

Language Technologies Institute

Advanced Multimodal Machine Learning

Lecture 9.1: Probabilistic Graphical Models

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Probabilistic Graphical Models
- Markov Random Fields
 - Boltzmann/Gibbs distribution
 - Factor graphs
- Conditional Random Fields
 - Multi-View Conditional Random Fields
- CRFs and Deep Learning
 - DeepConditional Neural Fields
 - CRF and Bilinear LSTM
- Continuous and Fully-Connected CRFs

Administrative Stuff

Language Technologies Institute

Carnegie Mellon University

Upcoming Schedule

- First project assignment:
 - Proposal presentations (10/2 and 10/4)
 - First project reports (10/7)
- Midterm project assignment
 - Midterm presentations
 - Tuesday 11/6 & Thursday 11/8 (DH A302)
 - Midterm reports (Sunday 11/11)
- Final project assignment
 - Final presentations (12/3 & 12/4)
 - Final reports (12/11)

Lecture Schedule

Classes	Lectures				
Week 9	Probabilistic graphical models				
10/23 - 10/25	 Boltzmann distribution and CRFs Continuous and fully-connected CRFs 				
Week 10	Multimodal optimization				
10/30 & 11/1	 Variational Auto-encoder 				
	 Generative-Adversarial Networks 				
Week 11 11/6 & 11/8	Mid-term project assignment - Pre	Thursday in DH A302. Midterm due on 11/11.			
Week 12 11/13 & 11/15	 Multimodal fusion and new direct Multi-kernel learning and fusion New directions in multimodal m 	ions n nachine learning			

Lecture Schedule

Classes	Lectures				
Week 13 11/20 & 11/22	Thanksgiving week (+ Project preparation)				
Week 14 11/27 & 11/29	 Multi-lingual representations and Neural machine translation Guest lecture: Graham Neubig 	Lecture on Thursday. Discussions on Tuesday.			
Week 15 12/3 & 12/4 * Final *	Final project assignment - Present	Poster presentations in GHC 6121. Final project due: 12/11.			

Quick Recap

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

> Deep Multimodal Boltzmann machines

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep Multimodal Boltzmann machines
- Stacked Autoencoder

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep Multimodal Boltzmann machines
- Stacked Autoencoder
- Encoder-Decoder

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep Multimodal Boltzmann machines
- Stacked Autoencoder
- Encoder-Decoder
- "Minimum-distance" Multimodal Embedding

Recurrent Neural Network using LSTM Units

How can we improve reasoning by including prior domain knowledge?

Probabilistic Graphical Models

Language Technologies Institute

Carnegie Mellon University

Definition: A probabilistic graphical model (PGM) is a graph formalism for compactly modeling joint probability distributions and dependence structures over a set of random variables.

- Random variables: X₁,...,X_n
- P is a joint distribution over X₁,...,X_n

Can we represent P more compactly?Key: Exploit independence properties

Independent Random Variables

- Two variables X and Y are independent if
 - P(X=x|Y=y) = P(X=x) for all values x,y
 - Equivalently, knowing Y does not change predictions of X
- If X and Y are independent then:
 - P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)
- X Y
- If X₁,...,X_n are independent then:
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$

Conditional Independence

X and Y are conditionally independent given Z if

- P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z
- Equivalently, if we know Z, then knowing Y does not change predictions of X

- A tool that visually illustrate <u>conditional</u> <u>dependence</u> among variables in a given problem.
- Consisting of nodes (Random variables or States) and edges (Connecting two nodes, directed or undirected).
- The lack of edge represents conditional independence between variables.

Graphical Model

 Chain, Path, Cycle, Directed Acyclic Graph (DAG), Parents and Children

Carnegie Mellon University

Reasoning

 The activity of guessing the state of the domain from prior knowledge and observations.

Uncertain Reasoning (Guessing)

- Some aspects of the domain are often unobservable and must be estimated indirectly through other observations.
- The relationships among domain events are often uncertain, particularly the relationship between the observables and non-observables.

