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Abstract

Video captioning which automatically translates video

clips into natural language sentences is a very important

task in computer vision. By virtue of recent deep learn-

ing technologies, video captioning has made great progress.

However, learning an effective mapping from the visual se-

quence space to the language space is still a challenging

problem due to the long-term multimodal dependency mod-

elling and semantic misalignment. Inspired by the facts

that memory modelling poses potential advantages to long-

term sequential problems [35] and working memory is the

key factor of visual attention [33], we propose a Multi-

modal Memory Model (M3) to describe videos, which build-

s a visual and textual shared memory to model the long-

term visual-textual dependency and further guide visual at-

tention on described visual targets to solve visual-textual

alignments. Specifically, similar to [10], the proposed M3

attaches an external memory to store and retrieve both vi-

sual and textual contents by interacting with video and sen-

tence with multiple read and write operations. To evaluate

the proposed model, we perform experiments on two public

datasets: MSVD and MSR-VTT. The experimental results

demonstrate that our method outperforms most of the state-

of-the-art methods in terms of BLEU and METEOR.

1. Introduction

Describing videos with natural sentences automatically

also called video captioning is very important for bridging

vision and language, which is also a very challenging prob-

lem in computer vision. It has plenty of practical appli-

cations, e.g., human-robot interaction, video indexing and

describing videos for the visually impaired.

Video captioning involves in understanding both vision
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Figure 1. The overall framework of M3 for video captioning. It

contains a CNN-based video encoder, a multimodal memory and a

LSTM-based text decoder which are denoted by dashed box in dif-

ferent colors. The multimodal memory Mem stores and retrieves

both visual and textual information by interacting with video and

sentence with multiple read and write operations. The proposed

M3 with explicit memory modelling can not only model the long-

term visual-textual dependency, but also guide visual attention for

effective video representation. (Best viewed in color)

and language, and then builds the mapping from visual con-

tents to words. As we know, video as image sequence con-

tains rich information about actor, object, action, scene and

their interactions. It is very difficult for the existing meth-

ods to use a single visual representation [31] to capture all

these information over a long period. Yao et al. [37] at-
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tempt to dynamically select multiple visual representation-

s based on temporal attention mechanism which is driv-

en by the hidden representations from a Long Short-Term

Memory (LSTM) text decoder. The LSTM text decoder,

which integrates the information from both words and se-

lected visual contents, models the sentence generation and

guides visual selection. Recently, neural memory model-

s have been proposed and successfully applied to question

answering [35], which show greater advantages than LST-

M to model long-term dependency in sequential problems.

Furthermore, working memory is one of the key factors to

guide eye movement in visual attention for efficient visual

search, which has been computationally modelled in [14]

and [33]. Explicitly modelling memory for video and sen-

tence in visual captioning can not only model the long-term

visual-textual dependency, but also guide visual attention

to solve multimodal semantic misalignment. As we know,

few memory models have been proposed for multimodal se-

quences.

In this paper, we propose a Multimodal Memory Mod-

el (M3) to describe videos, which builds a visual and tex-

tual shared memory to guide visual attention on described

targets and enhance the long-term visual-textual dependen-

cy modelling. Inspired by Neural Turing Machines [10],

the proposed M3 attaches an external memory to store and

retrieve both visual and textual information by interacting

with video and sentence with multiple read and write oper-

ations. Fig. 1 shows the overall framework of multimodal

memory modelling for video captioning, which consists of

three key components: convolutional neural networks (CN-

N) based video encoder, multimodal memory and LSTM-

based text decoder. (1) CNN-based video encoder first ex-

tracts video frame/clip features using pretrained 2D/3D C-

NNs which are often used for image/video classification.

