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Abstract

Attention has shown to be a pivotal development in deep

learning and has been used for a multitude of multimodal

learning tasks such as visual question answering and im-

age captioning. In this work, we pinpoint the potential

limitations to the design of a traditional attention model.

We identify that 1) current attention mechanisms discard

the latent information from intermediate reasoning, losing

the positional information already captured by the attention

heatmaps and 2) stacked attention, a common way to im-

prove spatial reasoning, may have suboptimal performance

because of the vanishing gradient problem. We introduce

a novel attention architecture to address these problems,

in which all spatial configuration information contained in

the intermediate reasoning process is retained in a pathway

of convolutional layers. We show that this new attention

leads to substantial improvements in multiple multimodal

reasoning tasks, including achieving single model perfor-

mance without using external knowledge comparable to the

state-of-the-art on the VQA dataset, as well as clear gains

for the image captioning task.

1. Introduction

Attention has, in recent years, demonstrated to be a sim-

ple and effective mechanism for a neural network to “fo-

cus” on salient features of the input. Given an input state,

attention allows the model to dynamically learn weights to

indicate the importance of different parts of the input fea-

ture. It has been particularly successful for tasks requiring

combined reasoning on multiple modalities such as visual

question answering [15], image captioning [22], image-text

matching [16], visual grounding [4] and others.

However, current attention mechanisms have several po-

tential limitations which will impact performance. In or-

der to learn which parts of the input to focus on, the at-

tention mechanism reasons about the spatial information of

the input, and “summarizes” the input state by computing a

weighted sum to produce an embedding. Current attention

models discard the latent spatial knowledge produced by the

intermediate reasoning step, and only use the embedding

output, representing the focus of the attention. This can po-

tentially inhibit the model’s spatial reasoning ability as by

discarding the intermediate reasoning step, the model loses

information pertaining to the position of the focal point. In

order to improve the spatial reasoning ability of attention,

there has also been research in the literature on multi-step

reasoning. A common technique to do this is to stack atten-

tion layers, shown in the literature to improve performance

by providing the model with a second chance to reason on

the spatial dimension. This technique has seen varying de-

grees of success [15][16][10], and in this work, we show

that one of the limitations for such models is that they are

prone to the vanishing gradient problem, rendering the en-

tire network ineffective.

To mitigate the above issues, in this paper we propose a

stacked latent attention model, which can effectively cap-

ture the spatial knowledge computed in the attention mech-

anism and propagate this information through the network.

Doing this also helps with stacking as the positional rea-

soning is provided to latter layers in the stack allowing for

corrections to mistakes made in previous layers. Further-

more, the model is designed to mitigate the gradient vanish-

ing problem with a pathway for the gradients to flow with-

out being diluted by a softmax. This model is composed

of attention units which possess the same input and output

format as a traditional attention mechanism and can be used

as a direct replacement in any task utilizing attention.

Building on top of this, we reinforce the technique of

using attention for multimodal fusion, and propose a twin

stream stacked latent attention model which is able to cap-

ture positional information from both textual and visual

modalities. We provide a deep examination of this new

model in the context of the VQA task, showing that we are

able to achieve single model performance comparable to the

state of the art without using any external knowledge. Ad-

ditionally, we also explore the performance improvements

of the stacked latent attention model over traditional atten-

tion models on another well developed multimodal learning
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task: image captioning.

In this work, our contribution is three fold:

1) We pinpoint an overlooked limitation of attention

models with respect to their ability for spatial reasoning and

explore the issues of using stacked attention to alleviate this

problem.

2) We propose a stacked latent attention model to tackle

these problems which can be used as a direct replacement

for current attention mechanisms. We further build on top of

this to develop a twin stream stacked latent attention model

for the fusion of knowledge in different modalities.

3) We demonstrated the effectiveness of the novel ideas

in this paper on two tasks requiring multimodal learning:

VQA and image captioning. For the VQA task we are able

to achieve single model performance without using external

knowledge comparable to the state of the art, and for image

captioning, we show that a simple replacement of the atten-

tion mechanism to a SLA model can directly improve the

baseline.