Non-observables Observables

Developing a Graphical Model

Example: Inferring Emotion from Interaction Logs

Carnegie Mellon University

Example: Graphical Model Representation

C<mark>arnegie Mellon University</mark>

Example: Direct Prediction Approach

Language Technologies Institute

Carnegie Mellon University

Appraisal Theory of Emotion

Example: Graphical Model Approach

Language Technologies Institute

Carnegie Mellon University

Example: Dynamic Graphical Model Approach

Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

What if the "evidences" require neural network architectures to perform automatic perception?

Markov Random Fields

Restricted Boltzmann Machine (RBM)

- Undirected Graphical Model
- A generative rather than discriminative model
- Connections from every hidden unit to every visible one
- No connections across units (hence Restricted), makes it easier to train and do inference

Restricted Boltzmann Machine (RBM)

$$p(\mathbf{x}, \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{x}, \mathbf{h}; \theta))}{\sum_{\mathbf{x}'} \sum_{\mathbf{h}'} \exp(-E(\mathbf{x}', \mathbf{h}'; \theta))} - \frac{\text{Partition}}{\text{function } \mathbf{z}}$$

• Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)

• Model parameters
$$\theta = \{W, b, a\}$$

$$E = -xWh - bx - ah$$

$$E = -\sum_{i}\sum_{j}w_{i,j}x_{i}h_{j} - \sum_{i}b_{i}x_{i} - \sum_{j}a_{j}h_{j}$$

Interaction Bias terms
term Visible layer

Boltzmann Machine

$$p(\mathbf{x}, \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{x}, \mathbf{h}; \theta))}{\sum_{\mathbf{x}'} \sum_{\mathbf{h}'} \exp(-E(\mathbf{x}', \mathbf{h}'; \theta))}$$

• Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)

Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

$$p(\boldsymbol{h};\theta) = \frac{\exp(-E(\boldsymbol{h};\theta)/kT)}{\sum_{\boldsymbol{h}'} \exp(-E(\boldsymbol{h}';\theta)/kT)}$$

probability distribution that gives the probability that a system will be in a certain state h

 $E(h; \theta)$: Energy of state h

- k: Boltzmann constant
- T: Thermodynamic temperature

$$p(H = \boldsymbol{h}; \theta) = \frac{\exp(-E(\boldsymbol{h}; \theta))}{\sum_{\boldsymbol{h}'} \exp(-E(\boldsymbol{h}'; \theta))} = \frac{\Phi(\boldsymbol{h}; \theta)}{\sum_{\boldsymbol{h}'} \Phi(\boldsymbol{h}'; \theta)}$$

Set of random variables *H* having a Markov property described by undirected graph

$$\Phi(\boldsymbol{h};\theta) = \prod_{k} \phi_{k}(\boldsymbol{h};\theta_{k}) \quad \begin{array}{l} \text{functions} \\ \phi_{k}(\boldsymbol{h};\theta) > 0 \\ \\ = \exp\left(-\sum_{k} E_{k}(\boldsymbol{h};\theta_{k})\right) \end{array}$$

Dotontial

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34})$$

 (h_2)

 (h_3)

Markov Random Fields: Factor Graphs

$$p(H = h; \theta) = \frac{\Phi(h; \theta)}{\sum_{h'} \Phi(h'; \theta)} = \frac{\sum_{k} \phi_{k}(y, x; \theta)}{\sum_{y'} \sum_{k} \phi_{k}(y', x; \theta)}$$

$$\Phi(h; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34})$$

 h_2

 (h_3)

Markov Random Fields (Factor Graphs)

$$p(H = h; \theta) = \frac{\Phi(h; \theta)}{\sum_{h'} \Phi(h'; \theta)} = \frac{\sum_{k} \phi_{k}(y, x; \theta)}{\sum_{y'} \sum_{k} \phi_{k}(y', x; \theta)}$$

$$\Phi(h; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{10}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{10}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

Markov Random Fields – Clique Factorization

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$
Clique factorization
$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\psi_{5} \qquad \phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{1}(h_{1}; \theta_{1}, h_{5}; \theta_{345})$$

