

Language Technologies Institute

Advanced Multimodal Machine Learning

Lecture 10.1: Optimization, VAE, GANs

Louis-Philippe Morency Lecturer: Amir Zadeh

We will have a moment of silence at the beginning of class in memory of those in our community who died on Saturday:

Joyce Fienberg Richard Gottfried Rose Mallinger Jerry Rabinowitz Cecil Rosenthal David Rosenthal

Bernice Simon Sylvan Simon Daniel Stein Melvin Wax Irving Younger

What you can do:

- Support one another, recognizing especially the impact on our Jewish community
- Speak up for respect and tolerance of diverse ideas, lifestyles, religions
- Give blood www.vitalant.org (Central Blood Bank)
- GoFundMe page https://www.gofundme.com/tree-of-life-synagogue-shooting and/or https://jewishpgh.org/our-victims-of-terror-fund/

If you need someone to talk to: https://www.cmu.edu/counseling/

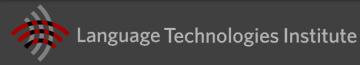
Lecture Objectives

- Practical Deep Model Optimization
 - Adaptive Optimization Methods
 - Regularization
 - Co-adaptation
 - Multimodal Optimization
- VAE
- GAN

Lecture Objectives

Practical Deep Model Optimization

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization
- VAE
- GAN



General Idea: Let neurons who just started learning have huge learning rate.

Adaptive Learning Rate is an active area of research:

- Adadelta
- RMSProp

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
```

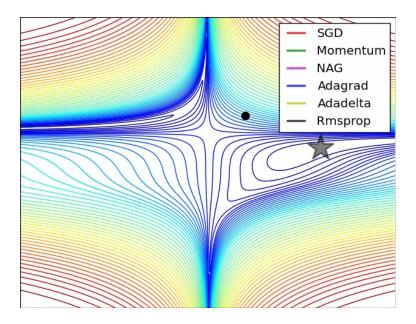
```
x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

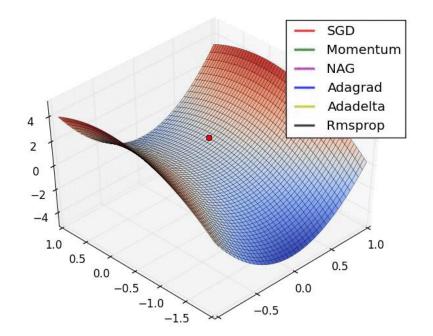
Adam

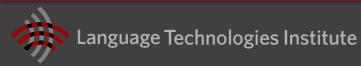
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)