The extracted features {vi}
n
i=1 form the original video rep-

resentation. Similar to [37], temporal soft-attention Attend

is used to select visual information most related to each

word. But very different from [37] using the hidden states

from a LSTM decoder, we guide the soft-attention based on

the content from a multimodal memory (readatt in Fig. 1

denotes the content read from memory for attention). Then

the selected visual information will be written into the mem-

ory (writeatt denotes the content written to memory from

selective attention). (2) LSTM-based text decoder model-

s the sentence generation with a LSTM-RNN architecture,

which predicts the {t + 1}th word conditioned on not only

previous hidden representation LSTM t but also the con-

tent read from the multimodal memory (readdec denotes

the content read from memory for decoder). Besides word

prediction, the text decoder also writes the updated repre-

sentation to the memory (writedec denotes the content writ-

ten to memory from the decoder). (3) Multimodal memory

contains a memory matrix Mem to interact with video and

sentence, e.g., write hidden representation from the LSTM

decoder to memorywritedec, and read memory contents for

the decoder readdec. Each write operation will update the

multimodal memory, e.g., from Memt to Memt+1. In Fig.

1, we illustrate the procedure of memory-video/sentence in-

teractions: 1© write hidden states to update memory, 2© read

the updated memory content to perform soft-attention, 3©
write selected visual information to update memory again,

4© read the updated memory content for next word predic-

tion. The main contributions of our work are summarized

as follows:

• To our knowledge, we are the first to model multi-

modal data by selective reading/writing both visual

contents and sentences with a shared memory struc-

ture, and apply it to video captioning.

• The proposed model performs better than most of

the state-of-the-art methods on two public datasets:

MSVD and MSR-VTT, which demonstrates its effec-

tiveness.

2. Related Work

In this section, we briefly introduce some existing work

that closely related to our proposed model.

Video Captioning Video captioning has been inves-

tigated for a long period due to its importance in bridging

vision and language. Various methods have been proposed

to solve this problem, which can be mainly categorized into

two classes. The first class [12, 17, 28] detect the attributes

of given videos and derive the sentence structure with pre-

defined sentence templates. Then probabilistic graphical

models are used to align the phases to the attributes. Similar

to image captioning, these methods always generate gram-

matically correct sentences, but lose the novelty and flexi-

bility of the sentence. The second class of methods inspired

by Neural Machine Translation (NMT) [16, 6] map video

sequence to sentence by virtue of deep neural networks,

e.g., CNNs and RNNs. Venugopalan et al. [31] apply aver-

age pooling to extract the features of multiple video frames

and use a two-layer LSTM network on these features to gen-

erate descriptions. In order to enhance video representation,

Ballas et al. [1] exploit the intermediate visual representa-

tion extracted from pre-trained image classification models,

and Pan et al. [20] propose a hierarchical recurrent neu-

ral encoder to explore the temporal transitions with differ-

ent granularities. In order to generate more sentences for

each video, Yu et al. [38] exploit a hierarchical recurrent

neural network decoder which contains a sentence genera-

tor and a paragraph generator. To emphasize the mapping

from video to sentence, Yao et al. [37] propose a temporal

attention model to align the most relevant visual segments

to the generated captions, and Pan et al. [21] propose a

long short-term memory with a visual-semantic embedding

7513



model. Recently, the second class of deep learning based

methods have made much progress in video captioning. We

augment the existing deep learning based models with an

external memory to guide visual attention and enhance the

long-term visual-textual dependency modelling in this pa-

per.

Memory Modelling To extend the memory ability

of traditional neural networks, Graves et al. [10] propose

a Neural Turing Machine (NTM) which holds an external

memory to interact with the internal state of neural network-

s by attention mechanism. NTM has shown the potential of

storage and access of information over long time periods

which has always been problematic for RNNs, e.g., copy-

ing, sorting and associative recall. Besides memory matrix

in NTM, memory is also modelled as continuous and dif-

ferentiable doubly-linked lists and stacks [15], queues and

deques [11]. Different from exploring various forms of dy-

namic storages, Weston et al. [34] model large long-term

static memory. The internal information stored in the stat-

ic memory is not modified by external controllers, which is

specially used for reading comprehension. These memory

networks have been successfully applied to the tasks which

need dynamic reasoning, e.g., textual question answering

[3] and visual question answering [35]. As we know, few

memory models have been proposed for video captioning.