2. Related Work

In the multimodal understanding literature so far, at-

tention has had a short but rich history. Beginning with

[22], which developed attention to tackle the image cap-

tioning problem, attention has since gained popularity in

a variety of different tasks, including visual question an-

swering [20], image captioning [14], and others. With this

increased adoption, a variety of attention models were de-

veloped to tackle problems of increasing difficulty includ-

ing [25] which proposed a method combining both top-

down and bottom-up approaches to extract richer informa-

tion from semantic attributes detected from images and [24]

which used attention on both the input image and encoder

hidden states to capture the historical information of the

LSTM memory cells. These works primarily focused on

how to cast attention into the framework of a recurrent neu-

ral network to improve the capacity of the encoder-decoder

framework, but did not investigate how to improve the at-

tention itself. Another difficult problem for which attention

mechanisms do well is the VQA task. Zhou et al. proposed

a simple but elegant network in [28] which uses attention

separately on the input image and text, and Teney et al. in

[21], used features from the bottom up approach from [2],

introduced many novel tricks to improve performance. All

of these models derive the value from attention by utiliz-

ing the output embedding and discard the latent knowledge

from the intermediate reasoning step.

To enhance the reasoning ability of attention for multi-

modal understanding, many works in the literature explored

strategies employing multiple layers of attention. This was

especially prevalent for the VQA task, where [15] proposed

a Hierarchical Co-Attention model which can attend to im-

age and question simultaneously with three attention layers.

[23] was one of the first works to explore using a stacked

attention architecture, although later work from Google in

[10] reported only marginal improvements from stacking at-

tention. More recent work done in [16] utilizes element-

wise multiplication and residual connections to fuse infor-

mation across modalities to be passed to the next attention

unit. In these cases of multiple or stacked attention models,

the intermediate spatial reasoning knowledge is again dis-

carded. This can have a negative effect where latter layers of

attention are particularly vulnerable to errors made in pre-

ceding layers. The Stacked Latent Attention model devel-

oped in this paper seeks to address these issues by propagat-

ing the latent positional information of the intermediate rea-

soning step through a series of convolutional layers, which

acts as a natural pathway for the gradient to flow. In the

VQA task, our model achieves state-of-the-art performance

and demonstrates continued performance gains with three

layers, in contrast to [16] where more than two stacked lay-

ers resulted in reduced performance. Moreover, the Stacked

Latent Attention framework introduced in this paper can be

modified to incorporate any one of these attention mecha-

nisms.

Attention models employing more complex methods to

compute correlation have also been proposed such as Mul-

timodal Compact Bilinear Pooling [4], Low Rank Bilinear

Pooling [11], MUTAN [3], and Multi-modal Factorized Bi-

linear Pooling[27]. These models provide a decent perfor-

mance increase by using different types of bilinear pooling

to provide richer representations of the image and text joint

embedding than simpler linear models. However, these

types of models are memory intensive and GPU inefficient

due to the large dimensionality of the compacted/low rank

outer product. In comparison, the Stacked Latent Attention

model is more memory friendly as only convolutional lay-

ers are used and can still demonstrate strong performance.

3. Method

In this section, we first describe the formulation of the

traditional attention mechanism and the stacked variant

used to further spatial reasoning ability. Then we intro-

duce our Stacked Latent Attention (SLA) model and detail

its improvements. Finally, we build upon the SLA model to

construct the Dual Stream Stacked Latent Attention model,

designed to tackle the problem of multimodal joint learning

on the Visual Question Answering [20] task.

3.1. Standard Attention Mechanism

While in the literature there exists many different meth-

ods and usages for attention, we can outline the general

mechanism for attention as follows:

Given an input consisting of a set of K vectors of di-

mension D: v = {v1, ..., vK}, vi ∈ R
D and an input state

of size H: h ∈ R
H , we can formulate the relative im-
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portance ei of vector vi to h as ei = fatt(vi, h) where

fatt(vi, h) is normally a two layer perceptron [4] [28] giv-

ing fatt(vi, h) = Wuσ(Wvvi +Whh) where Wv ∈ R
D,m,

Wh ∈ R
H,m and Wu ∈ R

m,1, where m is the dimension

of the perceptron’s hidden layer. We can consider this two

layer perceptron fatt as an intermediate reasoning step for

the attention, and can be replaced by other models such as

Multimodal Compact Bilinear Pooling [4], Low-Rank Bi-

linear Pooling [11], or other power approaches [27][3]. The

attention weights αi of each of the vectors vi can be calcu-

lated by normalizing the relative importance ei with a soft-

max as αi =
exp(ei)∑
K

k
exp(ek)

. Finally, we generate the content

vector of the attention as z =
∑K

i αivi.

