 0ok,
Q Encoder-Decoder €609 @000
Text Image
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 Tensor Fusion representation

How Can We Learn Better Representations?
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Coordinated
Multimodal
Representations



Coordinated multimodal embeddings

» |nstead of projecting to a joint space enforce the similarity between
unimodal embeddings

Repres.1 <P  Repres 2

I I

Modality 1 Modality 2
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Coordinated Multimodal Representations

Learn (unsupervised) two or more

coordinated representations from

multiple modalities. A loss function

IS defined to bring closer these .
multiple representations. Similarity metric | cosine

/v\ distance)

00 ---00) 0000
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Coordinated Multimodal Embeddings

Input t1
Image features s Text: a parrot rides a tricycle
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Multimodal Vector Space Arithmetic
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Multimodal Vector Space Arithmetic

Nearest images
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Structured coordinated embeddings

» [nstead of or in addition to similarity add alternative

entity

skis Derso_n\\ dog
womaf person walking . _ Supervised Information _
\ \ SEVES 10 SR
woman walking -1-11-11 |0 1. . .00 |
R } Binary | | !
lking her d ;| Code | | > |
woman skiin woman walking her aog e . 1-11-1! 1 g0 ......10 |
g ..‘_’1'111"10......013

[Vendrov et al., Order-Embeddings of [Jiang and Li, Deep Cross-Modal Hashing]
Images and Language, 2016]
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Multivariate
Statistical Analysis
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Multivariate Statistical Analysis

“Statistical approaches to understand the
relationships in high dimensional data”

= Example of multivariate analysis approaches:
= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)
= Factor analysis
= Linear discriminant analysis (LDA)
= Canonical correlation analysis (CCA)

Language Technologies Institute



Random Variables

Definition: A variable whose possible values are
numerical outcomes of a random phenomenon.

O Discrete random variable is one which may take on only a
countable number of distinct values such as 0,1,2,3,4,...

d Continuous random variable i1s one which takes an infinite
number of possible values.

Examples of random variables:

« Someone’s age Discrete or
 Someone’s height continuous?
 Someone’s weight Correlated?
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Definitions

Given two random variables X and Y
Expected value probability-weighted average of all possible values
u=E[X]= zxip(xi)

i
» If same probability for all observations x;, then same as arithmetic mean

Variance measures the spread of the observations

o2 = Var(X) = E[(X — )X — )] = E[)?)?] If data is

centered
» Variance is equal to the square of the standard deviation o

Covariance measures how much two random variables change together
cov(X,Y) = E[(X — u)(Y — )] = E[XY]
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Definitions

Pearson Correlation measures the extent to which two
variables have a linear relationship with each other

cov(X,Y)
var(X)var(Y)

pxy = corr(X,Y) =
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Pearson Correlation Examples

0.8 0.4 a -0.4 -0.8 -1
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Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y = [Yl, Y2 Y3, ..., YN]
Covariance matrix generalizes the notion of variance
Zx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]

Cross-covariance matrix generalizes the notion of covariance

Zxy = cov(X,Y) = E[(X — E[XD(Y — E[Y])'] = E[XY"]
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Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y =[YLvsvs .. YN
Covariance matrix generalizes the notion of variance

Zx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]
Cross-covariance matrix generalizes the notion of covariance

rcov(Xy,Yy) cov(X,,Yy) - cov(Xy,Yy)

Sxy = cov(X,Y) = COU(X,l’YZ) COU():(Z»Yz) COU(X:M;YZ)

_COU(Xl, YN) COU(Xz, YN) COU(XM, YN)-

A
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Definitions — Matrix Operations

Trace is defined as the sum of the elements on the main diagonal

of any matrix X
n

tr(X) = z Xij

=1
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Principal component analysis

PCA converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated

variables called principal components
= Eigenvectors are orthogonal towards each other and have
length one
= The first couple of eigenvectors explain the most of the
variance observed in the data
= Low eigenvalues indicate little loss of information if omitted
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Eigenvalues and Eigenvectors

Eigenvalue decomposition

If A IS an nxn matrix, do there exist nonzero vectors X

in R" such that Ax is a scalar multiple of x?

