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Lecture Objectives

= Probabllistic Graphical Models

= Markov Random Fields
= Boltzmann/Gibbs distribution
= Factor graphs

= Conditional Random Fields
= Multi-View Conditional Random Fields

» CRFs and Deep Learning

= DeepConditional Neural Fields
= CRF and Bilinear LSTM

= Continuous and Fully-Connected CRFs
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Administrative Stuff
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Upcoming Schedule

= Midterm project assignment

= Midterm presentations
= Tuesday 11/6 & Thursday 11/8 (DH A302)

= Midterm reports (Sunday 11/11)
* Final project assignment

* Final presentations (12/3 & 12/4)
= Final reports (12/11)
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Lecture Schedule

Classes Lectures
Week 9 Probabilistic graphical models
10/23-10/25 e Boltzmann distribution and CRFs
e Continuous and fully-connected CRFs
Week 10 Multimodal optimization
10/30 & 11/1 . Variational Auto-encoder
Generative-Adversarial Networks

Week 11 Mid-t ject ] t-P .
11e/: e 11/8 id-term project assignmen r Thursday in DH A302.
Midterm due on 11/11.

Week 12 Multimodal fusion and new directions
11/13 & 11/15 - Multi-kernel learning and fusion
New directions in multimodal machine learning
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Lecture Schedule

Classes Lectures

Week 13 Thanksgiving week (+ Project preparation)
11/20 & 11/22

Week 14 Multi-lingual representations and

Lecture on Thursday.

11/27 & 11/29 e Neural machine translation . .
Discussions on Tuesday.

e Guest lecture: Graham Neubig

Week 15 Final project assignment - Present] poster presentations in
12/3 & 12/4 GHC 6121.
* Final * Final project due: 12/11.
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Quick Recap
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.
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Multimodal Representation Learning

Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

d Deep Multimodal
Boltzmann machines

1 Stacked Autoencoder
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

d Deep Multimodal
Boltzmann machines
d Stacked Autoencoder

00 .- 00 OO -.-00]

d Encoder-Decoder

00 00 00 00
Text Image
X Y
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

(e.g.,
. Similarity metric | cosine
Q Deep Multimodal /3'\ distance)
Boltzmann machines

00 ---00) 0000

1 Stacked Autoencoder

00 00

J Encoder-Decoder
d “Minimum-distance” 00---09) |
Multimodal Embedding Tfi?t Im;ige
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Recurrent Neural Network using LSTM Units

vl "N NN "N NN HEE "NEs NN NN NN NG "N NN NN "N NN NN NN NN NN "N NN "N N "N NN NN NN "N NN NN

2.9.9 9.

LSTM® o LSTM® o LSTM®) fereareseases — LSTM®

o © © o

How can we improve reasoning by including
prior domain knowledge®?
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Probabilistic
Graphical Models
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Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM)
IS a graph formalism for compactly modeling joint
probabillity distributions and dependence structures
over a set of random variables.

= Random variables: X,,..., X,
= P is a joint distribution over X,,...,X,

Can we represent P more compactly?
= Key: Exploit independence properties
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Independent Random Variables

= Two variables X and Y are independent if
= P(X=x|Y=y) = P(X=x) for all values x.,y

= Equivalently, knowing Y does not change
predictions of X

= [f Xand Y are independent then:

= P(X,Y) = P(X|Y)P(Y) = P(X)P(Y) @ @

= |f X,,...,X, are independent then:
= P(X4,..., X)) = P(Xy)...P(X))

Language Technologies Institute



Conditional Independence

= X and Y are conditionally independent given Z if
= P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z

= Equivalently, if we know Z, then knowing Y does not
change predictions of X
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Graphical Model

= Atool that visually illustrate conditional
dependence among variables in a given
problem.

= Consisting of nodes (Random variables or
States) and edges (Connecting two nodes,
directed or undirected).

= The lack of edge represents conditional
Independence between variables.
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Graphical Model

= Chain, Path, Cycle, Directed Acyclic Graph
(DAG), Parents and Children
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Reasoning

= The activity of guessing the state of the domain
from prior knowledge and observations.
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Uncertain Reasoning (Guessing)

= Some aspects of the domain are often
unobservable and must be estimated indirectly
through other observations.