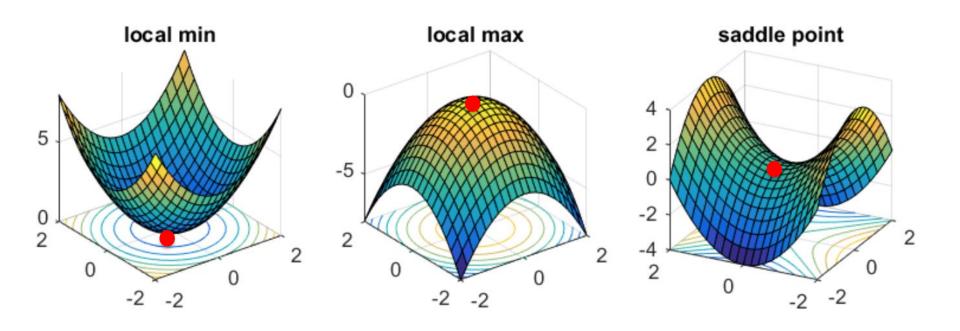
Comparison

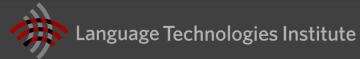






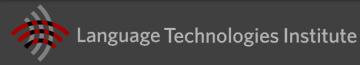
Critical Points



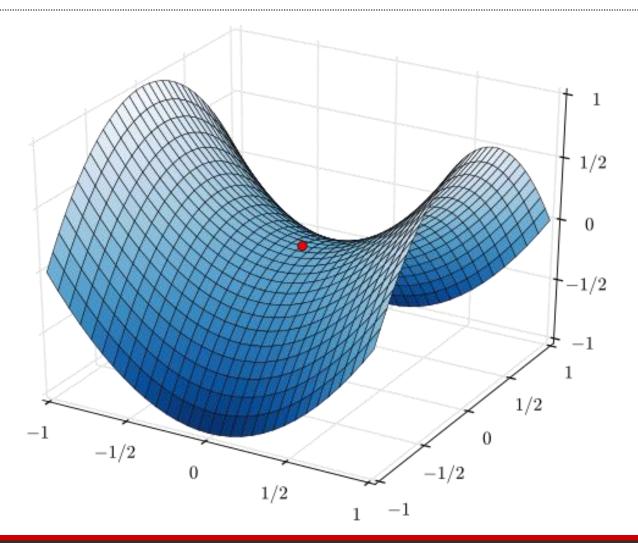


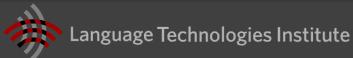
Saddle Points

- Deep Learning Optimization:
 - Deep Learning problems in general have many local minimas
 - Many (not all) of them are actually almost as good as global minima due to parameter permutation
 - However it is NP-hard to even find a local minima
- Lots and lots of saddles in many deep learning problems.



Why Saddles are Bad



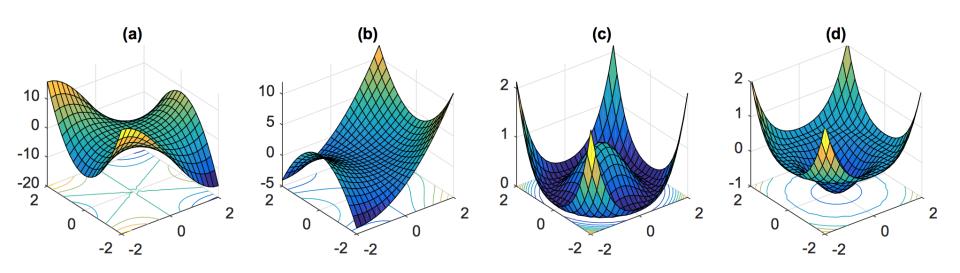


Detecting Saddles

- One way to detect saddles:
 - Calculate Hessian at point *x*
 - If Hessian is indefinite you have a saddle for sure.
 - If Hessian is not indefinite you really can't tell.
- My loss isn't changing:
 - You are definitely close to a critical point
 - You may be in a saddle point
 - You may be in the local minima/maxima
 - One trick: quickly check the sorrounding
 - Best practical trick if Hessian is not indefinite.

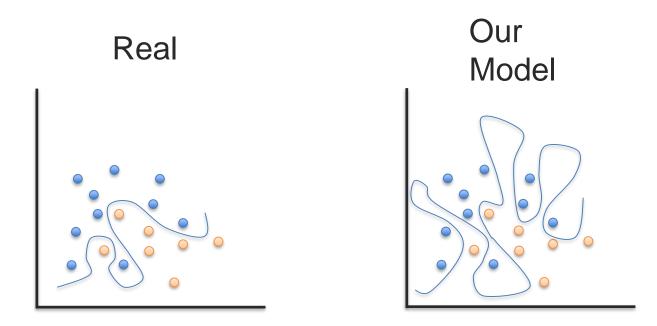


Bad Saddle Points

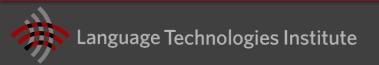


https://arxiv.org/pdf/1602.05908.pdf

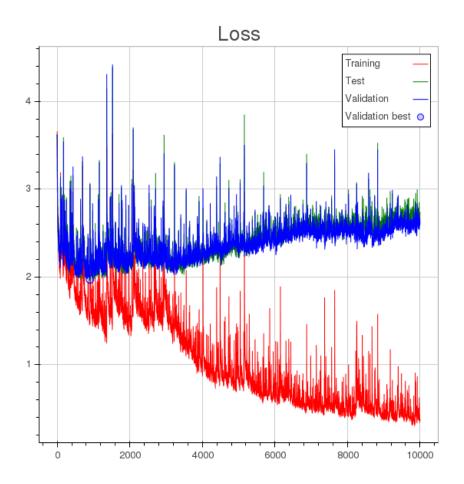
Example

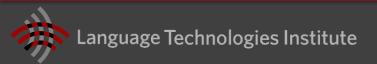


Not the fault of learning rate or momentum



Example

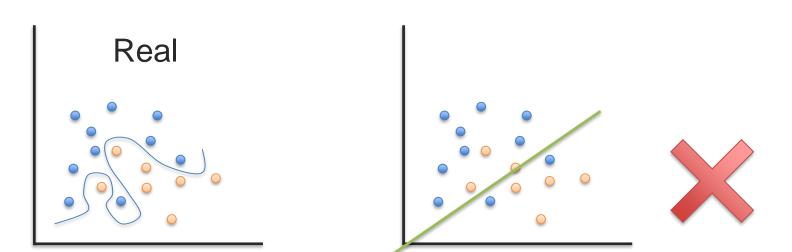


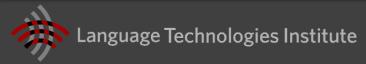


Carnegie Mellon University

Bias-Variance

- Problem of bias and variance
 - Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.



