COSC 689: Deep

Reinforcement Learning
Spring 2019

Prof. Grace Hui Yang
Department of Computer Science
Georgetown University

Midterm

e Apr 3, In class, open book
e Written questions, covering:

* MDP

* Dynamic Programming (Value iteration, policy iteration, policy
improvement, policy evaluation)

PG and AC (REINFORCE, REINFORCE w/baseline, AC, A3C,
TRPO, PPO, GAE)

e TD (SARSA, Q-learning, expected SARSA, double Q-learning,
DQN, DDPG)

Outline

Deep Q-learning

Deep Q-Network (DQN)

Deep Deterministic Policy Gradient (DDPG)
What are working?

e EXperience replay

e Target network

e Double Q-Learning

e N-Step Q-learning

Practical considerations for Deep Q-learning

Q-learning

Q-learning (off-policy TD control) for estimating 7w ~ .

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a|R + ymax, Q(S',a) — Q(S, A)]
S+ S
until S is terminal

Deep Q-Learning

e Use a deep neural network to learn the Q-function

e How:
e Parameterize Q function with 45

e Use SGD to find the optimal ¢ and the optimal Q¢

Deep Q-Learning

Qqﬁ(sa a) A T'(S, a) + Y maxy; Q¢(S,v a,)
fit a model to
ﬁ estimate return

generate
samples (i.e.
run the policy)
; improve the
policy

a = arg max, (s, a)

Image from UC Berkeley C5294-112

Naive DQN

e Also known as Online Q-iteration algorithm:
Repeat:
Take some action d; and observe (Sl-, a;, Sl-', l”l-)
Calculate TD error’s target y;, = r(s,, a;) +y max Q¢(S{, a;)
a

dQ,
Update ¢ <« ¢ — O‘W(Si» a)lQy(s; a;) — vl

Naive DQN

e Also known as Online Q-iteration algorithm:
Repeat:

Take some action d; and observe (Sl-, a, Sl-', Fi)

Calculate TD error’s target y; = r(s;, @;) + y max Q,(s;, a;)
a/
dQ¢

Update _g—2
¢ —¢ ad(ﬁ

(s;; Cl,’)[Qqs(Si, a;) — yil

Naive DQN

e Suffers from two major issues:
* (Correlated samples in sequential states

* The neural network used to learn Q is too easily to overfit to with current
episodes

* Once it is overfitted, it won’t be able to generate varying experiences

* |t gets stuck!

’ \ /
._& o_ &
Image from UC Berkeley CS294-112

* A moving target
y; = (5, a;) + y max Qy(s/, a;)

* |tis because the target - a " depends on the same
parameters that we are trying to learn — ¢

* |t becomes a chicken-and-egg problem and the learning becomes super
unstable

* And when we use SGD to seek for ¢, the gradient is not though the target
function part (see next slide)

Naive DQN

e Also known as Online Q-iteration algorithm:

Repeat:

/

Take some action d; and observe (Sl-, a, S;, Fi)

Calculate TD error’s target y; = r(s;, @;) + y max Q,(s;, a;)
a/

do,

(s;; ai)[Q¢(Sia a;) — yil

Update _g—2
¢ — ¢ ad¢ il

dQ(/)
= ¢ - a%(si, apl Qs ap) — (r(s;, a) +v max Qqs(sila a;))]

gradient is not through this part

Solutions to Correlated samples
- asynchronous learning

e Solution 1: asynchronous learning to break the
correlations

synchronized parallel Q-learning asynchronous parallel Q-learning

get (s,a,s’,-r)<—l I I I

update ¢ +— Bl

g(‘t (s,a,s’,"r')‘—l I I I

update ¢ +— Bt

Y1

<
L

Image from UC Berkeley CS5294-112

Solutions to Correlated
samples - Experience Replay

e Solution 2: sample the recent states from a buffer

e This technique is called “experience replay”

(s,8,8',7) dataset of transitions
(“replay buffer”)
off-policy
}- T “— Q-learning
. N e
-

m(als) (e.g., e-greedy)

Image from UC Berkeley CS5294-112

Experience Replay

* |dea:

e Stores the experiences, including state transitions,
rewards, actions, into a buffer

e What are stored are those that are essential to learn a
Q-function

* state transitions (from s to s’; note it is not the entire
trajectory, but pairs of Markov transitions)

e rewards
e actions

* Then, random samples (mini-batches) from this buffer to
update the neural network