= The relationships among domain events are
often uncertain, particularly the relationship
between the observables and non-observables.

Non-observables Observables
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Developing a
Graphical Model
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Example: Inferring Emotion from Interaction Logs

Student

r

\L

Student
Traits

\

Emotion?
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[Sabourin et al., 2011]




Example: Graphical Model Representation

[Sabourin et al., 2011]

Emotion

Hypothesis
(non-observable)

————————————————————————————————————————————————————————————————————————————————————————————
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Language Technologies Institute

Evidences
(observable)



Example: Direct Prediction Approach

[Sabourin et al., 2011]
Emotion

Hypothesis
(non-observable)

________________________________________________________________________________

# book vietvs J ( # corre S Ope ness astery
C book viets Jf G qt’aﬁ ) C D )
id :
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Observable environment variables Survey based personality variables
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Appraisal Theory of Emotion

~ | Metal State [P\
(beliefs, goals) A"

e e
7 [, |\ SN

Argues for importance of If we know two of these
three interrelated concepts variables, we can make
 \World events prEdiCtionS about the third
- Mental state Body
« Emotional Response _ Response= f(Env., Mind)
Expression

Action tendency

_Physiological response |
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Example: Graphical Model Approach

[Sabourin et al., 2011]

. Valence > Emotion
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Example: Dynamic Graphical Model Approach

n o

= 0

n
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Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

tn | n+l
Dynamic Observable Dynamic Observable
Environment Variables | Environment Variables
Learning Valence FERETIEES Learning Valence
Valence

What if the “evidences” require neural network
architectures to perform automatic perception?




Markov Random
Fields
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Restricted Boltzmann Machine (RBM)

= Undirected Graphical Model
= A generative rather than discriminative model

= Connections from every hidden unit to every visible
one

= No connections across units (hence Restricted),
makes it easier to train and do inference

@ @ 600 Hidden
layer

@ @ Visible
@00
layer
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Restricted Boltzmann Machine (RBM)

(x, h: 6) exp(—E(x, h; 8))
X, N, — rtition
P S 3 exp(—E(xX', I 0)) — pmesion ;

= Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

= Model parameters 8 = {W, b, a}
E=—-—xWh — bx —ah
E=—-22; xihj—Zibixi—‘Zjajhj @ OOO Hidden

| ' J ‘ V ’ Y J layer

Interaction Bias terms }‘ .

term @ @ Visible
e 00
layer
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Boltzmann Machine

exp(—E(x, h; 0))

> 2 exp(—E(x', h'; 0))
Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

p(x, h;0) =

32
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Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

exp(—E(h;0)/kT)
2 exp(—E(R’; 0) /KT)

» probability distribution that gives the probability
that a system will be in a certain state h

p(h; 6) =

E(h; 0): Energy of state h
k: Boltzmann constant
T: Thermodynamic temperature
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Markov Random Fields

exp(-E(h;0)) _ @(h;6)
Y exp(—E(R;0) ~ X, ®(R';6)

» Set of random variables H having a Markov
property described by undirected graph

p(H = h;0) =

Potential
functions

0
o(h;0) = | |$ehi6) o)~ o
k

= exp (— z Ey (h; Hk))
K
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Markov Random Fields

Ph;0) X% 6)
2p PR 0) Xy X b (Y, x5 6)

®(h; 0) = ¢p1,(hy, hy; 013) X
$P16(hy, he; O16) X
®26(h3, hg; O26) X

@ @ ®25(hy, hs; O55) X
@ Gas5(hy, hs; O45) X
@ ¢34(h3, h4; 934)

p(H=h;0) =
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Markov Random Fields: Factor Graphs

Ph;0) X% 6)
2p PR 0) Xy X b (Y, x5 6)

®(h; 0) = ¢p12(hq, hy;012) X
$16(hy, he; B16) X
$26(hz, he; O26) X
¢25(hy, hs; B25) X

Gas5(hy, hs; O45) X
¢34(h3, h4; 934)

p(H=h;0) =
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Markov Random Fields (Factor Graphs)