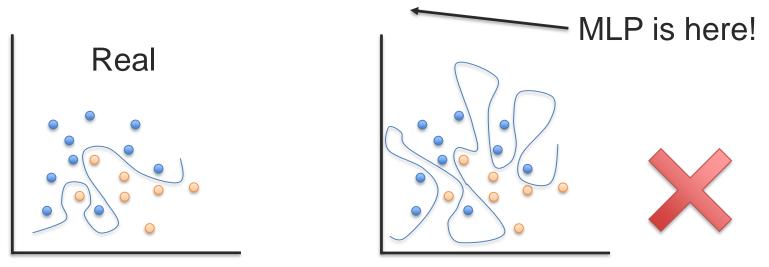


No longer SOT!

Bias-Variance

Problem of bias and variance

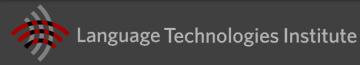
- Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.
- Complex models find many solutions to a problem, thus probability of finding the right model is again low.



Lecture Objectives

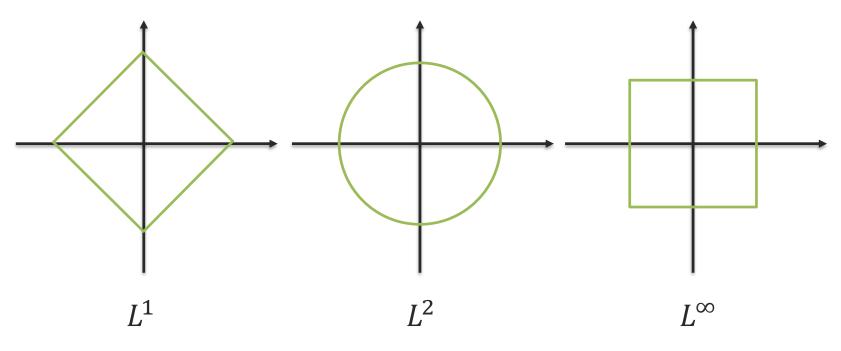
Practical Deep Model Optimization

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization
- VAE
- GAN



Regularization

- Parameter Regularization:
 - Adding prior to the network parameters
 - L^p Norms



Minimize: $Loss(x; \theta) + \propto ||\theta||$

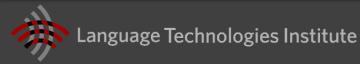
Parameter Regularization

- Parameter Regularization:
 - L¹(Lasso) and L² (Ridge) are the most famous norms used. Sometimes combined (Elastic)
 - Other norms are computationally ineffective.
- Maximum a posteriori (MAP) estimation:
 - Having priors one the model parameters
 - L^2 can be seen as a Gaussian prior on model parameters θ
 - A generalization of L² is called Tikhonov Regularization with Multivariate Gaussian prior on model parameters.
 - Assuming Correlation between parameters one can build a Mahalanobis variation of Tikhonov Regularization.



Structural Regularization

- Lots of models can learn everything.
- Go for simpler ones.
- Use task specific models:
 - CNNs
 - RecNNs
 - LSTMs
 - GRUs