Chain Markov Random Fields (Factor Graphs)

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{23}(h_{2}, h_{3}; \theta_{23}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times$$

$$\psi_{2}(h_{2}; \theta_{2}) \times$$

$$\psi_{3}(h_{3}; \theta_{3}) \times$$

$$\psi_{4}(h_{4}; \theta_{4})$$

$$\psi_{1}(h_{4}; \theta_{4})$$

$$\psi_{2}(h_{2}; \theta_{2}) \times$$

$$\psi_{3}(h_{3}; \theta_{3}) \times$$

$$\psi_{4}(h_{4}; \theta_{4})$$

Conditional Random Fields

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y},\mathbf{x};\theta) = \phi_{12}(y_{1},y_{2},\mathbf{x};\theta_{12}) \times$$

$$\phi_{23}(y_{2},y_{3},\mathbf{x};\theta_{23}) \times$$

$$\phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times$$

$$\psi_{1}(y_{1},\mathbf{x};\theta_{1}) \times$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{1}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{3}) \times$$

$$\psi_{1}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{3}) \times$$

$$\psi_{3}(y_{3},\mathbf{x};\theta_{3}) \times$$

$$\psi_{4}(y_{4},\mathbf{x};\theta_{4})$$

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y},\mathbf{x};\theta) = \phi_{12}(y_{1},y_{2},\mathbf{x};\theta_{12}) \times$$

$$\phi_{23}(y_{2},y_{3},\mathbf{x};\theta_{23}) \times$$

$$\phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times$$

$$\psi_{1}(y_{1},x_{1};\theta_{1}) \times$$

$$\psi_{2}(y_{2},x_{2};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{3}\psi_{4}\psi_{4}\psi_{3}(y_{3},x_{3};\theta_{3}) \times$$

$$\psi_{4}(y_{4},x_{4};\theta_{4})$$

$$\psi_{1}(y_{4},x_{4};\theta_{4})$$

$$\psi_{2}(y_{2},x_{2};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},x_{4};\theta_{4})$$

Conditional Random Fields (Log-linear Model)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$
$$= \frac{\exp(\sum_{k}\theta_{k}f_{k}(\mathbf{y},\mathbf{x}))}{\sum_{\mathbf{y}'}\exp(\sum_{k}\theta_{k}f_{k}(\mathbf{y}',\mathbf{x}))}$$

 $f_k(\mathbf{y}, \mathbf{x})$: feature function

- Pairwise feature function $f_k(y_i, y_j, \mathbf{x}; \theta^e)$
- Unary feature function $f_k(y_i, \mathbf{x}; \theta^x)$

Learning Parameters of a CRF Model

 $\operatorname{argmax}\log(p(\boldsymbol{y}|\boldsymbol{x};\theta))$

- Gradient can be computed analytically
 - Inference of marginal probabilities using belief propagation (or loopy belief propagation for cyclic graphs)
- Optimized with stochastic or batch approaches

CRFs for Shallow Parsing

$$p(\boldsymbol{y}|\boldsymbol{x};\theta) = \frac{\Phi(\boldsymbol{y},\boldsymbol{x};\theta)}{\sum_{\boldsymbol{y}'}\Phi(\boldsymbol{y}',\boldsymbol{x};\theta)}$$

How many θ^x parameters?
What did θ^x learn?

 $\exp(\sum_k \theta_k f_k(\mathbf{y}, \mathbf{x}))$ $\sum_{\mathbf{y}'} \exp\left(\sum_k \theta_k f_k(\mathbf{y}', \mathbf{x})\right)$

> What did θ^e learn?

