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We will have a moment of silence at the beginning of class in memory of those
in our community who died on Saturday:

Joyce Fienberg
Richard Gottfried
Rose Mallinger
Jerry Rabinowitz
Cecil Rosenthal
David Rosenthal

Bernice Simon
Sylvan Simon
BERIEIRSIER
Melvin Wax
Irving Younger

What you can do:

« Support one another, recognizing especially the impact on our Jewish community

« Speak up for respect and tolerance of diverse ideas, lifestyles, religions

» Give blood - www.vitalant.org (Central Blood Bank)

* GoFundMe page - https://lwww.gofundme.com/tree-of-life-synagogue-shooting
and/or https://jewishpgh.org/our-victims-of-terror-fund/

If you need someone to talk to: https://www.cmu.edu/counseling/
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Lecture Objectives

= Practical Deep Model Optimization

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

= Multimodal Optimization

= VAE
= GAN
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Adaptive Learning Rate

General Idea: Let neurons who just started learning have
huge learning rate.

Adaptive Learning Rate is an active area of research:
= Adadelta

= RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - learning_rate * dx / (np.sqrt(cache) + eps)
= Adam
m = betal*m + (1-betal)*dx
v = beta2*v + (1-beta2)*(dx**2)
X += - |learning_rate * m / (np.sqrt(v) + eps)
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Critical Points

local min local max saddle point
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Saddle Points

= Deep Learning Optimization:
= Deep Learning problems in general have many local x

minimas
= Many (not all) of them are actually almost as good asv
global minima due to parameter permutation

= However it iIs NP-hard to even find a local minima x

= Lots and lots of saddles in many deep learning
problems.
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Why Saddles are Bad
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Detecting Saddles

= One way to detect saddles:
= Calculate Hessian at point x
= [f Hessian is indefinite you have a saddle for sure.
» |f Hessian is not indefinite you really can't tell.
= My loss isn’'t changing:
= You are definitely close to a critical point

= You may be in a saddle point
*= You may be in the local minima/maxima

= One trick: quickly check the sorrounding
= Best practical trick if Hessian is not indefinite.
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Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf
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Example

Real

Not the fault of learning rate or momentum
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Example

Loss
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

T~ No longer SOT!
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

=  Complex models find many solutions to a problem, thus
probability of finding the right model is again low.

— MLP is here!

Real
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Lecture Objectives

= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regqularization
= Co-adaptation
= Multimodal Optimization

= VAE
= GAN
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Regularization

= Parameter Regularization:

= Adding prior to the network parameters
= LP Norms

Lt L? L=
Minimize: Loss(x; 0) + «||@]|
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Parameter Regularization

= Parameter Regularization:
= Ll(Lasso) and L? (Ridge) are the most famous norms used. Sometimes
combined (Elastic)
= QOther norms are computationally ineffective.

=  Maximum a posteriori (MAP) estimation:
= Having priors one the model parameters
= L2 can be seen as a Gaussian prior on model parameters 6
= Ageneralization of L? is called Tikhonov Regularization with Multivariate

Gaussian prior on model parameters.
= Assuming Correlation between parameters one can build a Mahalanobis
variation of Tikhonov Regularization.
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Structural Regularization

= Lots of models can learn everything. Occam’s razor
= (o for simpler ones.  « -

= Use task specific models:
= CNNs
= RecNNs
= LSTMs
= GRUs
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Example

= A neuron learns something that is not useful:
1. Learn something useful
2. Other neurons learn to mitigate it.

Useless
neuron

input layer

hidden layer™, hidden layer 2

Learning to fight, Actually learning
useless neuron something
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Dropout

= Simply multiply the output of a hidden layer with a mask of Os and
1s (Bernoulli)

X4 3
X, p=02 y=0
X3 ‘ % —

p = 0.8 y
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Dropout

EF Forward step: multiply with a Bernoulli distribution per epoch,
batch or sample point. Question: which one works better?

4: Backward step: just calculate the gradients same as before.
Question: some neurons are out of the network, so how does this
work?

All good? Nope

H}- Multiply the weights by 1 — p;
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Other variations

Gaussian dropout: instead of multiplying with a Bernoulli

random variable, multiply with a Gaussian with mean 1.
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Swapout: Allow skip-connections to happen

Language Technologies Institute

Output
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Lecture Objectives

= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regularization
= Co-adaptation
= Multimodal Optimization

= VAE
= GAN
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Multimodal Optimization

CNN

=

= Biggest Challenge:

= Data from different sources
= Different networks
= Example:

= Question Answering: LSTM(s) connected to a CNN

= Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-
CNNs

= CNNs work well with high decaying learning rate

= LSTMs work well with adaptive methods and normal
SGD

= MLPs are very good with adaptive methods
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Multimodal Optimization

= How to work with all of them?

= Pre-training is the most straight forward way:
= Train each individual component of the model separately
= Put together and fine tune

= Example: Multimodal Sentiment Analysis
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Pre-training

1 CNN Sentiment
23 LSTM Sentiment
T | Representaion
3.
Verbal
Representation
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Pre-training

Visual
Representaion
— |%5 —  Sentiment
4 =
Verbal
Representation
’
- — =l — Sentiment
5. =
LSTM
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Pre-training Tricks

= Inthe final stage (5), it is better to not use adaptive
methods such as Adam.

= Adam starts with huge momentum on all the networks
parameters and can destroy the effects of pretraining.

= Simple SGD mostly helpful.
= |nitialization from other pre-trained models:
= VGG for CNNs
= Language models for RNNs
= Layer by layer training for MLPs
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Lecture Objectives

= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regularization
= Co-adaptation
= Multimodal Optimization

= VAE
= GAN
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Questions?
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Auto-encoder

= A combination of an Encoder and a Decoder encoding x
and decoding x

Decoder

= The loss reconstruction error of x.

Language Technologies Institute



Variational Auto-encoder

= \We assume exact inference is not possible but
approximation is possible.

. normal (u, o)

normal (u, o) «  Decoder
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Variational Auto-encoder

= A probability controls the encoder space
= More meaningful representations

= Space is split in euclidean-meaningful representations.
= The normal distributions have nice properties.
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Lecture Objectives

= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regularization
= Co-adaptation
= Multimodal Optimization

= VAE
= GAN
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Generative Adversarial Networks

source
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Generative Adversarial Networks

M Synthetic
; » ‘v-" \

data
sample

Generator is trained to

map a noise sample to a Real
synthetic data sample O R — —> or
that can "fool" the fake?

discriminator

Discriminator is trained to
distinguish real data
samples from synthesized

samples

Noise Real data
source sample

v
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Generative Adversarial Networks
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Conditional GAN

Synthetic Discriminator: trained to
data distinguish real data

sample from synthesized samples,

T conditional on class, €

Generator: must learn Real
to create class- R > > or
conditional image
fake?

samples

Real data
sample

>

source

Class or
category
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Info GAN

Synthetic Discriminator: outputs
data an estimated class label,
sample and a decision
T on authenticity Real

Generator: must learn

or
/’ fake?
to create class- , $
conditional image OR
Real data
.f sample

samples
Noise

source
Class or
category
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BIGAN

Generator: must learn
to create image

Synthetic data
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, .\‘
7 Real
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—
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to map real image
samples to latent space
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Cycle GAN
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Cycle GAN
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BiCycle GAN

[l 'nput Image

[ Ground truth output

[C] Network output

[] Loss

[[] Deep network

[ Target latent distribution
W» Sample from distribution

| NG) o

(c) Training cVAE-GAN
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Generated samples

Ground truth

Input
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Questions?
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