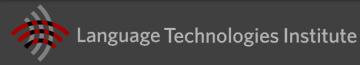


Occam's razor

Lecture Objectives

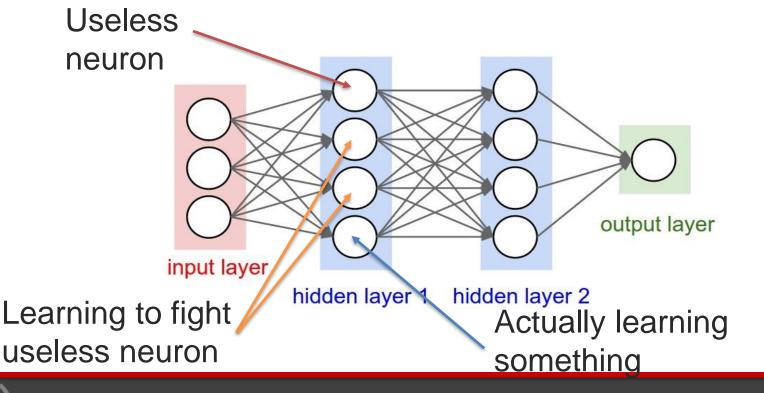
Practical Deep Model Optimization

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization
- VAE
- GAN



Example

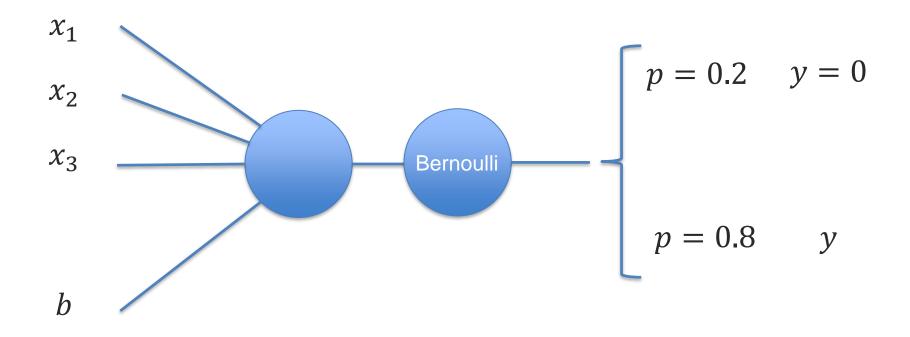
- A neuron learns something that is not useful:
 - 1. Learn something useful
 - 2. Other neurons learn to mitigate it.



Carnegie Mellon Un

Dropout

 Simply multiply the output of a hidden layer with a mask of 0s and 1s (Bernoulli)



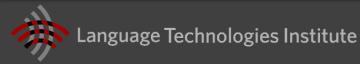
Dropout

Forward step: multiply with a Bernoulli distribution per epoch, batch or sample point. Question: which one works better?

Backward step: just calculate the gradients same as before. Question: some neurons are out of the network, so how does this work?

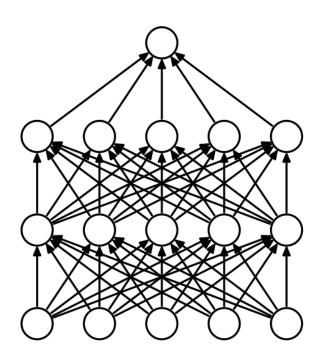
All good? Nope

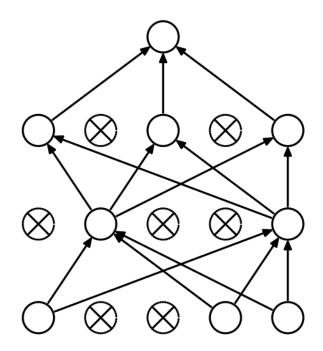
Multiply the weights by $1 - p_i$



Dropout

Stop co-adaptation + learn ensemble

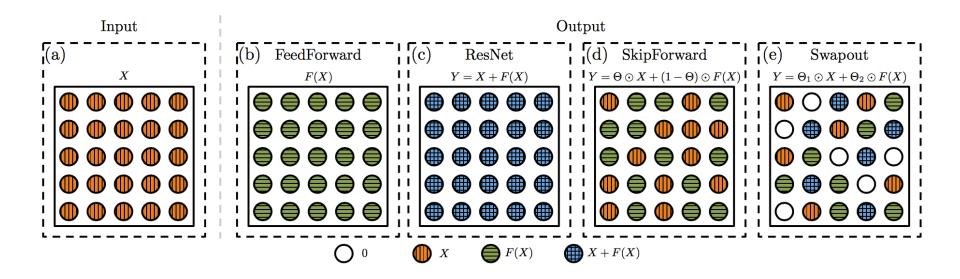


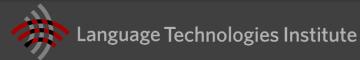




Other variations

- Gaussian dropout: instead of multiplying with a Bernoulli random variable, multiply with a Gaussian with mean 1.
- Swapout: Allow skip-connections to happen

