
COSC 689: Deep
Reinforcement Learning

Spring 2019
Prof. Grace Hui Yang

Department of Computer Science

Georgetown University

Midterm
• Apr 3, in class, open book

• Written questions, covering:

• MDP

• Dynamic Programming (Value iteration, policy iteration, policy
improvement, policy evaluation)

• PG and AC (REINFORCE, REINFORCE w/baseline, AC, A3C,
TRPO, PPO, GAE)

• TD (SARSA, Q-learning, expected SARSA, double Q-learning,
DQN, DDPG)

Outline
• Deep Q-learning

• Deep Q-Network (DQN)

• Deep Deterministic Policy Gradient (DDPG)

• What are working?

• Experience replay

• Target network

• Double Q-Learning

• N-Step Q-learning

• Practical considerations for Deep Q-learning

Q-learning

Deep Q-Learning
• Use a deep neural network to learn the Q-function

• How:

• Parameterize Q function with

• Use SGD to find the optimal and the optimal

ϕ

ϕ Qϕ

Deep Q-Learning

Image from UC Berkeley CS294-112

Naive DQN
• Also known as Online Q-iteration algorithm:

Repeat:

 Take some action and observe

 Calculate TD error’s target

 Update

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

Naive DQN
• Also known as Online Q-iteration algorithm:

Repeat:

 Take some action and observe

 Calculate TD error’s target

 Update

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

TD error

Target

Naive DQN
• Suffers from two major issues:

• Correlated samples in sequential states

• The neural network used to learn Q is too easily to overfit to with current

episodes

• Once it is overfitted, it won’t be able to generate varying experiences

• It gets stuck!

• A moving target

• It is because the target depends on the same

parameters that we are trying to learn —

• It becomes a chicken-and-egg problem and the learning becomes super

unstable

• And when we use SGD to seek for , the gradient is not though the target

function part (see next slide)

ϕ

ϕ

Image from UC Berkeley CS294-112

Naive DQN
• Also known as Online Q-iteration algorithm:

Repeat:

 Take some action and observe

 Calculate TD error’s target

 Update

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

= ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − (r(si, ai) + γ max

a′�
Qϕ(s′ �i, a′�i))]

gradient is not through this part

Solutions to Correlated samples
- asynchronous learning

• Solution 1: asynchronous learning to break the
correlations

Image from UC Berkeley CS294-112

Solutions to Correlated
samples - Experience Replay
• Solution 2: sample the recent states from a buffer

• This technique is called “experience replay”

Image from UC Berkeley CS294-112

Experience Replay
• Idea:

• Stores the experiences, including state transitions,

rewards, actions, into a buffer

• What are stored are those that are essential to learn a
Q-function

• state transitions (from s to s’; note it is not the entire
trajectory, but pairs of Markov transitions)

• rewards

• actions

• Then, random samples (mini-batches) from this buffer to
update the neural network

Experience Replay

• Benefits:

• It reduces the correlation between recent experiences
when updating the NN

• With a good size of mini-batches, it can speed up the
learning

• reuses past experience to avoid sudden change/
forgetting

Experience Replay
• How big the buffer should be?

• the replay buffer should be big enough to contain a wide
range of experiences

• however, not keep everything. It would be very inefficient

• How recent the experiences should be?

• If you use very recent date only, then it again easily overfit to
recent samples

• If you use a lot of past experiences, which means to keep
more data in the buffer, it will slow you down

• Tuning is thus important

Naive DQN + Experience
Replay

Repeat:

 collect experiences , add them to
replay buffer

 Repeat:

 sample a batch of from

 calculate TD error’s target

 update

(si, ai, s′�i, ri)
yi = r(si, ai) + γ max

a′�
Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

B

{(si, ai, s′�i, ri)}
B

Issue - Moving Target
Repeat:

 Take some action and observe

 Calculate TD error’s target

 Update

ai (si, ai, s′�i, ri)
yi = r(si, ai) + γ max

a′�
Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − (r(si, ai) + γ max

a′ �
Qϕ(s′ �i, a′�i))]

gradient is not through this part

• The targets don’t change in the inner loop

• Q-learning (Naive DQN) is not gradient descent

• The learning is super unstable

Solution to moving target -
Target Network

• Idea:

• Use a separate target network (parameterized by) in Q-value fitting

• In the new target network, we use a set of parameters that is close to
, but not exactly it, with a time delay

• Ways to do it:

• Directly copy over the learned from Q-network to the target
network (as in DQN):

• Use Polyak averaging (as in DDPG)

ϕ

ϕ

ϕ′�

ϕ′� ← ϕ

for instance

Naive DQN + Experience
Replay + Target Network
Repeat:

 Update target network parameter by copying:

 Repeat (N times):

 collect experiences , add them to

 Repeat (K times):

 sample a batch of from

 compute TD error’s target using target network
parameters

 update

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ

Naive DQN + Experience
Replay + Target Network
Repeat:

 Update target network parameter by copying:

 Repeat (N times):

 collect experiences , add them to

 Repeat (K times):

 sample a batch of from

 compute TD error’s target using target network
parameters

 update

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ

Note the index
changes from

i to j

N: skipping
steps

K: times of
random

sampling

Illustration

• Online Q-learning (last lecture): evict immediately, process 1,
process 2, and process 3 all run at the same speed •

• DQN: process 1 and process 3 run at the same speed,
process 2 is slow

Image from UC Berkeley CS294-112

Deep Q-Network (DQN)

• It is Naive DQN + Experience Replay + Target Network,
when N=1 and K=1.