Experience Replay

o Benefits:

e |t reduces the correlation between recent experiences
when updating the NN

e With a good size of mini-batches, it can speed up the
learning

e reuses past experience to avoid sudden change/
forgetting

Experience Replay

e How big the buffer should be?

e the replay buffer should be big enough to contain a wide
range of experiences

 however, not keep everything. It would be very inefficient
e How recent the experiences should be?

e |f you use very recent date only, then it again easily overfit to
recent samples

e |f you use a lot of past experiences, which means to keep
more data in the buffer, it will slow you down

e Tuning is thus important

Naive DQN + Experience
Replay

Repeat:

collect experiences {(s;, a;, s}, ;) }, add them to
replay buffer B

Repeat:
sample a batch of (s;, a;, s;, 1;) from B

calculate TD error’s target y; = 7(s;, @;) +y max Q,(s;, a;)

do,

update) — ¢ — aw(sia ai)[Q(p(Si’ a; —]

Issue - Moving Target

Repeat:

Take some action ¢; and observe (S, d., Si/’ rl.)

Calculate TD error’s target ¥; = 1(S; @;) +7 I1ax Qs> a;,

a
dQ
Update ¢ < ¢ -a d_j(sia alQy(s;, a;) — (r(s;, a;) +y max Qy(s;, a;))]

*

gradient is not through this part

e The targets don’t change in the inner loop
e Q-learning (Naive DQN) is not gradient descent
e The learning is super unstable

Solution to moving target -
Target Network

e |dea:
e Use a separate target network (parameterized by @) in Q-value fitting

* In the new target network, we use a set of parameters that is close to ¢
, but not exactly it, with a time delay

e Ways to do it:

e Directly copy over the learned ¢ from Q-network to the target
network (as in DQN):

¢ < ¢
 Use Polyak averaging (as in DDPG)

¢ — 10"+ (1—7)0 7 = 0.999 for instance

Naive DQN + Experience
Replay + Target Network

Repeat:
Update target network parameter by copying: ¢’ < ¢
Repeat (N times):
collect experiences {(s;,a;, s;,r;)} , add them to B
Repeat (K times):
sample a batch of{(sj, a;, st, rj)} from B

compute TD error’s target using target network
parameters y; = r(s;, a;) + y max Qy(s;, a;)

dat s
upaate ¢ « ¢ — aw(sja aj)[Q¢(sj, a]-) —)’j]

Naive DQN + Experience
Replay + Target Network

Repeat:
_ . N: skipping
Update target network parameter by copying: ¢’ < ¢ steps
K: times of
Repeat (N times): random

sampling

collect experiences {(s;,a;, s;,r;)} , add them to B

Repeat (K times): Note the index
changes from
sample a batch of{(sj, a, s]f, rj)} from B itoj

compute TD error’s target using target network
parameters Yy, = r(Sj, aj) + ¥y max Qg’b(sjf, a]f
al

dat s
upaate ¢ « ¢ — a%(sja aj)[Q¢(Sja aj) — y]‘]

lllustration

process 1: data collection current ‘rafalgt??lpd%\te ~~_rget
parameters O - © ' parameters
‘ i !
(s,a,s’,r) @ L P

© dataset of transitions — .
(“replay buffer”) (

|) (e.g.. e-greedy) o :
n(as) (e.g., e-greedy) evict old data ﬁ

 Online Q-learning (last lecture): evict immediately, process 1,
process 2, and process 3 all run at the same speed -

e DQN: process 1 and process 3 run at the same speed,
process 2 is slow

Image from UC Berkeley C5294-112

Deep Q-Network (DQN)

e |tis Naive DQN + Experience Replay + Target Network,
when N=1 and K=1.

e DQN Paper: Human-level control through deep
reinforcement learning: Q-learning with convolutional
networks for playing Atari. https://www.nature.com/
articles/nature14236

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236

DQN

Repeat:
Update target network parameter by copying: ¢' < ¢
Repeat (N times): N=1 and K=1
collect experiences {(s;,a;, s;,r;)} , add them to B
Repeat (K times):
sample a batch of{(sj, a;, st, rj)} from B

compute TD error’s target using target network
parameters y; = r(s;, a;) + y max Qy(s;, a;)

dat s
upaate ¢ « ¢ — a%(sja aj)[Q¢(sj, aj) — y]‘]

It Is your Homework 3.