In this paper, we will propose an external multimodal mem-

ory to interact with video and sentence simultaneously.

3. Our Model

In this section, we will first introduce three key com-

ponents of our model including: 1) convolutional neural

networks (CNN) based video encoder, 2) Long Short-Term

Memory (LSTM) based text decoder, and 3) multimodal

memory. Then we will explain the procedure of model

training and inference in details.

3.1. CNNBased Video Encoder

Convolutional neural networks (CNNs) have achieved

great success in many computer vision tasks recently, e.g.,

image classification [18] and object detection [9]. Due to

the power of representation learning, CNNs pre-trained by

these tasks can be directly transferred to other computer

vision tasks as generic feature extractors. To make bet-

ter video representations, we consider using pre-trained 2D

CNNs to extract appearance features of videos, and pre-

trained 3D CNNs to obtain motion features of videos since

the temporal dynamics is very important for video under-

standing. In particular for an input video, we first sample

it with fixed number of frames/clips n, and then exploit the

pre-trained 2D CNNs/3D CNNs to extract features of each

frame/clip. We denote the obtained video representation as

V = {v1, v2, v3, . . . , vn}, where n is the number of sam-

pled frames/clips. In the following, we define the proposed

temporal attention model. Given the visual representations

of the video, and the content r read from the multimodal

memory. By virtue of a single layer neural network fol-

lowed by a softmax function, the attention weights over all

locations of the input video can be formulated as follows:

αt
i = softmax

(

wT tanh (Wrr
vr
t + Uαvi + bα)

)

(1)

where Wr, Uα, bα, and w are the parameters to be learned.

Different from [37], here we incorporate the content read

from multimodal memory instead of the previous hidden s-

tate from LSTM network. We argue that the hidden state

from LSTM network can not fully represent all the infor-

mation of previous words, while our multimodal memory

can well keep them. Based on the attention weights, the

final representation of input video can be gained by:

Vt =
∑n

i=1
αt
ivi (2)

To simplify the following description, the above procedure

can be abbreviated as follows:

Vt = β (V, r) (3)

3.2. LSTMBased Text Decoder

Different from the commonly used unimodal LSTM

[39], we incorporate the fused multimodal information rt as

another input, which is read from our multimodal memory

during caption generation as demonstrated in next section.

For given sentences, we use one-hot vector encoding to rep-

resent each word. By denoting the input word sequence as

{yt|t = 0, 1, 2, · · · , T}, and the corresponding embedding

vector of word yt as Et, the hidden activations ht at time t

can be computed as follows.

it = σ (WiEt−1 + Uiht−1 +Mirt + bi) (4)

ft = σ (WfEt−1 + Ufht−1 +Mfrt + bf ) (5)

ot = σ (WoEt−1 + Uoht−1 +Mort + bo) (6)

c̃t = φ (WcEt−1 + Ucht−1 +Mcrt + bc) (7)

ct = it ⊙ c̃t + ft ⊙ ct−1 (8)

ht = ot ⊙ φ (ct) (9)

where the default operation between matrices is matrix mul-

tiplication, ⊙ denotes an element-wise multiplication, W ,

U , and M denote the shared weight matrices to be learned,

and b denotes the bias term. c̃t is the input to the memo-

ry cell ct, which is gated by the input gate it. σ denotes

the element-wise logistic sigmoid function, and φ denotes

hyperbolic tangent function tanh.

For clear illustration, the process of language modelling

mentioned above can be abbreviated as follows.

ht = ψ (ht−1, ct−1, yt−1, rt) (10)
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3.3. Multimodal Memory

Our multimodal memory at time t is a N × M matrix

Mt, where N denotes the number of memory locations and

M denotes the vector length of each location. The memory

interacts with the LSTM-based language model and CNN-

based visual model via selective read and write operations.

Since there exists bimodal information, i.e., video and lan-

guage, we employ two independent read/write operations to

guide the information interaction.

3.3.1 Memory Interaction

The interaction of visual information and textual elements

is performed in the following order.