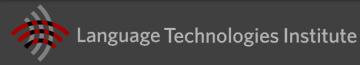




Lecture Objectives

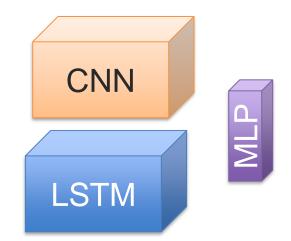
Practical Deep Model Optimization

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization
- VAE
- GAN



Multimodal Optimization

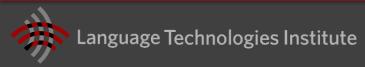
- Biggest Challenge:
 - Data from different sources
 - Different networks
- Example:



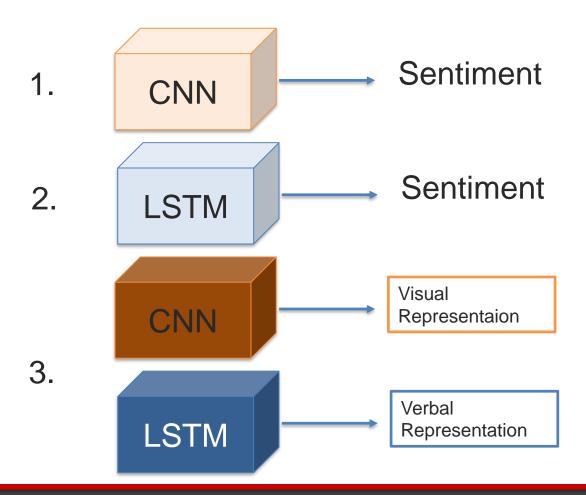
- Question Answering: LSTM(s) connected to a CNN
- Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-CNNs
- CNNs work well with high decaying learning rate
- LSTMs work well with adaptive methods and normal SGD
- MLPs are very good with adaptive methods

Multimodal Optimization

- How to work with all of them?
- Pre-training is the most straight forward way:
 - Train each individual component of the model separately
 - Put together and fine tune
- Example: Multimodal Sentiment Analysis

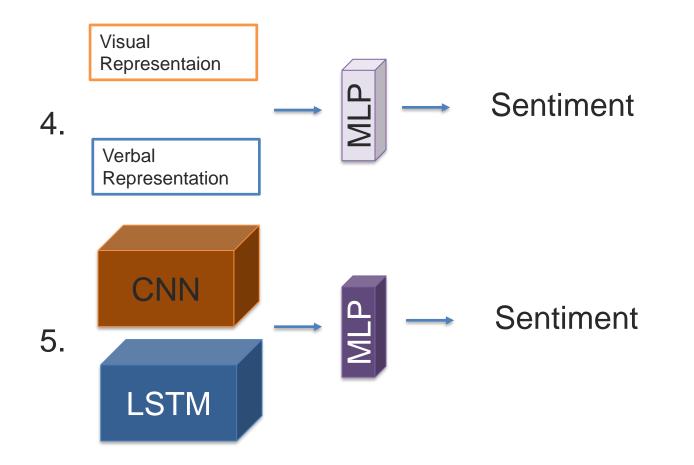


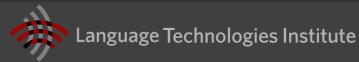
Pre-training



Carnegie Mellon University

Pre-training





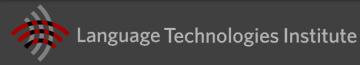
Carnegie Mellon University

Pre-training Tricks

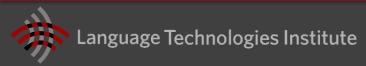
- In the final stage (5), it is better to not use adaptive methods such as Adam.
 - Adam starts with huge momentum on all the networks parameters and can destroy the effects of pretraining.
 - Simple SGD mostly helpful.
- Initialization from other pre-trained models:
 - VGG for CNNs
 - Language models for RNNs
 - Layer by layer training for MLPs

Lecture Objectives

- Practical Deep Model Optimization
 - Adaptive Optimization Methods
 - Regularization
 - Co-adaptation
 - Multimodal Optimization
- VAE
- GAN

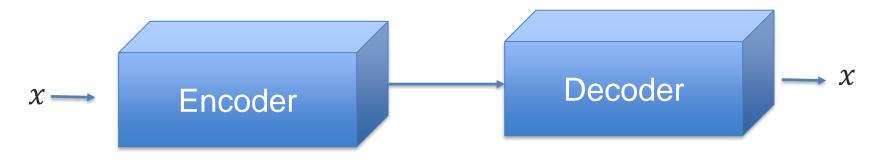


Questions?