One of the limitations of this mechanism is that while the

reasoning inside fatt contains a lot of useful latent spatial

information: si = σ(Wvvi + Whh), it is discarded after

computing the content vector. This leads to the loss of rich

location information and thus reduced ability for spatial rea-

soning. For example, given an image as input, the informa-

tion pertaining to where the focus of the attention is, which

is not saved in the content embedding z, is discarded.

3.2. Stacked Attention Model

Figure 1. The main architecture of a traditional stacked attention

model. Given the input h(t) and vi, the attention model will gener-

ate normalized learnable weights α
(t)
i

, to conduct a weighted sum

and generate the attention output z(t). We observe all activation

functions are in the same pathway when stacking multiple atten-

tion units, meaning there will be T softmax layers in one pathway.

We also see that inside the attention layer, the intermediate state

has a spatial dimension and depth dimension, but when the out-

put is generated, the dimension is reduced to d. This happens T

times in a stack of T layers and becomes an information bottle-

neck. Here, the c in a gray circle is concatenate, s in a red circle is

softmax, × in a grey circle is weighted sum.

In order to enhance the spatial reasoning ability of at-

tention, there have been several attempts in the literature

[23] [16] [15] of stacking different attention layers together.

This works by using the content embedding z(t) of the last

attention as the input h(t) to the next attention, with papers

[16] [15] reporting gains for certain tasks. However there is

some debate about this as [10] showed only marginal gains

achieved when using the stacked attention strategy on the

same tasks reported by [23].

The general architecture of a stacked attention model is

described in Fig. 1. In the following formulations, we use

the superscript notation to denote the layer of the attention.

Given input vectors vi, an initial hidden state h(1) and a

stack of t = T attention layers, we can describe attention as

follows. The output of the t′th attention layer is calculated

as z(t) =
∑K

i α
(t)
i v

(t)
i , where α

(t)
i =

exp(f
(t)
att

(vi,h
(t))

∑
K

k
exp(f

(t)
att

(vk,h(t))
.

Here f
(t)
att is the perceptron for the t′th attention model. The

spatial reasoning information on the t′th attention layer is

defined as s
(t)
i . For the next layer, we set h(t+1) to z(t).

Finally, we can compute the final output of the stacked at-

tention model as z(T ).

When examining stacked attention, there are three im-

portant points that are often forgotten. First, only feeding

the content embedding of the previous attention into the

next is a potentially sub-optimal method for stacking at-

tention. The latent positional information of the input con-

tained in s
(t−1)
i from the the previous attention is not con-

sidered at all in the next attention, which now has to perform

the spatial reasoning from scratch. Additionally, carefully

considering the pathway in Fig. 1, can lead to the observa-

tion that the dimensionality changes from R
K,m in s

(t)
i to

R
D, then expands again in the next layer. It can be inferred

that the R
D dimensionality becomes a bottleneck for the

passage of information, limiting the performance of the net-

work. Second, if the first attention is focused on the wrong

position, the second attention will now only have the in-

correct focus as input, which can heavily jeopardize perfor-

mance. Finally, another observation in Fig. 1 shows that all

activation functions and the softmax layer are on the same

pathway. This can potentially cause the gradient to be di-

luted, making such a stacked architecture prone to gradient

vanishing. We visualize the gradient in Fig. 5 to confirm

the presence of gradient vanishing.

3.3. Stacked Latent Attention Model

To solve the issues identified above with both the tradi-

tional attention mechanism and the stacked variant, we pro-

pose the Stacked Latent Attention (SLA) model as shown in

Fig. 2. Compared to the traditional stacked attention model

introduced in Sec. 3.2, we introduced a conceptually sim-

ple change to allow each Stacked Latent Attention unit to

utilize the spatial reasoning information from the previous

unit. This allows for the following benefits: 1) By propagat-

ing the latent spatial reasoning information, the next atten-

tion layer can revise any errors from the previous layer. Fur-

thermore the additional positional knowledge should help to

improve the performance of the attention. 2) By designing

the SLA model as described in the figure, we observe that
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Figure 2. This figure illustrates the structure of the Stacked Latent Attention model. The model takes as input a hidden state h, initial

spatial information z
(t)
i

, input vector vi. All knowledge flows through the main fully convolutional pathway, and the attention is learned

in a separate path depicted in the dashed green box. Because the softmax is not in the main pathway, this model is able to greatly mitigate

the gradient vanishing problem. The attention weights are generated as α
(t)
i

, and used in a weighted sum of the original input vectors vi
to generate the output attention embedding. This embedding conveys the global information of the entire input vi, which is brought back

to the main pathway. In the end, a spatial pooling is used to summarize the spatial information. For simplicity, we use G to represent the

structure in the dotted green box for T = 1, 3.

the unit G containing the softmax is outside the main path-

way. This helps to mitigate the gradient vanishing problem.