Writing hidden representations to update memory

Before predicting the next word during the process of cap-

tion generation, our LSTM-based language model will write

previous hidden representations into the multimodal mem-

ory, to summarize the previous textual information. We de-

note the current textual weighting vector, textual erase vec-

tor and textual add vector as wsw
t , eswt and aswt , respective-

ly, all of which are emitted by the LSTM-based language

model. The elements of textual erase vector eswt lie in the

range of (0,1). The lengths of textual erase vector eswt and

textual add vector aswt are both M . Since both the textual

erase vector and textual add vector haveM independent ele-

ments, the elements in every memory location can be erased

or added in a fine-grained way. Then the textual information

can be written into the memory as follows.

Mt (i) =Mt−1 (i) [1− wsw
t (i) eswt ] + wsw

t (i) aswt (11)

where i ∈ [1, N ] denotes i-th memory location.

Reading the updated memory for temporal attention

After writing textual information into the memory, the up-

dated memory content is read out to guide a visual attention

model to select prediction-related visual information. As-

suming that the current visual weighting vector over the N

locations at time t is wvr
t , which needs to be normalized as

follows.

∑N

i=1
wvr

t (i) = 1, 0 ≤ wvr
t (i) ≤ 1, ∀i ∈ [1, N ] (12)

Then the visual read vector rvrt returned by the visual at-

tention model is computed as a linear weighting of the row-

vectors Mt (i):

rvrt =
∑N

i=1
wvr

t (i)Mt (i) (13)

Temporal attention selection for video representation

After reading the updated memory content, we apply the

proposed temporal attention model to select most relevant

video representations by increasing corresponding weight-

s, which is very effective when there exist explicit visual-

semantic mappings.

ct = β (V, rvrt ) (14)

Writing selected visual information to update mem-

ory After selecting visual information via the attention

model above, the information will be written into the mem-

ory for updating. Similar to the operation of writing hidden

representations into the memory, the current visual weight-

ing vector wvw
t , visual erase vector evwt and visual add vec-

tor avwt are all emitted by the visual attention model. The

elements of visual erase vector evwt lie in the range of (0,1).

The lengths of visual erase vector evwt and visual add vector

avwt are bothM . Then the visual information can be written

into the memory as follows.

Mt (i) =Mt (i) [1− wvw
t (i) evwt ] + wvw

t (i) avwt (15)

Reading the updated memory for LSTM-based lan-

guage model When finishing the above writing opera-

tion, the updated memory is read out for language mod-

elling. Similarly, assuming that the textual weighting vector

over the N locations at the current time is wsr
t , which also

has to be normalized as follows.

∑N

i=1
wsr

t (i) = 1, 0 ≤ wsr
t (i) ≤ 1, ∀i ∈ [1, N ] (16)

Then the textual read vector rsrt returned by the LSTM-

based language model is computed as a linear weighting

of the row-vectors Mt (i):

rsrt =
∑N

i=1
wsr

t (i)Mt (i) (17)

Computing of RNN-based language model After

getting the reading information from the updated memory,

we can compute the current hidden state of LSTM-based

language model by calling the following function.

ht = ψ (ht−1, ct−1, yt−1, r
sr
t ) (18)

3.3.2 Memory Addressing Mechanisms

As stated in [25, 10], the objective function is hard to

converge when using a location-based addressing strategy.

Therefore, we use a content-based addressing strategy to

update the above read/write weighting vector. During the

process of content-based addressing, each read/write head

(e.g., the LSTM-based text decoder) first produces a key

vector kt and a sharpening factor βt. The key vector kt is

mainly used for comparing with each memory vectorMt (i)
by a similarity measure functionK, and the sharpening fac-

tor βt is employed for regulating the precision of the focus.

Then all of them can be computed as follows.

7515



K (x, y) =
x · y

‖x‖ · ‖y‖+ ε
(19)

dt (i) = βtK (kt,Mt (i)) (20)

wt (i) = softmax (dt (i)) (21)

3.4. Training and Inference

Assuming that there are totally L training video-

description pairs
(

xi, yi
)

in the entire training dataset,

where the description yi has a length of ti. The overall

objective function used in our model is the averaged log-

likelihood over the whole training dataset plus a regulariza-

tion term.