L o) Xy x;0)
p(H = h; 9) — Zh' CI)(hI; g) o Zy’ Zk ¢k(y’,x; 9)
-

®(h;0) = ¢p1,(hy, hy; 015) X
P16(hy, hg; O16) X
P26 (h2, he; O26) X > pairwise
¢d,c(hy, hs; O55) X potentials
P4 (hy, he; O4c) X
P34(hs3, hy; O34) X y
1(hy; 61) X Ps(hs; O5)
X ¢345 (hg, h4, hS; 9345)

37
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Markov Random Fields — Clique Factorization

Ph;0) X% 6)
2p PR 0) Xy X b (Y, x5 6)

‘\

p(H=h;0) =

Cligue factorization \’CI)(h' 9) _ ¢12(h1 hz' 312) <
lps\ $16(h1, he; B16) X
b26(h2,s he; B26) X > paitrwit':?el
A \ potentials
(h;g) ) } ¢25(hy, hs; O;5) X
¢151 ¢2\6‘, ( Pas (g, hs; O45) X
‘/(i;)“ A/ D $34(h3, hy; O34) X p
./\:i}./@ 1 (hy; 61) X Ps(hs; O5)
Y1 12 X (345 (h3, hy, hs; 0345)
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Chain Markov Random Fields (Factor Graphs)

Ph;0) X% 6)
2p PR 0) Xy X b (Y, x5 6)

p(H=h;0) =

'\
®(h; 0) = ¢p12(hq, hy;012) X o
¢23(hy, hs; 053) X Egltrevr\’lxﬁgls
P34(hsz, hy; 034) X

¢12 ¢23 .
?_. ?,. ?_. Y1(hy; 01) X
@ 1!) 1!) Y, (hy; 0;,) X

Y3 (hs; 03) X
1/14(h4; 94)
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Conditional
Random Fields
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Conditional Random Fields (Factor Graphs)

Py, x6) Xk, x6)
y @O x0) Xy Xy b (Y, x5 6)
~

p(y|x;0) = 5

Oy, x;0) = Pp12(¥1, Y2, X; 012) X .
$23(V2, V3, X%; 023) X Egltrevxﬁgls
$34(V3, V4, X; O34) X )

Y1 (y1, x; 61) X

2 (¥2,%; 02) X

P3(y3,x; 03) X

Vs (Va, X5 64)
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Conditional Random Fields (Factor Graphs)

Py, x6) Xk, x6)
y @O x0) Xy Xy b (Y, x5 6)
~

p(y|x;0) = 5

Oy, x;0) = P12(V1, Y2, X; 012) X
$23(V2, Y3, X; 023) X
$34 (V35 Yar X; 034) X p
Y1 (Y1, %15 01) X

Y2 (¥, x2; 03) X
Y3(y3, x3; 03) X

V4 (Var X4; 604)

pairwise
potentials
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Conditional Random Fields (Log-linear Model)

Py, x6) Lk, 6)
y @O x0) Xy Ly P (V' % 0)

_ exp( Xk Ok fk (¥, X))
2y exp(Xy O fi (¥, X))

fi. (¥, x): feature function

p(y|x;0) = 5

* Pairwise feature function
fk(yi' yj'x; He)

« Unary feature function

fk(yilx; Hx)
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Learning Parameters of a CRF Model

argmaxlog(p(y|x; 0))
y

= Gradient can be computed analytically

» Inference of marginal probabilities using belief propagation
(or loopy belief propagation for cyclic graphs)

= Optimized with stochastic or batch approaches
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CRFs for Shallow Parsing

d(y,x; 0) exp( Xk Ok fi (7, X))

y PO x0) X exp(X Okfi (VX))
» How many 6~ parameters? o \ui o+ did ¢ learn?

B-NP I-NP o
BNP 1 011 | O21 | O34
NP B, | Op | O32

o | B13 | 023 | O33
Labels:

B-NP: Beginning of a noun phrase
I-NP: Continuation of a noun phrase
O: Outside a noun phrase

We saw the yellow dog Dictionary size: 10,000 words

Language Technologies Institute
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» What did 8% learn?