The SLA model can be defined as follows: given three

inputs, vi as the input vector, h ∈ R
H as the hidden state,

and z(t−1) ∈ R
K,n(t−1)

as the last SLA unit output, where

n(t) is the embedding dimension on the t′th Stacked Latent

Attention unit, then, fSLA(vi, h, z
(t−1)
i ) = W

(t)
u s

(t)
i where

s
(t)
i = σ(W

(t)
v vi + W

(t)
h h + W

(t)
z z(t−1)), W

(t)
v ∈ R

D,m,

W
(t)
h ∈ R

H,m, W
(t)
z ∈ R

n(t),m and Wu ∈ R
m,1, here m

is the dimension of the hidden layer and n(t) is the output

depth dimension of the t′th SLA unit. We can compute the

normalized weights as α
(t)
i =

exp(f
(t)
SLA

(vi,h,z
(t−1)
i

)
∑

K

k
exp(f

(t)
SLA

(vi,h,z
(t−1)
i

)
. Fi-

nally the output of the t′th attention z(t) can be given by its

K rows where the i′th row is defined as z
(t)
i , the concate-

nation of s
(t)
i , the i′th row of s(T ), and a(t) =

∑K

k α
(t)
k vk.

The main pathway in SLA is fully convolutional, so at

each point in the main pathway, there is always knowledge

pertaining to each of the K positions of the input. This dif-

fers to the traditional attention model or stacked attention

model where the output content embedding can not repre-

sent the location information of the input. Additionally, by

using the spatial reasoning output s
(t)
i to help predict the

task, we can directly get the supervisory feedback informa-

tion on the spatial information from the final loss without

additional human labeled supervision as [18]. We concate-

nate the knowledge of the individual positions s
(t)
i with the

content embedding of the attention
∑K

k α
(t)
k vk to bring the

spatial reasoning from a “global” perspective back to the

main pathway. At the end of the attention chain, a pool-

ing layer is used to summarize information on the spatial

domain and produce a content vector as the final output.

Since we have introduced z(t−1) as input to the SLA

unit, we are now given the opportunity to introduce posi-

tional bias into the initial attention layer. We achieve this

through bootstraping z0 with the image input v concate-

nated with a positional bias bpos. To generate bpos, we can

simply feed the first hidden state h into a fully differentiable

model. This is intuitively understandable, for example in

the VQA task with the question as ”what is the color of the

sky”, the word embedding can be used to generate an ini-

tial spatial heatmap with high activations near the top of the

image where one would typically find the sky. We visual-

ize this initial heatmap in the experiment section 8 to very

interesting results.

3.4. Twin Stream Stacked Latent Attention Net
work

Figure 3. This figure shows the main framework of the Twin

Stream SLA model. Each stream is a Stacked Latent Attention

network. In order to fuse the information from multiple modali-

ties, the weighted sum attention output of one stream is concate-

nated with the attention outputs of the other stream. hv and hu

are the initial hidden states in the visual and textual streams gen-

erated by pooling and a LSTM respectively. The final output from

both streams are fused together by a two layer neural network. For

simplicity, we omit the details in G which can be seen in Fig. 2.
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By building upon the SLA model, we construct the twin

stream Stacked Latent Attention model which is designed

to apply the same ideas to merge knowledge from both the

visual and textual modalities. As the name suggests, this

model introduces two streams, denoted by the superscript

vis to represent the visual stream and text to represent the

textual stream. Additionally we define the spatial visual in-

put as vi and the temporal textual input as ui.