L (θ) =
1

L

L
∑

i=1

ti
∑

j=1

log ρ
(

yij |y
i
1:j−1, x

i, θ
)

+ λ ‖θ‖
2

2
(22)

where yij is a one-hot vector used to denote the input word,

θ is all parameters to be optimized in the model, and λ de-

notes the regularization coefficient. As all components in

our model including multimodal memory components are

differential, we can use Stochastic Gradient Descent (SGD)

to learn the parameters.

Similar to most LSTM language models, we use a soft-

max layer to model the next word’s probability distribution

over the whole vocabulary.

zt = tanh (WvVt +Whht +Weyt−1 + bh) (23)

ρt = softmax (Uρzt + bρ) (24)

where Wv ,Wh,We,bh,Uρ, and bρ are the parameters to be

estimated. Based on the probability distribution ρt, we can

recursively sample yt until obtaining the end of symbol in

the vocabulary.

4. Experiments

To validate the effectiveness of the proposed model, we

perform extensive experiments on two public video cap-

tioning datasets. The one is Microsoft Video Description

Dataset (MSVD) [4] which has been used by most of the

state-of-the-art methods. The other is recently released Mi-

crosoft Research-Video to Text (MSR-VTT) [36] which is

the largest dataset in terms of number of sentence and vo-

cabulary.

4.1. Datasets

Microsoft Video Description Dataset Microsoft

Video Description Dataset (MSVD) [4] consists of 1970

videos which range from 10 seconds to 25 seconds. Each

video has multi-lingual descriptions which are labelled by

the Amazon’s Mechanical Turk workers. For each video,

the descriptions depict a single activity scene with about

40 sentences. So there are about 80,000 video-description

pairs. Following the standard split [37, 21], we divide the o-

riginal dataset into a training set of 1200 videos, a validation

set of 100 videos, and a test set of 670 videos, respectively.

Microsoft Research-Video to Text Dataset Microsoft

Research-Video to Text Dataset (MSR-VTT) is the recent-

ly released largest dataset in terms of number of sentence

and vocabulary, which consists of 10,000 video clips and

200,000 sentences. Each video clip is labelled with about

20 sentences. Similar to MSVD, the sentences are annotat-

ed by Amazon’s Mechanical Turk workers. With the split

in [36], we divide the original dataset into a training set of

6513 videos, a validation set of 497 videos and a testing set

of 2990 videos, respectively.

4.2. Data Preprocessing

Video Preprocessing Instead of extracting features

for each video frame, we uniformly sample K frames from

original video for feature extraction. When the video length

is less than K, we pad zero frames at the end of origi-

nal frames. Empirically, we set K to 28 for 98 frames

per video in MSVD, and set K to 40 for 149 frames per

video in MSR-VTT. For the extensive comparisons, we ex-

tract features from both pretrained 2D CNN networks, e.g.,

GoogleNet [26], VGG-19 [23], Inception-V3 [27], ResNet-

50 [13], and 3D CNN networks, e.g., C3D [29]. Specifi-

cally, we extract the features of the pool5/7x7 s1 layer in

GoogleNet, the fc7 layer in VGG-19, the pool3 layer in

Inception-V3, the pool5 layer in ResNet-50 and the fc6 lay-

er in C3D.

Description Preprocessing The descriptions in MSVD

and MSR-VTT are all converted into lower case. To reduce

unrelated symbols, we tokenize all sentences by NLTK tool-

box1 and remove punctuations. The vocabulary in MSVD

is about 13,000 while the vocabulary in MSR-VTT is about

29,000. For convenience, we set the vocabulary size to

20,000 for both datasets. So the rare words in MSR-VTT

are eliminated to further reduce the vocabulary.