Latent-Dynamic CRF

if Vh, € H,,

p(y|x; 0) =zp(ylh; 0)p(h|x; @)  where P@"“"F{é otherwise
h

z (h|x; 6) d(h,x;0)
= pnjx; = I
- h:Vh€H,, Ly PR, %;6)

Latent variables (e.g., POS tags)
@ h = {hy,hy, hs, ..., h¢} where h; € {#,,}
For example:

@ H ={HB-Np H1-NP H0}

H = {31»32’33»34 I, 1,13, 1, 01'02'03:04}
dog Dictionary size: 10,000 words
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Latent-Dynamic CRF

exp(2g Or fx (h, x))
h:Yhe€FLy, iy exp(Zy Orcfie (', %)

p(y|x;0) =

» How many 68* parameters? > How many 08¢ parameters?

» What did 8% learn? » What did 6°¢ learn?

* Intrinsic dynamics
e Extrinsic dynamics

Latent variables (e.g., POS tags)
h = {hy,hy, hs, ..., h¢} where h; € {#,,}
For example:
H ={HB-Np H1-NP H0}
H = {31»32’33»34 L, I, 13,14 01'02'03:04}
Dictionary size: 10,000 words
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Latent-Dynamic CRF for Shallow Parsing

Experiment — Analyzing latent variables

» Task: Shallow parsing with CoNLL 2000 dataset
* Input features: word feature only
» Output labels: Noun phrase labels

Label State Words = POS Freq. Label State Words | POS Freq.

. . . . That _ WDT |[0.85 but cc 0.88

1) Select hidden state a* with highest marginal: By [who we foas 0, [ _n_or
« Who WP [0.33 or IN 0.67

a* = arg max p(h; = a|x; 0) any DT [100 26 CO 100

a B2 an DT 1.00 02 1 [ 1.00

. B a DT 0.98 0 11 cD 0.62

They PRP 1.00 were VBD 0.94

2) Compute relative frequency for each word B, [ o 0, =—Te—os
he PRP__[1.00 have | VBP _ 0.92

| Nasdagq | NNP 1.00 been VBN 0.97

B 4 |Florida | NNP__{0.99 0 4 e VB 0.94

cites | NNS__[0.99 to |10 0.92

Latent variables (e.g., POS tags)
h = {hy,hy, hs, ..., h¢} where h; € {#,,}
For example:
H ={HB-Np H1-NP H0}
H = {31»32’33»34 L, I, 13,14 01'02'03:04}
Dictionary size: 10,000 words
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Hidden Conditional Random Field

Sequence label:
yETUY for example, Y: {positive, negative}

Latent variables with shared hidden states:
)
h = {h{, hy, hs, ..., h;} Wwhere hy € H

We saw the yellow dog

1
PO k1% 0) = 2o exp {Z 0% f*(he,x) + ) 0 fo(hhe 1Y) + ) 67 - f¥(y, ht)}
' t t t

p(y| x;0) = ZP( * Inference is tractable: O(YHZT)

* Linearinsequence length T!
* Parameter learning (6%, 6¢, 6°):

* Gradient descent or L-BFGS
Language Technologies Institute 7



Learning Multimodal Structure

Modality- structure === =mmememememmmcmemm e
 Internal grouping of observations 0

Modality-shared structure @ @ @ @ @
- Interaction and synchrony @ @ @ @ @
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Multi-view Latent Variable Discriminative Models

Modality- structure
 Internal grouping of observations

Modality-shared structure
» |nteraction and synchrony

p(ylx4,x";0) = Z p(y, h4, hY x4, xV; 9)
hA v
» Approximate inference using loopy-belief

51
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CRFs and
Deep Learning
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Conditional Neural Fields

G (x;, WY = [gh(x; - WY), g5 (xe - WY), ..., gh(x; - WH)]

p(y | x; 0) x exp {Z 0" - f*(yi,x;) + z 0° - fe(YirYi—l)}

N\
Xy x) = 1y, =y G(x;, W)
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Deep Conditional Neural Fields

G (x;, WY = [gh(x; - WY), g5 (xe - WY), ..., gh(x; - WH)]

p(y | x;0) x exp {Z 0% - f*(yi, x;) + z 0° - fe(YirYi—l)}

/_/\

N\
FAyux) =1ly; = y'1- G(a™ 1, W)

Iterate

54
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CRF and Bilinear LSTM

[Dyer, 2016]