» (The term eigenvalue is from the German
word Eigenwert, meaning “proper value”)

Eigenvalue equation:

AX = AX

Eigenvector Eigenvalue

A: an nxn matrix
A. a scalar (could be zero)
X: a nonzero vector in R"

Geometric Interpretation
y

AX = AX

» X
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Singular Value Decomposition (SVD)

= SVD expresses any matrix A as

A = USVT

= The columns of U are eigenvectors of AA’, and
the columns of V are eigenvectors of ATA.

AATlli = Sizlli
ATAVl' = Sizvi
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Canonical
Correlation Analysis
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Multi-view Learning

audio features at time 1 video features at time 1
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Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest
schema possible

@ Learn two linear projections, one -1 |
for each view, that are maximally
correlated: : | #
projection of X
(u*,v*) = argmax corr(H,, H,) H, ,,/' \\ H,
o 00 - 00 00 00
= argmax corr(u’ X, v'Y) ul [v
wy rrex Yyl )
Text Image
X Y
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)

u,v
AERN vl
SREE =

Two views X, Y where same instances have the same color
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Canonical Correlation Analysis

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(u’ X, v'Y)

u,v
/vvhere \

B cov(u' X, v'Y)
B ar%ff,‘ax var(uf X)var(vTY)

Yyy = cov(X,Y) = XYT

If both X,Y have 0 mean

px =0 puy=0
. /

ul XyTv
= argmax
wy  NVuTXXTuvvTYYTv

uTZva

= argmax
u,v \/uTZXXu\/vTZyyv

38
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Canonical Correlation Analysis

We want to learn multiple projection pairs (u)X, v;Y):

Uy Zxr v

(i Vi) = S T T
(D)~ (@) \/u(i)zxxu(i)\/v(i)zYYv(i)

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)Zva(]) = uz})szv(i) =0 for i :/:_]

|UszV| = tT(UszV) where U = [ll(l),ll(z),..., u(k)]
and V = [v(1), V(2),..-, V(1))
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Canonical Correlation Analysis

tr(UTSyyV
(U*,V*) = argmax U 2xV)
UV JUTExxU\VTZ, vV

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

Ul yU=1 VIZyV=I
Canonical Correlation Analysis:
maximize:  tr(UTZxyV)

subjectto:  UTExyU = V'EyyV =1, u(jZxyv) =0

fori#j
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTEZyxU = V' EyyV = Lu;yExyv;) = 0

fori#j
1 0 O Ay 0 07
y y O 1 O 0 A, O
___________ T T |wlo 0 1 0 0 2
2= Y )X /11 0 0 : 1 0 0
XY YY 0 /12 0 0 1 0
0O 0 A; 0 0 1
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Canonical Correlation Analysis

maximize: |tr(UTZxyV)

SUbjeCt to: UTZXXU = VTZny =1, U(])nyv(l) =0

fori # j

How to solve it? » Lagrange Multipliers!
Lagrange function

L=tr(UTZxyV) + a(UTZyyU — 1) + B(VTZyyV — I)

. . . - dL L
» And then find stationary points of L: P 0 pr 0

ZxxZxyZyy ExyU = AU
ZYYZXYZXXZXYV AV where A = 4afs

42

Language Technologies Institute



Canonical Correlation Analysis

maximize: tr(UTZyyV)

subjectto:  UTExxU = V'EyyV = Lu(jZxyv(;) = 0

[ # ]

]
~1/2 )

C 1/2

T 23/ SxyEny

(U V") = (24 1/2USVD:Z 1/2VSVD)

» Can solve these eigenvalue \. I
equations with Singular Value Eigenvalues

Decomposition (SVD) /|4Eigenvectors
(

Eigenvalue SyxZxy Iy iU = AU

equations ozt owily V=2V where 1 = 4af
\

43
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

SUbjeCt to: U ZXXU V Zny =1, U(])nyv(l) =0

. fori # j

@ Linear projections : #
maximizing correlation o il
projection of X'

@ Orthogonal projections H V4 ™, H,
@ Unit variance of the 06 -00) 00 .00
projection vectors u 4
00 - 00 (0O - 00
Text Image
X Y
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Exploring Deep
Correlation Networks
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr (H o H y)
V.UW, W,

And need to compute gradients:

acorr(Hx’ Hy) Hx Q Ql}""QQ QQ ""i/Q Q Hy
au 90 - 00 ..
w.| W,
ocorr(H,, H,) 00 00 00 -
1% Text Image
Andrew et al., ICML 2013 X Y
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Deep Canonical Correlation Analysis

Training procedure:

X' Y’