	B-NP	I-NP	0		
B-NP	$ heta_{11}$	θ_{21}	θ_{31}		
I-NP	θ_{12}	θ_{22}	θ_{32}		
ο	θ_{13}	θ_{23}	θ_{33}		

Labels:

B-NP: Beginning of a noun phrase I-NP: Continuation of a noun phrase O: Outside a noun phrase Dictionary size: 10,000 words

Carnegie Mellon University

Latent-Dynamic CRF

$$p(\mathbf{y}|\mathbf{x};\theta) = \sum_{\mathbf{h}} p(\mathbf{y}|\mathbf{h};\theta) p(\mathbf{h}|\mathbf{x};\theta) \quad \text{where} \quad p(\mathbf{y}|\mathbf{h};\theta) = \begin{cases} 1 & \text{if } \forall h_t \in \mathcal{H}_{y_t} \\ 0 & \text{otherwise} \end{cases}$$
$$= \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} p(\mathbf{h}|\mathbf{x};\theta) = \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\Phi(\mathbf{h},\mathbf{x};\theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}',\mathbf{x};\theta)}$$

Latent variables (e.g., POS tags)

 $\boldsymbol{h} = \{h_1, h_2, h_3, \dots, h_t\} \qquad \text{where } h_t \in \{\mathcal{H}_{\mathcal{Y}_t}\}$

For example:

 $\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{O}\}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, 0_1, 0_2, 0_3, 0_4\}$ Dictionary size: 10,000 words

Latent-Dynamic CRF

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \sum_{\boldsymbol{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\exp(\sum_k \theta_k f_k(\boldsymbol{h}, \boldsymbol{x}))}{\sum_{\boldsymbol{h}'} \exp(\sum_k \theta_k f_k(\boldsymbol{h}', \boldsymbol{x}))}$$

> How many θ^x parameters? > How many θ^e parameters?

> What did θ^x learn?

> What did θ^e learn?

- Intrinsic dynamics
- Extrinsic dynamics

Latent variables (e.g., POS tags) $h = \{h_1, h_2, h_3, ..., h_t\}$ where $h_t \in \{\mathcal{H}_{y_t}\}$ **For example:** $\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{O}\}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, 0_1, 0_2, 0_3, 0_4\}$ Dictionary size: 10,000 words

Latent-Dynamic CRF for Shallow Parsing

Experiment – Analyzing latent variables

- Task: Shallow parsing with CoNLL 2000 dataset
- Input features: word feature only
- Output labels: Noun phrase labels
- 1) Select hidden state a^* with highest marginal: $a^* = \arg \max p(h_t = a | x; \theta)$
- 2) Compute relative frequency for each word

Label	State	Words	POS	Freq.		Label	State	Words	POS	Freq.
B	B_1	That	WDT	0.85		0	01	but	CC	0.88
		who	WP	0.49				by	IN	0.73
		Who	WP	0.33				or	IN	0.67
	<i>B</i> ₂	any	DT	1.00			02	4.6	CD	1.00
		an	DT	1.00				1	CD	1.00
		а	DT	0.98				11	CD	0.62
	<i>B</i> ₃	They	PRP	1.00			03	were	VBD	0.94
		we	PRP	1.00				rose	VBD	0.93
		he	PRP	1.00				have	VBP	0.92
	B_4	Nasdaq	NNP	1.00			04	been	VBN	0.97
		Florida	NNP	0.99				be	VB	0.94
		cities	NNS	0.99				to	TO	0.92

Latent variables (e.g., POS tags)

 $\boldsymbol{h} = \{h_1, h_2, h_3, \dots, h_t\}$ where $h_t \in \{\mathcal{H}_{y_t}\}$

For example:

 $\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{O}\}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, 0_1, 0_2, 0_3, 0_4\}$ Dictionary size: 10,000 words

Hidden Conditional Random Field

Learning Multimodal Structure

Modality-private structure

• Internal grouping of observations

Modality-shared structure

Interaction and synchrony

Multi-view Latent Variable Discriminative Models

Modality-private structure

Internal grouping of observations

Modality-shared structure

Interaction and synchrony

$$p(y|\mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta}) = \sum_{\mathbf{h}^{A}, \mathbf{h}^{V}} p(y, \mathbf{h}^{A}, \mathbf{h}^{V} | \mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta})$$