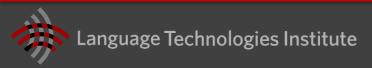


Auto-encoder

 A combination of an Encoder and a Decoder encoding x and decoding x

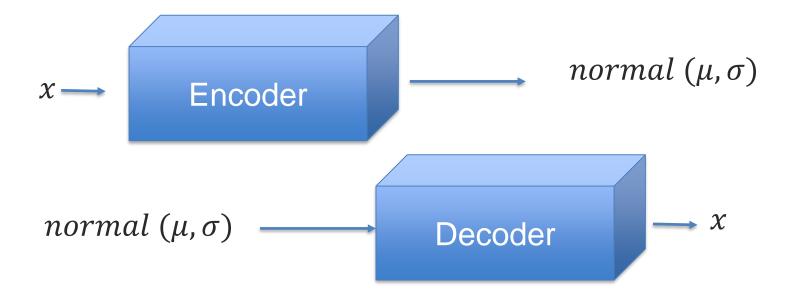


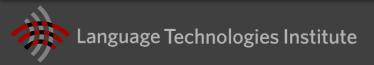
• The loss reconstruction error of *x*.



Variational Auto-encoder

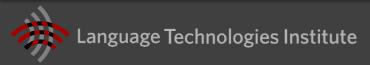
 We assume exact inference is not possible but approximation is possible.





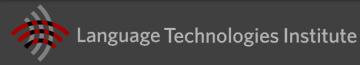
Variational Auto-encoder

- A probability controls the encoder space
 - More meaningful representations
- Space is split in euclidean-meaningful representations.
- The normal distributions have nice properties.

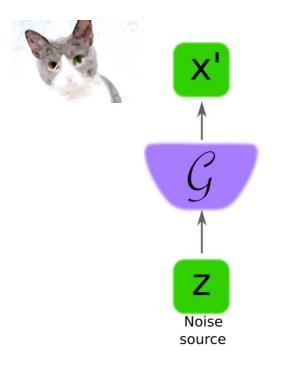


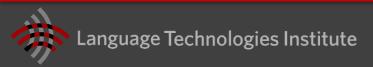
Lecture Objectives

- Practical Deep Model Optimization
 - Adaptive Optimization Methods
 - Regularization
 - Co-adaptation
 - Multimodal Optimization
- VAE
- GAN