• DQN Paper: Human-level control through deep
reinforcement learning: Q-learning with convolutional
networks for playing Atari. https://www.nature.com/
articles/nature14236

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236

DQN
Repeat:

 Update target network parameter by copying:

 Repeat (N times):

 collect experiences , add them to

 Repeat (K times):

 sample a batch of from

 compute TD error’s target using target network
parameters

 update

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ

It is your Homework 3.

N=1 and K=1

DQN Algo in the Paper

Further Improvement:
Double Q-learning

• Overestimation in Q-learning

• (We mentioned in last lecture) It is because Q-learning is a
greedy algorithm

• Or at least \epsilon-greedy

• It can be biased towards overestimation of the next value

Overestimation in Q-
Learning

action selectionevaluate Q-
value

they both depend
on Qϕ′�

Double Q-Learning
• Idea:

• Do not use the same network for choosing actions and
evaluating values

• Instead, use two different networks to do the above (with 0.5
probably for each)

• In practice, we use target network to evaluate Q-value and
current network to choose action

Double Q-Learning
• In practice, we use target network to evaluate Q-value

and use current network to choose action:

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′�

Qϕ(s′�j, a′�j))

Qϕ′�

Double Q-Learning
• In practice, we use target network to evaluate Q-value

and use current network to choose action:

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′�

Qϕ(s′�j, a′�j))

Not Qϕ′�

Further Improvement: N-
Step Return

• Q-learning’s target is high in bias and low in variance.

• It is because it only looks ahead 1 step and 1 reward

• How to improve (to make it low in both)?

• We can use N-step returns as in actor-critic

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′ �

Qϕ(s′�j, a′�j))

Q-learning + N-Step Return
• Q-learning target becomes:

• When we do action selection,

 we will need transitions all to come from
the same policy for all

• It is hard to do though - so we sometimes ignore the
problem

π t′�− t < N − 1

Summary: DQN

• What are working?

• Experience replay

• Use a Target network

• Double Q-Learning

• N-Step Q-learning

Deep Q-learning with
Continuous Actions

• DQN select actions based on the following or \epsilon-greedy:

• This works well with discrete actions

• However, when use DQN with continuous actions, we cannot
exhaustively evaluate all actions in the space to find out the
max

• Moreover, solving this optimization (the max) is in the inner
loop of calculating the target, which makes the optimization
highly nontrivial

Deep Q-learning with
Continuous Actions

• DQN select actions based on the following or \epsilon-greedy:

• This works well with discrete actions

• However, when use DQN with continuous actions, we cannot
exhaustively evaluate all actions in the space to find out the
max

• Moreover, solving this optimization (the max) is in the inner
loop of calculating the target, which makes the optimization
highly nontrivial

a painfully
expensive
subroutine

Deep Q-learning with
Continuous Actions

• Solution:

• Parameterize the entire argmax part by

• Then, learn a maximizer (another network) to
approximate it -

• Assumption: the Q-function is differentiable w.r.t the
action

• This leads to DDPG

θ

μθ

Deep Deterministic Policy
Gradient (DDPG)

•

• Then,

• After this action selection, the new target becomes

• DDPG paper: Continuous control with deep
reinforcement learning: continuous Q-learning with
actor network for approximate maximization.

DDPG

• DDPG paper: Continuous control with deep
reinforcement learning: continuous Q-learning with
actor network for approximate maximization.

Adapted from UC Berkeley CS294-112

DDPG in the Paper

DDPG
• It is an actor-critic method

• The value learning part (critic) is similar to DQN

• The action section (actor) is using Policy Gradient

• It also uses tricks including

• experience replay

• target network

Practical Tips for Q-learning
• Test on easy, reliable tasks first, make sure your implementation is correct

• Large replay buffers help improve stability

• Start with high exploration (\epsilon) and gradually reduce

• Start with high learning rate (\alpha) and gradually reduce

• Q-learning could be slow, so be patient

• Double Q-learning helps a lot in practice, simple and no downsides

• N-step returns also help a lot, but have some downsides

• Run multiple random seeds, it could be inconsistent between runs

Summary: Deep TD-
Learning

• Widely used value-based method family

• Connects well with psychology and neuroscience

• TD error

• DQN is a state-of-art RL method

• DDPG can be used for continuous action space; and works
as an actor-critic method

• Key techniques to increase training stability:

• experience replay

• target network

References

• Main Textbook: RL book chapters 6.

• Note that some images or formulas from the main textbook are
not individually cited. You should assume they are from the
textbook.

• DQN Paper: Human-level control through deep reinforcement
learning: Q-learning with convolutional networks for playing Atari.

• DDPG paper: Continuous control with deep reinforcement
learning: continuous Q-learning with actor network for
approximate maximization.

• UC Berkeley CS294-112 Deep Reinforcement Learning