@ Output labels:

« Name entities

0° 0° 0°

Learning:

1. Feedforward
2. Gradient
a) Belief
propagation
3. Backpropagation

Input features:
» Word embedding

56 6
» What did 8¢ paramters learn?
» What does LSTM parameters learns?
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CNN and CRF and Bilinear LSTM . 0.4

@ @ @ @ Output labels:

« Name entities
Learning:

1. Feedforward ‘ )
2. Gradient \—W \
a) Belief
propagation ‘ ‘
3. Backpropagation

S

g) (92) (g5) (o4
<<
() (@ () &

Input features:
e Character

embedding
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Continuous and
Fully-Connected CRFs
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Continuous Conditional Neural Field g, caitis 2014

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

Y = {y1,¥2, Y3, .., ¥e} Where y, € R , , , , ,
: exp {ZB  F (Ve Yeor, Xe, 09)} g; g, gs g, gs

L T Y

2(x;0) = j exp] > 0 F (e, o1, %0, 0%) { dy
L2

p(ylx;0) =

Multivariate Gaussian integral:
> How to solve &

f exp{3 y' 271y + y2~'ujdy

n/2
— |(§n3|1/2 exp(z ”Z I")
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Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

Y = {y1,¥2, Y3, .., ¥e} Where y, € R , , , , ,
exp {z 0. F(yu s X, 09)} g; g, gs g, gs
t

POl 0) = =
o CRCRCRCC

r - \
2(x;0) = j exp] > 0 F (e, o1, %0, 0%) { dy
L2

—1_

f*We xe,09) = —(Yt — gk (Xt 9126]))2

feeye-1) = —%(J’t — Ye-1)?
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Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

TR aeee

Multivariate Gaussian distribution:

PV %0) = —— exp( ;- - w @ @ @ ‘ @
(2m) /2]51"/

saw the yellowdog
where ¥ . o _ ,
Since CCNF can be viewed as a multivariate Gaussian, the

: matrix Vi prediction of y’ is simply the mean value of distribution:

y' = argmax(P(y|x)) = p
and u =X Y

» Optimized using gradient ascent or BFGS.
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High-Order Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

Yy = {y1,¥2, Y3, -, ye} Where y, € R

Multivariate Gaussian distribution:

PV %0) = —— exp( ;- - w @ @ @ ‘ @
(2m) /2]51"/

k-order potential functions:

[ e Y1) = —%(Yt — Veoi)®
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Fully-Connected Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

Yy = {y1,¥2, Y3, -, ye} Where y, € R

Multivariate Gaussian distribution:

—exp (=30~ W7y — ) @‘ééé@‘

p(yl x;0) = n/
(2m) /213"

k-order potential functions:

[ e Y1) = —%(Yt — Veoi)®

Grid potential functions:

22 (vuy;) = =155 - v)°

where S; ; specifies which nodes are connected.
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Fully-Connected CRF,

Krahenbuhl and Koltun, 2013]

“Semantic” image segmentation

[

y;. object class label

x;. local pixel features

P (y, ; 0) Mixture of kernels
y PO, x; 6) A

p(y|x; 0) = >

C
( )
where Cl)ij(yi, Vi 0) — 2 u(m)(yi' y]le)k(m)(xl' x])
m=1

63
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CNN and Fully-Connected CRF .. ... L4

Aeroplane
Coarse Score map
Deep
; Convolutional . —_"
Neural _“
Network
Final Output Fully Connected CRF Bi-linear Interpolation
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Fully Connected Deep Structured Networks
[Zheng et al.,.2015;. Schwing.and Urtasun,..2015]

“Semantic” image segmentation

gz|gz

|g3|g4|gs

jegelege]

. Computation of marginals q(

Algorithm: Learning Fully Connected Deep Structured Models
Repeat until stopping criteria

L.

Forward pass to compute f.(z, §,;w) Vr € Ry, € V.
(y;) via filtering for ¢ € {1, ..., T} -

z,y),1

2
3. Backtracking through the marginals ¢f, , ;(9;) fromt =1 —1downtot =1
4,

5. Parameter update

Backward pass through definition of function via chain rule

Using
apprd

g mean field
)xXimation
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