For the visual input, we extract the feature representation

{vi, ...vK} for an input image from a deep neural network,

where K is the number of regions. For the textual input

we have embeddings for the words as {ui, ..., uL}, where L

is the number of words. Additionally, we use h(0),vis and

h(0),text to represent the initial hidden state of the visual and

textual streams respectively. h(0),text is initialized by using

a bi-directional LSTM on top of {ui, ..., uN} so that we get

h(0),text = bi − LSTM({ui, ..., uL}), and h(0),vis can be

obtained with a simple spatial pooling on {vi, ...vK}.

As show in Fig. 3, the key idea of the Twin Stream

SLA is that we can allow for the interchange of informa-

tion between the two modalities by simply concatenating

the weighted sum attention output of one stream to the at-

tention outputs of the other stream. More specifically we

can use the attention embedding from the textual stream

as a hidden state input for the next attention layer of the

visual stream: fvis
SLA(vi, h

(t),text, z
(t−1),vis
i ) and symmetri-

cally, the attention embedding of the visual stream is used

as a hidden state input for the next attention in the textual

stream: f text
SLA(ui, h

(t),vis, z
(t−1),text
i ). By doing this we re-

inforce the reasoning of one stream with the knowledge of

the other modality. After T stacks, the output from both

streams are fed through a separate convolutional and pool-

ing layer and then concatenated, passing through one FC

layer then projected to a C dimensional space, where C is

the number of classes.

Moreover, we augment the spatial stream by adding a

positional bias to the input. We use htext as the seed for the

positional bias by feeding it into one fully connected layer,

to obtain bpos, which is then concatenated with vi to form

the input of the spatial stream. We can regard this as the

positional bias generated by the word embedding and show

in Fig. 8 that it is especially useful for the VQA task. An

intuitive example to demonstrate this is, given the question

of ”what is the color of the ground”, we can bias the model

about where to look even before it sees the image.

4. Experiments

In this section, we detail the deep investigation of the

SLA mechanism for the VQA task in Section 4.1 and also

evaluate its benefits for the Image Captioning task in Sec-

tion 4.2.

4.1. Twin Stream Stacked Latent Attention Model
For VQA

We choose the VQA task on which to perform sev-

eral experiments to evaluate the effectiveness of the twin

stream Stacked Latent Attention model. VQA is one

of the best tasks to explore the capability of new types

of attention as a significant number of VQA research

[21][27][4][3][15][16][23][18] applies some type of atten-

tion. The role of attention in the VQA problem can be ex-

pressed as: given an input image and a sequence of words

forming a question, find the optimal set of image regions

and words to answer the question.

4.1.1 Dataset and Evaluation Metric

We analyze the performance of the twin stream Stacked La-

tent Attention model on the VQA 2.0 Dataset [6] consisting

of 204K images and 614K free-form natural language ques-

tions. Each image is associated with three questions, and

each question is labeled with ten answers by human anno-

tators. The dataset is typically divided into four splits: train

(80K images), val (40K images), test (81K images). For

this task, we follow the evaluation metric used in [20] as

Acc(ans) = min{#human that labeled ans
3 , 1}

where ans is a predicted answer.

4.1.2 Experimental Setup

For VQA dataset, the experiments are set up as follows. The

input images are scaled while preserving aspect ratio, as

suggested in [28], and center cropped and scale to a dimen-

sion of 448 × 448. Then, the image features are extracted

using a pretrained 200 layer ResNet [8] model, specifically

we use the last layer before the average pooling layer to

obtain a 14 × 14 × 2048 tensor and then perform L2 nor-

malization for each 1 × 1 × 2048 spatial feature. On the

question side, the words are tokenized and projected to a

300 dimensional space. This embedding is then passed to

a bi-directional LSTM with a hidden size of 512. We set

a maximum length for the question, selecting the first 26

words.

The model is optimized with the ADAM optimizer [12]

with a batch size of 800 and trained on 8 GPUs. The ADAM

hyperparameters are set to β1 = 0.9 and β2 = 0.999 and

all model parameteres are initialized as suggested by Glorot

et al. in [5]. The Visual Genome dataset [19] is not used

for training. All the numbers reported are of a single model

without ensembling.