Approximate inference using loopy-belief

CRFs and Deep Learning

Conditional Neural Fields

$$\mathcal{G}^{l}(\mathbf{x}_{i}, W^{l}) = \left[g_{1}^{l}(\mathbf{x}_{i} \cdot W_{1}^{l}), g_{2}^{l}(\mathbf{x}_{t} \cdot W_{i}^{l}), \dots, g_{n}^{l}(\mathbf{x}_{i} \cdot W_{n}^{l})\right]$$

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta}) \propto \exp\left\{\sum_{i} \boldsymbol{\theta}^{x} \cdot f^{x}(y_{i}, \mathbf{x}_{i}) + \sum_{i} \boldsymbol{\theta}^{e} \cdot f^{e}(y_{i}, y_{i-1})\right\}$$

$$f^{x}(y_{i}, \mathbf{x}_{i}) = \mathbb{I}[y_{i} = y'] \cdot \mathcal{G}(\mathbf{x}_{i}, W^{l})$$

$$\overset{\boldsymbol{\theta}^{x}}{\underset{\boldsymbol{\theta}^{x}}{\overset{\boldsymbol{\theta}^{x}}}{\overset{\boldsymbol{\theta}^{x}}{\overset{\boldsymbol{\theta}^{x}}}{\overset{\boldsymbol{\theta}^{x}}}{\overset{\boldsymbol{\theta}^{x}}$$

 W^l

Deep Conditional Neural Fields

$$\begin{aligned} \mathcal{G}^{l}(x_{i},W^{l}) &= \left[g_{1}^{l}(x_{i} \cdot W_{1}^{l}), g_{2}^{l}(x_{t} \cdot W_{1}^{l}), \dots, g_{n}^{l}(x_{i} \cdot W_{n}^{l})\right] \\ p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta}) &\propto \exp\left\{\sum_{i} \boldsymbol{\theta}^{x} \cdot f^{x}(y_{i}, \mathbf{x}_{i}) + \sum_{i} \boldsymbol{\theta}^{e} \cdot f^{e}(y_{i}, y_{i-1})\right\} \\ \begin{pmatrix} y_{1} & y_{2} & \theta^{e} \\ y_{3} & \boldsymbol{\theta}^{x} & \boldsymbol{\theta}^{x} \\ \boldsymbol{\theta}^{x} & \boldsymbol{\theta}^{x} & \boldsymbol{\theta}^{x} \\ \boldsymbol{\theta}^{y}_{1} & g_{2}^{2} & g_{3}^{2} \\ \boldsymbol{\theta}^{z}_{1} & g_{2}^{2} & g_{3}^{2} \\ \boldsymbol{\theta}^{z}_{1} & g_{2}^{2} & W^{2} \\ \boldsymbol{W}^{2} & W^{2} & W^{2} \\ \boldsymbol{W}^{2} & W^{2} & W^{2} \\ \boldsymbol{W}^{1} & W^{1} & W^{1} \\ \boldsymbol{W}^{1} & W^{1} & W^{1} \\ \boldsymbol{W}^{1} & \boldsymbol{W}^{1} & W^{1} \\ \boldsymbol{X}_{1} & \boldsymbol{X}_{2} & \boldsymbol{X}_{3} & \boldsymbol{X}_{4} \end{aligned} \right)$$

CRF and Bilinear LSTM [Dyer, 2016]

Learning:

- 1. Feedforward
- Gradient a) Belief
 - propagation
- 3. Backpropagation

Output labels:

Name entities

Input features:

Word embedding

- > What did θ^e paramters learn?
- What does LSTM parameters learns?