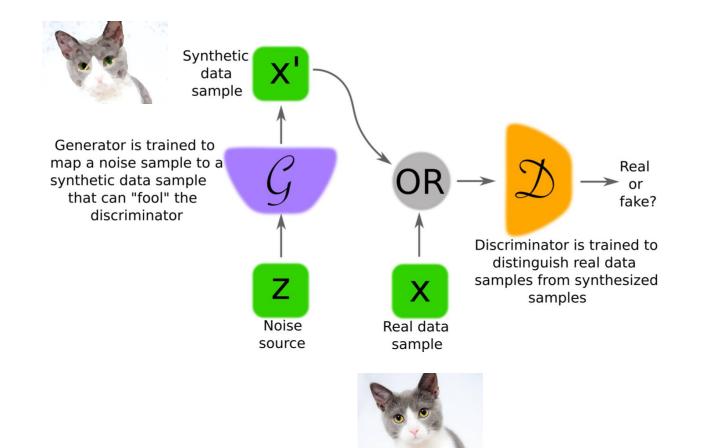


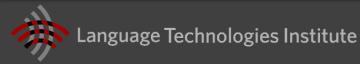
Generative Adversarial Networks

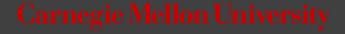




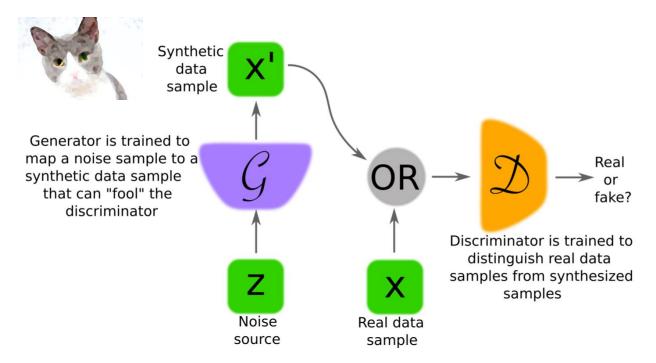
Generative Adversarial Networks







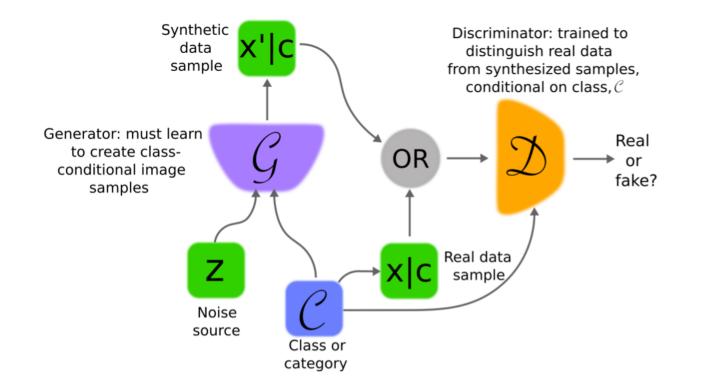
Generative Adversarial Networks



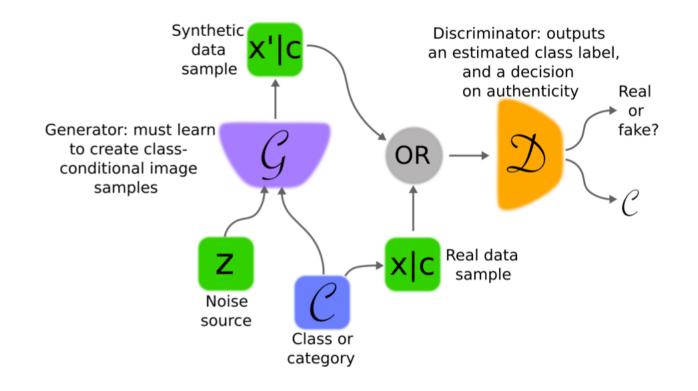
 $\max_{\mathcal{D}} \min_{\mathcal{G}} V(\mathcal{G}, \mathcal{D}) \qquad V(\mathcal{G}, \mathcal{D}) = \mathbb{E}_{p_{data}(\mathbf{x})} \log \mathcal{D}(\mathbf{x}) + \mathbb{E}_{p_g(\mathbf{x})} \log(1 - \mathcal{D}(\mathbf{x}))$