4.1.3 Comparison to State-of-the-Art

Recently there have been many different approaches which

use different types of external knowledge to augment the
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Single Model Performance Test-dev Test-standard

All Y/N Num Other All Y/N Num Other

Prior (most common answer in training set) [6] - - - - 25.98 61.20 0.36 1.17

LSTM Language only (blind model) [6] - - - - 44.26 67.01 31.55 27.37

Deeper LSTM Q norm [6] - - - - 54.22 73.46 35.18 41.83

Soft Loss Function [7] 60.4 71.9 39.0 54.6 - - - -

Human-like Attetnion [18] 61.99 78.54 37.94 53.38 - - - -

VQA Challenge Winner 2017 [21] 62.07 79.20 39.46 52.62 62.27 79.32 39.77 52.59

Multimodal Compact Bilinear Pooling [4] VQA Challenge Winner 2016 - - - - 62.27 78.82 38.28 53.36

MFB [27] 64.98 - - - - - - -

MFH [27] 65.80 - - - - - - -

VQA Challenge Winner 2017 [21] with bottom-up attention ∗ 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26

Dual Recurrent Attention Units [1] with FRCNN Feature ∗ 66.45 82.85 44.78 57.4 66.85 83.35 44.37 57.63

Our Single Model 63.89 79.95 40.35 55.86 64.06 80.01 40.63 55.82

Table 1. Comparison of our best single model with competing single model methods. ∗ means the model is trained with region-specific

features which can be regarded as extra knowledge.

visual question answering model. For example [18] manu-

ally annotated a human-like attention heatmap as a supervi-

sory signal to train the attention model. [21] and [1] used

external knowledge like Fast(er) R-CNN, showing signifi-

cant improvements on the VQA task. [27] [4] [3] used vi-

sual Genome [19] to augment the VQA dataset. [27] [3]

used skipthought vectors [13] to augment the textual fea-

ture while [4] [21] used Glove [17]. Others [4] [21] [27]

[3] ensemble from 3 to 20 different models to boost perfor-

mance. The many different configurations make it hard to

have a standardized setup on which to fairly compare re-

sults. For this work, we report our number without any

external knowledge either by augmenting the training set.

A comparison to state-of-the-art VQA systems is presented

in Table 1. We split the table into 3 sections, in the first

section, we report all the existing numbers we can find for

non-ensembled models that aren’t using additional knowl-

edge outside of the VQA dataset. In the second section,

we report some noteworthy numbers in VQA which do use

external knowledge and in the final section we report our

result. It can be seen in these results that the twin stream

Stacked Latent Attention model can achieve performance

comparable to the state-of-the-art on the test-dev and test-

standard dataset.

Furthermore, we also report our number of 65.3 on VQA

1.0, surpassing the performance of previous state-of-the-art

results: 64.6 for MLAN[26], 64.3 for Dual Attention[16],

64.2 for MCBP[4], 61.8 for HieCoAtt[15], and 61.02 for

MUTAN [3].

4.1.4 Analysis

Going beyond the quantitative results, we are interested in

exploring the properties of the Stacked Latent Attention

model, and why it can outperform traditional attention mod-

els or stacked attention models. In this section, we analyze

the different properties of the model and reason about ef-

fects and contributions of each part.

First we inspect the performance delta after varying dif-

ferent hyperparameters of the twin stream Stacked Latent

Figure 4. We compare the accuracy of the twin stream Stacked La-

tent Attention model with different hyperparameter settings. The

figure on the left shows performance for T = 1, 2, 3, and the

figure on the right shows performance for hidden state sizes of

256, 512, 1024 for T = 2. We find improving performance with

more layers, even for a stack of 3.

Attention model. For the main convolutional pathway, we

compared hidden state sizes of 256, 512, and 1024. For a

fair comparison, we did not try a size greater than 1024 as

the model would not fit into GPU memory without lowering

the batch size. We also analyze the effectiveness of differ-

ent numbers of stacked layers T for T = 1, 2, 3. Here, we

note an interesting finding that although [16] reports stack-

ing 2 attention layers results in the best performance, [10]

reports poor performance when stacking 3 layers and [4]

reports that no performance gains emerge even by stacking

2 layers, in our model, as demonstrated in Fig. 4, we can

clearly see that stacking more layers results in better perfor-

mance. This is in line with our hypothesis that by exposing

the latent positional information throughout the whole path-

way and mitigating the gradient vanishing problem, stack-

ing attention is generally beneficial. We observe that the

best performance can be achieved by stacking 3 attention

layers, although we did not try with more layers since we

could not keep the same batch size.