DQN Algo in the Paper

Algorithm 1: deep Q-learning with experience replay.
[nitialize replay memory D to capacity N
[nitialize action-value function Q with random weights ¢
[nitialize target action-value function (0 with weights 0 =0
For episode = 1, M do
Initialize sequence s, = {x, } and preprocessed sequence ¢, = ¢(s,)
Fort= 1T do
With probability & select a random action a,
otherwise select a; = argmax_ Q(¢(s;),a: 0)
Execute action &, in emulator and observe reward r, and image x; ; ;
Set 5. 1 =5:.4,% 11 and preprocess ¢, , | =@ (s 1)
Store transition (¢,.@,. 7@, , ;) inD
Sample random minibatch of transitions (éi..a,.r,..q, g) from D

. r; if episode terminates at step j+ 1
Set); = r; 4y maxy Q(d), @ 0") otherwise
Perform a gradient descent step on (;. - Q(Q,,a,.; 0)) " with respect to the
network parameters 0/
Every C steps reset Q = ()

End For

End For

Further Improvement:
Double Q-learning

e Qverestimation in Q-learning

 (We mentioned in last lecture) It is because Q-learning is a
greedy algorithm

* Or at least \epsilon-greedy

|t can be biased towards overestimation of the next value

target value y; = r; + 7 mMaxa’ Qe (s}, a%)

Overestimation in Q-
Learning

target value y; = r; + 7 maXa’ Qg (sg, a;)

7

maxg/ qu (S,, a,) = Q¢I (S,, arg 1mmaxgy- Q¢/ (S,, al))

evaluate Q-

action selection
value

they both depend
on Q¢,

Double Q-Learning

e |dea:

Do not use the same network for choosing actions and
evaluating values

* |nstead, use two different networks to do the above (with 0.5
probably for each)

Qo4 (5,8) = 7 +7Qp, (8, arg max Qo (s))

Qop(s,a) < 7 +7Qy (s, argmax Qy . (s'))

a

* |n practice, we use target network to evaluate Q-value and
current network to choose action

Double Q-Learning

e In practice, we use target network to evaluate Q-value
and use current network to choose action:

y; =185 @) +yQ,(s;, arg max Q4(s5,a:))
a

Double Q-Learning

e In practice, we use target network to evaluate Q-value
and use current network to choose action:

y; = 1(s;, a) + ?’Q(p’(sjla dig max Q¢(Sj,a CZJ{))
a

Further Improvement: N-
Step Return

e Q-learning’s target is high in bias and low in variance.

e |t is because it only looks ahead 1 step and 1 reward
y; =r(s;a) + VQ¢'(S]{9 alg mnax ng(Sj,, aj’))
a

e How to improve (to make it low in both)?

e \We can use N-step returns as in actor-critic

Q-learning + N-Step Return

e Q-learning target becomes:

| t'+N—-1 N "
Yjt = 24—t rit¢ 7 MaXa, . n Qc')’(sj.t+.-\":aj.t+N)

e When we do action selection,

| if a; = arg maxa, Q4(St, ar)
) otherwise

m(ag|sy) = {

we will need transitions s;v.a;,8;r+1 all to come from
the same policy @ forall '—t<N—-1

e |tis hard to do though - so we sometimes ignore the
problem

Summary: DQN

e \What are working?
e EXperience replay
e Use a Target network
e Double Q-Learning
e N-Step Q-learning

Deep Q-learning with
Continuous Actions

DQN select actions based on the following or \epsilon-greedy:

r(agls;) = | if a; = argmaxa, Qy(St, az)
AP 0 otherwise

This works well with discrete actions

However, when use DQN with continuous actions, we cannot

exhaustively evaluate all actions in the space to find out the
max

Moreover, solving this optimization (the max) is in the inner

loop of calculating the target, which makes the optimization
highly nontrivial

Deep Q-learning with
Continuous Actions

DQN select actions based on the following or \epsilon-greedy:

a painfully

1 if A — are max |
”T(atlst) _ { 1T ay arg maXas, Q*(St, at)