1. Pre-train the models Text Image
parameters using 00 ---00) OO 00
denoising autoencoders

00 00
H, (@0 ---00) @0 ---00JH,
Ul V
rrTEaY e
w.i w,
00 - 00 e
Text Image
Andrew et al., ICML 2013 X Y
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Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models
parameters using
denoising autoencoders

2. Optimize the CCA
objective functions using g _
large mini-batches or
full-batch (L-BFGS)

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

X' Y’
Jointly optimize for DCCA and Text Image
autoencoders loss functions 90 00 | ]
» A trade-off between multi-view Y e

correlation and reconstruction
error from individual views

Wang et al., ICML 2015
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Deep Correlational Neural Network

1. Learn a shallow CCA autoencoder (similar to 1
layer DCCAE model)

2. Use the learned weights for initializing the
autoencoder layer

3. Repeat procedure

| || | | | | I
W T W v
I - | b | | | b b | || | b
w v
b
w '\f
l | | b || | b b | || | b
w T‘f W v
I || | I || I
step-1 step-2 step-3

Chandar et al., Neural Computation, 2015
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Matrix Factorization
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Data Clustering

How to discover groups in your data?

K-mean is a simple clustering algorithm
based on competitive learning

* |terative approach

o Assign each data point to one
cluster (based on distance metric)

o Update cluster centers
o Until convergence

 “Winner takes all”

0000 L0 ---00)
Text Image
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Enforcing Data Clustering in Deep Networks

How to enforce data clustering in our
(multimodal) deep learning
algorithms?
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Nonnegative Matrix Factorization (NMF)

Given: Nonnegative n x m matrix M (all entries = 0)

4 ™ [ G J

N Y, L

Want: Nonnegative matrices F (nxr) and G (r x m),
s.t. X=FG.

» easier to interpret
» provide better results in information retrieval, clustering
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Semi-NMF and Other Extensions

SVD:  Xi~ F.GL
NMF: X, ~ F.GT
Semi-NMF: X, ~ F,.G"
¥
Convex-NMF: Xy~ X W, GI , //
00 ---00
00 .- 00
00 - 00
Text
X

Ding et al., TPAMI2015
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Deep Matrix Factorization

I'd
~\ i st
I Learning Data User-provided / N e e -
| Tags |  Visual Features I : I \
I . Visual Features 5 |
| airplane | : 1 : aup?ane '
1 color | | 1 " sky N
I sky : | L o !
I ) | | I building 1
| ( B I ] | | sky ]
| trailer | r ® o ) road ]
| old : L Y( x- Unm ._,: "
| building " | Wu NI | I "
| richmond | | e o --- 0 Ual ' "
| \ / | | W = I 1 |
| I f Q:) = T:SN l (0 ®.---0 o) (Tl | | beach '
| I -C—g_ ;‘ S . § I W, | | sunset |
! 1 I ; =7 & g | . sky ]
| beach I Weakly-Supervised ‘= < | (o ®@---0 @)X | I |
I sunset : Image-Tag Relevance E r1r0.0 | Deep Matrix Factorization | Image Tag Refinement )
1 priVate | —_— - 0 1 0~ 0 \ Vi ‘__________,
- e e - -
I nge | PP maw o B
| < - . .
] Images Associated with : ‘ 0 0 1 1
Tser-provided Tag:
l\ User-provided Tags J n 00 1 |
s s . ‘= -~
- ekt S
! \ / sky \
| | I sater |
| : | cloud :
| [
| | | [
! : 2 Visual Features ——) bird :
| | | grass "
: | : animal |
I | | [
! ' | Image Tag Assi ¢ !
\ ) A mage Tag Assignmen ’
— - - - - - - - - - -

Li and Tang, MMML 2015
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Deep Semi-NMF Model

Squint

f-means

) ) Zy | Identity |
k-means Z Expression ‘___...—-—-—-—“/’1 Features
> \ 2 : :
‘ Pose / Features ‘ H3
Features Hz
L Loh ) 7.7,7
H1 Zl Z 1Z2 17273

Trigerous et al., TPAMI 2015
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Multivariate Statistics

= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)

= Factor analysis

= Linear discriminant analysis (LDA)

= Canonical correlation analysis (CCA)

= Correspondence analysis

= Canonical correspondence analysis

= Multidimensional scaling

= Multivariate regression

= Discriminant analysis
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