To dive deeper into why previous work was not able to

successfully stack more than two layers of attention while in

our work, we see that more layers give better performance,

we visualize the distribution of gradient magnitude at each

layer of the attention stack for the visual stream. This is

shown in of Fig. 5 for both a baseline traditional stacked

attention model as well as for the SLA model, with a stack
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Figure 5. This figure illustrates the change in magnitude of the

gradients at different layers of attention in the network for the vi-

sual stream on the VQA task. The leftmost figure depicts the gra-

dient of the earliest attention and the rightmost figure depicts the

gradient of the latest attention. The red curve is the baseline tra-

ditional stacked attention model while the blue curve is our SLA

model. We observe that for layers closer to the output, the dis-

tribution has a large variance for both the standard stacked model

and our SLA model, however as we move from the output layer to-

wards the input, the gradient magnitude distribution peaks tightly

around zero with low variance for the traditional stacked attention

model. This suggests that our model is able to mitigate the vanish-

ing gradient problem.

size T = 3. We fixed all other configurations of the exper-

iment to ensure a fair comparison. In the figure, the x-axis

denotes the gradient magnitude and the y-axis is the log fre-

quency, the left, middle and right figures represent the his-

togram of the first, second and third attention layers respec-

tively and the red curve represents the baseline model while

the blue curve represents the SLA model. We observe that

all of the gradient distributions are centered around 0. The

interesting feature of this figure is that in the last attention,

the one closest to the loss, both models have a similar dis-

tribution, however, as we move closer to the input the distri-

bution of the gradient magnitude of the traditional stacked

model peaks at 0 with very small variance. In contrast to

the SLA model, we see continued high variance even at the

initial layers indicating that this model does not suffer from

gradient vanishing.

The reason for this can be seen in the difference of ar-

chitecture between the traditional stacked model shown in

Fig. 3.2 and the SLA model show in Fig. 3.3. In the tradi-

tional model, we observe that the gradient vanishes because

all of the activations, including the softmax layer, are in the

same pathway, so when the gradient backpropagates, it gets

diluted by the softmax. In contrast, the SLA model is de-

signed such that the main pathway is softmax free, with the

softmax activations out of the main pathway. This allows

the model to avoid falling prey to the vanishing gradient

problem and greatly enhances the smooth flow of the gradi-

ent to the beginning of the network, resulting in the ability

to stack more attention layers.

We perform further analysis to support this point by plot-

ting the activations of the attention heatmap between the

baseline model and the SLA model. The hypothesis is that,

the more performant attention model should have sparser

and stronger activations leading to a sharper attention. Fig.

6 plots the distribution of the strength of the activations.

The x-axis denotes the magnitude of the activation and the

Figure 6. This is the visualization for the distribution of attention

weights αi for different timesteps T = 1, 2, 3 from left to right.

The x-axis is the magnitude and the y-axis is the logged frequency.

The red curve represents the standard stacked attention model, and

the blue curve represents the SLA model. We observe that the

SLA model generates a sharper attention than the normal stacked

attention model, especially for the initial layer because the design

of the SLA model can facilitate the smooth backpropagation of the

gradient, giving the model a strong supervisory signal.

y-axis plots the log frequency. The blue and red curves

represent the SLA model and traditional stacked attention

respectively. The leftmost figure depicts the first attention

layer, while the middle figure depicts the middle attention

layer and the rightmost figure depicts the last attention layer.

It is clear from this figure that there are significantly more

activations of a greater magnitude for the SLA model than

the traditional stacked attention leading to a sharper atten-

tion that is able to more smoothly propagate the discrimi-

natory supervision signal from the loss. In both cases, each

subsequent layer has stronger activations than the previous

layer which is within expectations since it is closer to the

loss.

Figure 7. The blue shade is the visualization of the attention from

the first step of inference and red shade shows the second step.