0 otherwise expensive

This works well with discrete actions subroutine

However, when use DQN with continuous actions, we cannot

exhaustively evaluate all actions in the space to find out the
max

Moreover, solving this optimization (the max) is in the inner

loop of calculating the target, which makes the optimization
highly nontrivial

Deep Q-learning with
Continuous Actions

e Solution:

e Parameterize the entire argmax part 218 maxa, Qu(si.a¢) py @

* Then, learn a maximizer (another network) Uy to
approximate it - arg maxa, 4 (s¢, a;)

 Assumption: the Q-function is differentiable w.r.t the
action dQ, dadQy

df db da
e This leads to DDPG

Deep Deterministic Policy
Gradient (DDPG)

e train another network jig(s) such that pg(s) ~ arg max, QQ4(s, a)
e Then, solve 0 < argmaxy Q4 (s, io(s))
o After this action selection, the new target becomes

yj = 1j +ymaxa; Qg (s}, 1o(s}))

e DDPG paper: Continuous control with deep
reinforcement learning: continuous Q-learning with
actor network for approximate maximization.

DDPG

take some action a; and observe (s;,a;,s;,r;), add it to B

. sample mini-batch {s;,a;,s’,7;} from B uniformly

. compute y; =1 J- + 7 maxy Q¢ (85, e (8})) using target nets Qg and pugr
Q=0 OZ (10 (SJ*aJ)(Qo(SJ a;j) — yj)

dV(‘,
.0<—9+JZJ sACH) < (s;,a)

da

N

o

6. update ¢" and 6’ (e.g., Polyak averaging)

e DDPG paper: Continuous control with deep
reinforcement learning: continuous Q-learning with
actor network for approximate maximization.

Adapted from UC Berkeley CS294-112

DDPG in the Paper

Algorithm 1 DDPG zlgorithm

Randomly initialize critic network Q(s, al#%) and actor u(s|6*) with weights 8% and 6%,
Initialize target network Q' and u with weights 9 « 69, 6%+ g*
Inmitialize replay buffer /£
for episode = 1, M do
Initialize a random process N\ for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a, = u(s,|68*) + N, according to the current policy and exploration noise
Execute action a, and observe reward 7, and observe new state s,
Store transition (8. a,, 7. 8421) in B
Sample a random minibatch of N transitions (s,.a;,7;, 8,41) from R
Sety; =1 + "."Q’(sl-’r-l ' #'(3:+1 IG}JI)IGQ{)
Update critic by minimizing the loss: L = % 3 (v — Q(si,a:]09))°
Update the actor policy using the sampled policy gradient:

1
VB"J ~ E’ ZVOQ(S?ang)I.-;:m.a:,u[m]vf?"‘p'(slgﬂ)lm

Update the target networks:
09 — 769 + (1 —7)8%
0" « 6" + (1 — 70"

end for
end for

DDPG

It iIs an actor-critic method

The value learning part (critic) is similar to DQN
The action section (actor) is using Policy Gradient
It also uses tricks including

e eXxperience replay

e target network

Practical Tips for Q-learning

* Test on easy, reliable tasks first, make sure your implementation is correct
e Large replay buffers help improve stability

e Start with high exploration (\epsilon) and gradually reduce

e Start with high learning rate (\alpha) and gradually reduce

e Q-learning could be slow, so be patient

* Double Q-learning helps a lot in practice, simple and no downsides

* N-step returns also help a lot, but have some downsides

e Run multiple random seeds, it could be inconsistent between runs

Summary: Deep TD-
Learning

Widely used value-based method family
Connects well with psychology and neuroscience
* 1D error

DQN is a state-of-art RL method

DDPG can be used for continuous action space; and works
as an actor-critic method

Key techniques to increase training stability:
* experience replay

e target network

References

Main Textbook: RL book chapters 6.

 Note that some images or formulas from the main textbook are
not individually cited. You should assume they are from the
textbook.

DQN Paper: Human-level control through deep reinforcement
learning: Q-learning with convolutional networks for playing Atari.

DDPG paper: Continuous control with deep reinforcement
learning: continuous Q-learning with actor network for
approximate maximization.

UC Berkeley CS294-112 Deep Reinforcement Learning