4.3. Evaluation Metrics

In this paper, we adopt two standard evaluation metric-

s: BLEU [22] and METEOR [7], which are widely used

in machine translation and image/video captioning. The

BLEU metric measures the n-grams precision between gen-

erated sentence and original description, which correlates

highly with human evaluation results. The METEOR met-

ric measures the word correspondences between generated

sentences and reference sentences by producing an align-

ment [5]. METEOR is often used as a supplement to BLEU.

To guarantee a fair comparison with previous methods, we

utilize the Microsoft COCO Caption Evaluation tool [5] to

gain all experimental results.

1http://www.nltk.org/index.html
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4.4. Experimental Settings

During model training, we add a start tag and an end tag

to the sentence in order to deal with variable-length sen-

tences. We also add masks to both sentences and visual

features for the convenience of batch training. Similar to

[37], the sentences with length larger than 30 in MSVD and

the sentences with length larger than 50 in MSR-VTT are

removed. For the unseen words in the vocabulary, we set

them to unknown flags. Several other parameters, e.g., word

embedding dimension (468), beam size (5) and the size of

multimodal memory matrix (128,512), are set using the val-

idation set. To reduce the overfitting during training, we

apply dropout [24] with a rate of 0.5 on the output of fully

connected layers and the output of LSTMs but not on the

recurrent transitions. To further prevent gradient explosion,

we clip the gradients to [-10,10]. The optimization algorith-

m is ADADELTA [40] which we find fast in convergence.

4.5. Quantitative Analysis

Method B@1 B@2 B@3 B@4 METEOR

FGM - - - 13.68 23.90

LSTM-YT - - - 33.29 29.07

SA - - - 40.28 29.00

S2VT - - - - 29.2

LSTM-E 74.9 60.9 50.6 40.2 29.5

p-RNN 77.3 64.5 54.6 44.3 31.1

HRNE 79.2 66.3 55.1 43.8 33.1

BGRCN - - - 48.42 31.70

MAA 79.40 67.10 56.80 46.10 31.80

RMA - - - 45.7 31.9

M3-c3d 77.30 68.20 56.30 45.50 29.91

M3-vgg19 77.70 67.50 58.90 49.60 30.09

M3-google 79.05 68.74 60.00 51.17 31.47

M3-res 80.80 69.90 60.40 49.32 31.10

M3-inv3 81.56 71.39 62.34 52.02 32.18

Table 1. The performance comparison with the other ten state-of-

the-art methods using single visual feature on MSVD. The results

of the proposed M3 with five single features are shown at the bot-

tom of the table. We compare the best single feature results of the

other ten methods at the top of the table.

Method B@1 B@2 B@3 B@4 METEOR

SA-G-3C - - - 41.92 29.60

S2VT-rgb-flow - - - - 29.8

LSTM-E-VC 78.8 66.0 55.4 45.3 31.0

p-RNN-VC 81.5 70.4 60.4 49.9 32.6

HBA - - - 42.5 32.4

M3-VC 81.90 71.26 62.08 51.78 32.49

M3-IC 82.45 72.43 62.78 52.82 33.31

Table 2. The performance comparison with the other five state-of-

the-art methods using multiple visual feature fusion on MSVD.

Here V, C, I and G denote VGG-19 [23], C3D [29], Inception-V3

[27] and GoogleNet [26], respectively.

Method B@1 B@2 B@3 B@4 METEOR

SA-V 67.82 55.41 42.90 34.73 23.11

SA-C 68.90 57.50 47.00 37.40 24.80

SA-VC 72.20 58.90 46.80 35.90 24.90

M3-V 70.20 56.60 44.80 35.00 24.60

M3-C 77.20 61.30 47.20 35.10 25.70

M3-VC 73.60 59.30 48.26 38.13 26.58

Table 3. The performance comparison with SA [37] using different

visual features on MSR-VTT. Here V and C denote VGG-19 [23]

and C3D [29], respectively.