From the visualization, the reasoning process becomes clear. With

a question of ”what is the man eating?”, the spatially augmented

attention can check for the man first, and then look at the food in

the man’s mouth.
Fig. 7 presents some qualitative insight into the activa-

tions of the attention with a visualization of the image at-

tention. The reasoning steps are clearly illustrated, with the

blue shade representing the first attention unit and the red

shade representing the last. In the first example, the ques-
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Figure 8. This figure illustrates the location bias generated by the

word embedding. The left image represents the positional bias

given “sky”, while the right image represents the spatial bias given

“ground”.

tion is ”what is the man eating?”, and the first attention layer

is focused on the man, corresponding to the word “man” in

the question. The last attention layer can be seen to be fo-

cused on the object in the man’s hand producing the answer

to the question: “donut”. Similarly, for the second example,

the question is ”what is on the ground?”, and the first atten-

tion layer highlights the floor while the last attention is on

the teddy bear.
Y/N Num Other All

Baseline T=2, hid=256 78.61 43.00 53.57 61.59

Baseline + location Bias 80.15 43.97 54.54 62.77

Table 2. Comparison of performance when adding initial posi-

tional bias to the baseline Twin Stream Stacked Latent Attention

model with T = 1 and hidden state dimension of 256. A clear

improvement can be observed.

Additionally, we also investigate the properties of the po-

sitional bias bpos introduced in Section 3.3, we introduced

the idea of using the word embedding to bootstrap the initial

positional bias bpos. The method of doing this is to pass the

initial question to a bi-directional LSTM to generate an em-

bedding which goes through a non-linear projection to gen-

erate bpos. By visualizing the properties of this initial state

in Fig. 8 we show that it contains some semantic meaning

that is beneficial to the model. This figure is created by us-

ing a trained SLA model and directly visualizing bpos given

the separate questions of ”what is in the sky”, and ”what

is the color of the ground”. The left figure shows that the

upper part of bpos activates given the question ”what is in

the sky” and the right figure shows activation of the bottom

half of the image given the question ”what is the color of the

ground”. This demonstrates that the model can utilize the

positional information learned from the word embedding.

Table 2 compares the performance of the model with and

without initializing bpos with this positional bias. We see

that the baseline model without this bias achieves an accu-

racy of 61.59 while after adding the positional bias we see

an accuracy of 62.77, a gain of 1.18.

4.2. Stacked Latent Attention Model for Image
Caption

In order to prove the generalizability of our model, in

this section we explore its performance on the image cap-

tioning task. It is another task which investigates the fusion

of vision and text for multimodal reasoning where attention

models have demonstrated large impact [24][25][22][9].

For these experiments, we use the same framework as used

in [24] and regard it as the baseline. The only change we

make to this model is to replace the traditional attention

mechanism with our SLA model with T = 3. We also com-

pare with the classic encoder/decoder models described in

[22].

The models are evaluated on the MSCOCO dataset [14]

containing 123000 images, each with at least 5 captions.

The dataset is split in the same way as in [24][25][22][9],

with 5000 images reserved for the dev and test set each and

the remainder used for training. As part of the preprocess-

ing, we retain only alphabetic characters in the captions and

convert all letters to lowercase. The captions are tokenized

using white space. We only consider words occurring 5 or

more times and replace the remainder with the UNK token

giving a vocabulary of 9520 words. Captions are truncated

to a max length of 30 tokens as we use the same hyperpa-

rameters as [24].

Table 3 reports the BLEU-4, METEOR and CIDEr

scores for these experiments. They are produced using the

official MSCOCO evaluation scripts. The results show that

by simply switching to a SLA model for attention, we ob-

tain a substantial gain on this task.

BLEU-4 METEOR CIDEr

Encoder-Decoder [22] 0.278 0.229 0.840

ReviewNet[24] 0.290 0.237 0.886

ReviewNet + SLA 0.300 0.253 0.908

Table 3. Performance of different model variants on the MSCOCO

dataset. Results are obtained with a single model using VGGNet.

The image captioning task requires a detailed under-

standing about every section of the image. We can see that

the SLA model is able to bring a performance increase of

0.01 on BLEU-4, 0.016 on METEOR and 0.022 on CIDEr

compared to the ReviewNet. This can be attributed to two

reasons, first, the multiple reasoning layers in the SLA unit

provides a more detailed and accurate attention and second,

the additional positional information provided by the SLA

model can be used to generate a more precise description.

5. Conclusion

In this paper, we identify and explore the limitations of

traditional attention models when conducting spatial rea-

soning, and the tendency for gradient vanishing when em-

ploying a stacked architecture. To tackle these problems,

we propose the Stacked Latent Attention model which

can be used as a direct replacement for current atten-

tion mechanisms and build upon this to develop the Twin

Stream Stacked Latent Attention model for the Visual Ques-

tion Answering task. With these models, we are able to

achieve state-of-the-art performance for VQA and demon-

strate clear improvements for the image captioning task.
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