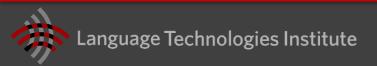
Carnegie Mellon University

Conditional GAN

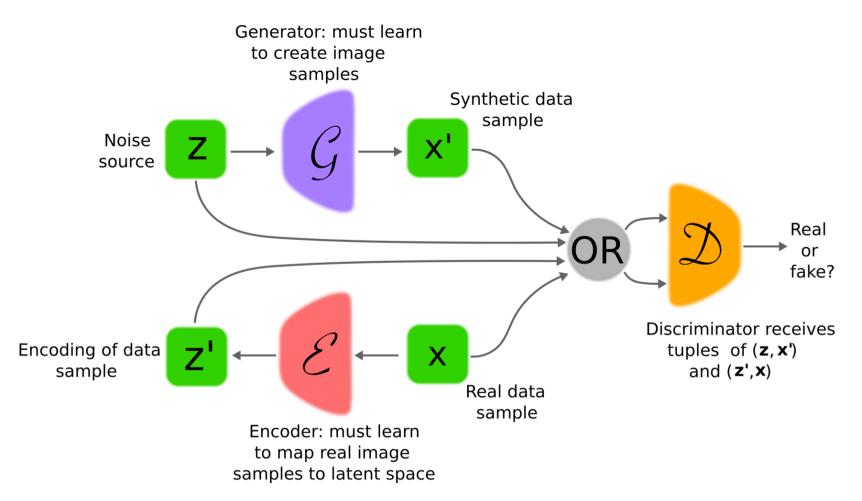


Info GAN

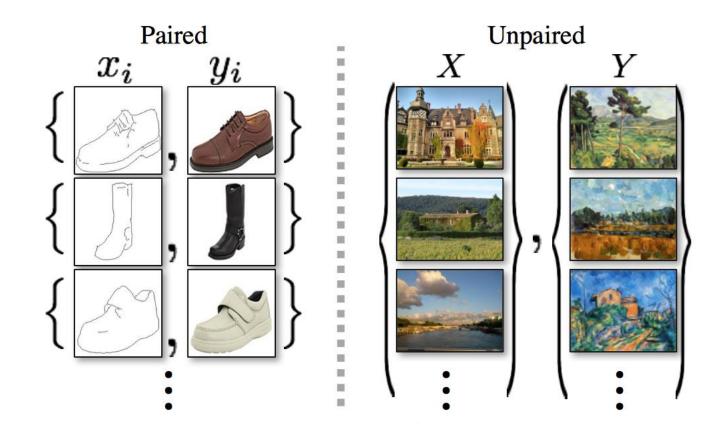


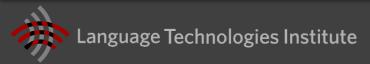


BiGAN



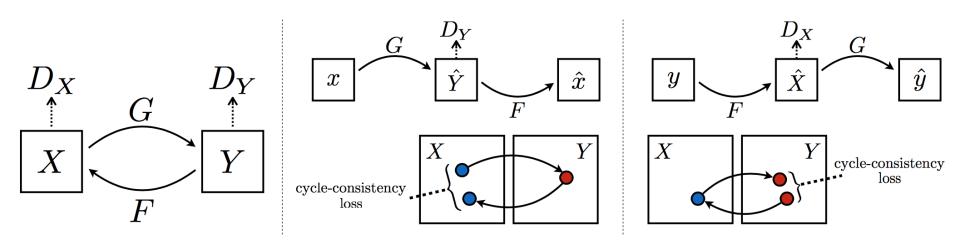
Cycle GAN

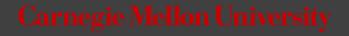




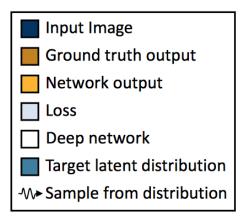
Carnegie Mellon University

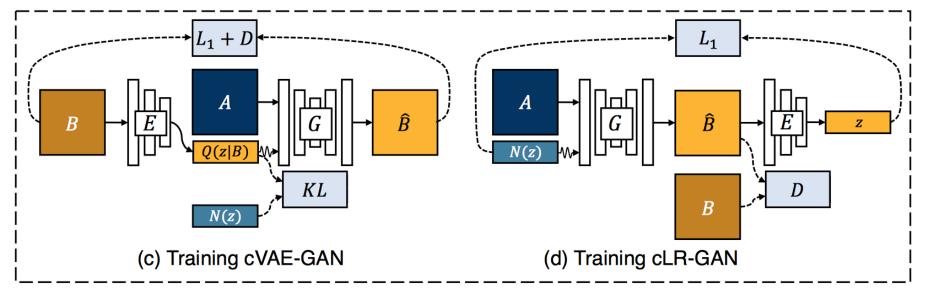
Cycle GAN



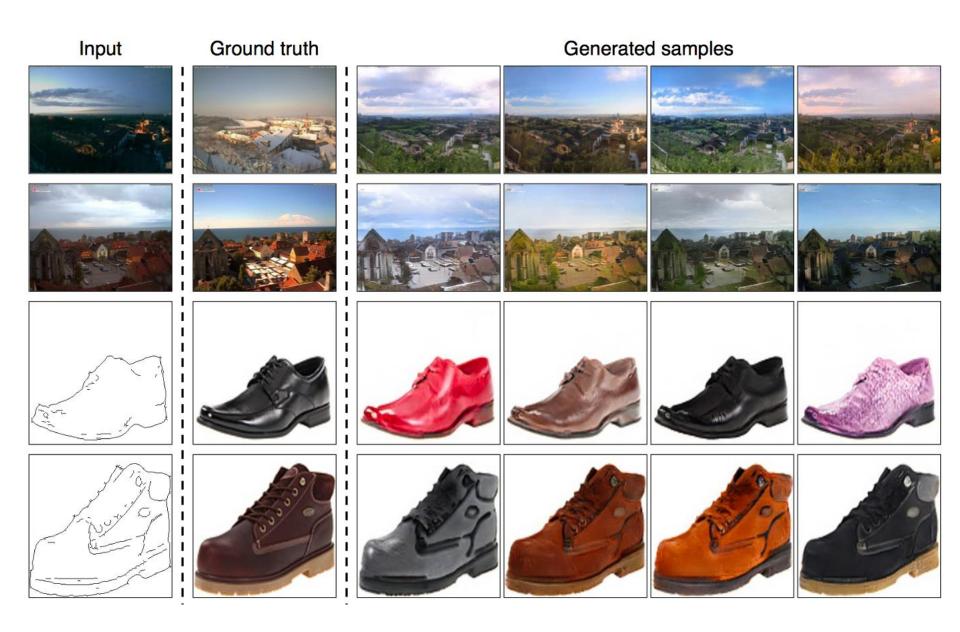


BiCycle GAN





Carnegie Mellon University



Questions?