4.5.1 Experimental Results on MSVD

For comprehensive experiments, we evaluate and compare

with the state-of-the-art methods using single visual fea-

ture and multiple visual feature fusion, respectively. Before

the comparisons to these methods, we refer to ten state-of-

the-art approaches([28], [31], [37], [30], [21], [38], [20],

[1], [8], [19]) as these abbreviations (FGM, LSTM-YT, SA,

S2VT, LSTM-E, p-RNN, HRNE, BGRCN, MAA, RMA).

When using single visual feature, we evaluate and com-

pare our model with the above ten state-of-the-art ap-

proaches. The experimental results in terms of BLEU (n-

gram) and METEOR are shown in Table 1. Here we give

the best single feature results of the compared ten meth-

ods, and show the results of the proposed M3 together

with five single features, e.g., VGG-19 [23], C3D [29],

Inception-V3 [27], ResNet-50 [13] and GoogleNet [26]. A-

mong these compared methods, SA [37] is the most sim-

ilar method to ours, which also has an attention-driven

video encoder and LSTM-based text decoder but no exter-

nal memory. When both models use the same GoogleNet

feature, our M3-google can make a great improvement over

SA by 51.17−40.3
40.3

= 26.9% in the BLEU@4 score and by
31.47−29.0

29.0
= 8.5% in the METEOR score, respectively. It

can be concluded that the better performance of our model

benefits from multimodal memory modelling. In addition,

our five M3 models outperform all the other methods except

HRNE [20] in terms of METEOR. It is because HRNE [20]

specially focuses on building a hierarchical video encoder

for captioning. To be noted, both MAA [8] and RMA [19]

apply a different memory modelling for video captioning,

but our model apparently performs much better than them

by a large margin in many evaluation metrics, which proves

the superiority of our model in the video captioning. To

further compare the results of the five M3 models using d-

ifferent visual features, we can see that M3-inv3 achieves

the best performance, following by M3-res, M3-google and

M3-vgg19. The performance rank is very similar to that of

these methods’ image classification accuracy on ImageNet

[18], which proves that visual feature is very important for

video captioning. Actually, the same conclusion has been

drawn in image captioning where GoogleNet features ob-
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Generated Sentence:

SA: someone is playing�3:a man is drawing on a piece of 

paper

Reference Sentence:

1. a person is drawing a picture

2. a person is drawing a cartoon

3. the man is drawing a cartoon

Generated Sentence:

SA: a man is playing a guitar�3:a man is playing with a dog

Reference Sentence:

1. a man is petting two dogs

2. a man pets some dogs

3. a man is play with pets

Generated Sentence:

SA: men are playing soccer ball�3: people are playing basketball

Reference Sentence:

1. a basketball game is in play

2. two teams playing basket ball

3. people are playing basketball

Generated Sentence:

SA:  a woman is mixing a bowl�3: a woman is mixing 

ingredients in a bowl

Reference Sentence:

1. a woman puts ingredients into a bowl

2. a woman is mixing flour and water

3. a woman is mixing ingredients

Generated Sentence:

SA:  someone is slicing a carrot�3: a man is slicing a carrot with a 

knifes

Reference Sentence:

1. a man cuts a carrot in half

2. the man is cutting carrots

3. a man is cutting carrots with a knife

…

…

…

…

…

Figure 2. Descriptions generated by SA-google, our M3-google and human-annotated ground truth on the test set of MSVD. We can see

that, M3-google generates more relevant object terms than SA-google (“basketball” vs. “soccer ball”), and M3-google places more focus

on the described targets than SA-google (“dog” vs. “guitar”). In particular, M3-google can generate longer sentences to describe more

visual contents, e.g., “mixing ingredients in a bowl”, “slicing a carrot with a knifes”.

�3: a shark is swimming in the water

Ref: a shark is swimming in the ocean

shark

swimming

water

SA: a dolphin is swimming

Ref: a shark is swimming in the ocean

dolphin

swimming

Figure 3. The attention shift of our M3-google and SA-google [37] across 14 sampled frames when generating the sentence. The attention

weights of several generated key words corresponidng to the 14 frames are shown as bar charts.

tain better results than VGG-19 features [32].