CNN and CRF and Bilinear LSTM [Hovy, 2016]

Learning:

- 1. Feedforward
- 2. Gradient a) Belief

 - propagation
- 3. Backpropagation

Output labels:

Name entities

- Input features:
 - Character
 embedding

Continuous and Fully-Connected CRFs

Language Technologies Institute

Carnegie Mellon University

Continuous Conditional Neural Field [Baltrusaitis 2014] 0.3 0.2 0.7 0.8 0.5 Continuous output variables: (e.g., continuous emotional label) $y = \{y_1, y_2, y_3, ..., y_t\}$ where $y_t \in \mathbb{R}$ $p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{\mathcal{Z}(\mathbf{x};\boldsymbol{\theta})} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\}$ **g**₁ **g**₂ **g**3) g_4 **g**₅ X₂ **X**5 X₁ **x**, X $\mathcal{Z}(\mathbf{x};\boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\} d\boldsymbol{y}$ We the yellowdog saw **Multivariate Gaussian integral:** How to solve $\int \exp\left\{\frac{1}{2} \mathbf{y}^T \Sigma^{-1} \mathbf{y} + \mathbf{y} \Sigma^{-1} \boldsymbol{\mu}\right\} d\mathbf{y}$ $= \frac{(2\pi)^{n/2}}{|\Sigma^{-1}|^{1/2}} \exp\left(\frac{1}{2}\boldsymbol{\mu} \Sigma^{-1}\boldsymbol{\mu}\right)$ [Radosavljevic et al., 2010] Language Technologies

Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

 $y = \{y_1, y_2, y_3, \dots, y_t\}$ where $y_t \in \mathbb{R}$

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{Z(\mathbf{x};\boldsymbol{\theta})} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\}$$
$$Z(\mathbf{x};\boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\} d\mathbf{y}$$
$$f^{x}(y_{t}, x_{t}, \boldsymbol{\theta}^{g}) = -(y_{t} - g_{k}(x_{t}, \boldsymbol{\theta}^{g}_{k}))^{2}$$
$$f^{e}(y_{t}, y_{t-1}) = -\frac{1}{2}(y_{t} - y_{t-1})^{2}$$

Continuous Conditional Neural Field

High-Order Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

 $y = \{y_1, y_2, y_3, \dots, y_t\}$ where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^n/2|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{k}}(y_{t}, y_{t-k}) = -\frac{1}{2}(y_{t} - y_{t-k})^{2}$$

Fully-Connected Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

 $y = \{y_1, y_2, y_3, \dots, y_t\}$ where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{k}}(y_{t}, y_{t-k}) = -\frac{1}{2}(y_{t} - y_{t-k})^{2}$$

Grid potential functions:

$$f^{2D}(y_i, y_j) = -\frac{1}{2} S_{ij} (y_i - y_j)^2$$

where $S_{i,j}$ specifies which nodes are connected.

Fully-Connected CRF [Krahenbuhl and Koltun, 2013]

y_i: object class label

 x_i : local pixel features

$$p(\boldsymbol{y}|\boldsymbol{x};\theta) = \frac{\Phi(\boldsymbol{y},;\theta)}{\sum_{\boldsymbol{y}'}\Phi(\boldsymbol{y}',\boldsymbol{x};\theta)}$$
Mixture of kernels
where $\Phi_{ij}(y_i,y_j;\boldsymbol{\theta}) = \sum_{m=1}^{C} u^{(m)}(y_i,y_j|\boldsymbol{\theta})k^{(m)}(\boldsymbol{x}_i,\boldsymbol{x}_j)$

CNN and Fully-Connected CRF [Chen et al., 2014]

Fully Connected Deep Structured Networks [Zheng et al., 2015; Schwing and Urtasun, 2015]

"Semantic" image segmentation sky

Algorithm: Learning Fully Connected Deep Structured Models Repeat until stopping criteria

- 1. Forward pass to compute $f_r(x, \hat{y}_r; w) \ \forall r \in \mathcal{R}, y_r \in \mathcal{Y}_r$
- 2. Computation of marginals $q_{(x,y),i}^t(\hat{y}_i)$ via filtering for $t \in \{1, \ldots, T\}$
- 3. Backtracking through the marginals $q_{(x,y),i}^t(\hat{y}_i)$ from t = T 1 down to t = 1

4. Backward pass through definition of function via chain rule

5. Parameter update

Using mean field

approximation