When using multiple visual feature fusion, we com-

pare our model with the other five state-of-the-art

approaches([37], [30], [21], [38], [2]). The comparison re-

sults are shown in Table 2. SA-G-3C [37] uses the combina-

tion of GoogleNet feature and 3D-CNN feature. S2VT-rgb-
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flow [30] uses the two-stream features consisting of RGB

feature extracted from VGG-16 networks and optical flow

feature extracted from AlexNet [18]. Both LSTM-E-VC

[21] and p-RNN-VC [38] combine VGG-19 feature and

C3D feature. We propose M3-VC and M3-IC for compar-

ison. M3-VC also uses VGG-19 feature and C3D feature

while M3-IC uses Inception-V3 feature and C3D feature.

They all perform better than the other methods in terms of

the two metrics, which proves the effectiveness of our mod-

el.

4.5.2 Experimental Results on MSR-VTT

MSR-VTT is a recently released benchmark dataset [36]

which has the largest number of video-sentence pairs. Con-

sidering that there are few methods tested on this dataset, we

compare our model with SA [37] which is the most similar

work to ours. Similarly, we perform experiments with these

two methods using single visual feature and multiple visu-

al feature fusion simultaneously. The comparison results

are reported in Table 3. SA-V and SA-C use the VGG-19

feature and C3D feature, respectively. SA-VC fuses these

two kinds of features. Our M3-V, M3-C and M3-VC use the

same features with the corresponding SA methods. It can

be seen that our methods consistently outperform the corre-

sponding SAs. The improved performance proves the im-

portance of multimodal memory in our M3 again. In addi-

tion, from either M3 or SA, we can see that the results from

C3D feature are generally better than those using VGG-19

feature. It may be that the motion information is very criti-

cal for the video representation in this dataset, because C3D

feature encodes both visual appearance and motion infor-

mation in video.

4.6. Qualitative Analysis

We evaluate our model with BLEU (n-gram) and ME-

TEOR above, which quantitatively reveal the relevance be-

tween generated sentence and human-annotated sentence.

In this section, we will qualitatively analyze our model

through visualizing the generated sentences and the cor-

responding attention shift across visual frames. Fig. 2 il-

lustrates several descriptions generated by our M3-google,

SA-google [37] and human-annotated ground truth on the

test set of MSVD. We can see that our M3-google gener-

ates more relevant object terms than SA-google (“basket-

ball” vs. “soccer ball” in the third video), and M3-google

places more focus on the described targets than SA-google

(“dog” vs. “guitar” in the second video). Particularly, M3-

google can generate longer sentences to describe more visu-

al contents, e.g., “mixing ingredients in a bowl” and “slic-

ing a carrot with a knifes” in the final two videos. All these

results demonstrate the effectiveness of our method.

Fig. 3 shows the attention shift of our M3-google and

SA-google [37] across multiple frames when generating

the sentence. There are 14 frames sampled from a testing

video in MSVD, our M3-google generates “a shark is swim-

ming in the water” while SA-google generates “a dolphin

is swimming”. The attention weights of several generated

key words corresponidng to the 14 frames are shown as bar

charts. We can see that the two methods show very differ-

ent attention distributions for each word. It can be seen that

the generated sentence is very relevant to the semantic ob-

ject and action of the video, which further demonstrate the

correctness that the proposed M3 can guide the attention

by multimodal memory modelling. Compared with SA, our

model not only can identify the object (’shark’ vs ’dolphin’),

but also can attend to specifical frames relevant to the ob-

ject.

5. Conclusions

This paper has proposed a Multimodal Memory Model

to describe videos, which builds a visual and textual shared

memory to model the long-term visual-textual dependency

and further guide visual attention. The extensive experi-

mental results on two publicly available benchmark datasets

demonstrate that our method outperforms the state-of-the-

art methods in terms of BLEU and METEOR metrics.

As we can see from the experimental results, video rep-

resentation is very important for the performance of video

captioning. In the future, we will consider to improve video

representation learning algorithm, and integrate video fea-

ture extraction networks with multimodal memory network-

s to form an end-to-end deep learning system.
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