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Midterm
• Apr 3, in class, open book


• Written questions, covering: 


• MDP


• Dynamic Programming (Value iteration, policy iteration, policy 
improvement, policy evaluation)


• PG and AC (REINFORCE, REINFORCE w/baseline, AC, A3C, 
TRPO, PPO, GAE) 


• TD (SARSA, Q-learning, expected SARSA, double Q-learning, 
DQN, DDPG)



Outline
• Deep Q-learning

• Deep Q-Network (DQN)

• Deep Deterministic Policy Gradient (DDPG)

• What are working?

• Experience replay

• Target network

• Double Q-Learning

• N-Step Q-learning


• Practical considerations for Deep Q-learning



Q-learning



Deep Q-Learning
• Use a deep neural network to learn the Q-function


• How:


• Parameterize Q function with 


• Use SGD to find the optimal     and the optimal 

ϕ

ϕ Qϕ



Deep Q-Learning
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Naive DQN
• Also known as Online Q-iteration algorithm: 


Repeat: 


    Take some action       and observe 


    Calculate TD error’s target


    Update  

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]



Naive DQN
• Also known as Online Q-iteration algorithm: 


Repeat: 


    Take some action       and observe 


    Calculate TD error’s target


    Update  

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

TD error

Target



Naive DQN
• Suffers from two major issues:


• Correlated samples in sequential states

• The neural network used to learn Q is too easily to overfit to with current 

episodes

• Once it is overfitted, it won’t be able to generate varying experiences 

• It gets stuck! 


• A moving target 

• It is because the target                                               depends on the same 

parameters that we are trying to learn — 

• It becomes a chicken-and-egg problem and the learning becomes super 

unstable

• And when we use SGD to seek for     , the gradient is not though the target 

function part (see next slide)

ϕ

ϕ
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Naive DQN
• Also known as Online Q-iteration algorithm: 


Repeat: 


    Take some action       and observe 


    Calculate TD error’s target


    Update  

ai (si, ai, s′�i, ri)

yi = r(si, ai) + γ max
a′�

Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

= ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − (r(si, ai) + γ max

a′�
Qϕ(s′ �i, a′�i))]

gradient is not through this part 



Solutions to Correlated samples 
- asynchronous learning

• Solution 1: asynchronous learning to break the 
correlations
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Solutions to Correlated 
samples - Experience Replay
• Solution 2: sample the recent states from a buffer


• This technique is called “experience replay” 
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Experience Replay
• Idea: 

• Stores the experiences, including state transitions, 

rewards, actions, into a buffer


• What are stored are those that are essential to learn a 
Q-function 


• state transitions (from s to s’; note it is not the entire 
trajectory, but pairs of Markov transitions) 


• rewards


• actions


• Then, random samples (mini-batches) from this buffer to 
update the neural network  



Experience Replay

• Benefits: 


• It reduces the correlation between recent experiences 
when updating the NN


• With a good size of mini-batches, it can speed up the 
learning


• reuses past experience to avoid sudden change/
forgetting  



Experience Replay
• How big the buffer should be?


• the replay buffer should be big enough to contain a wide 
range of experiences


• however, not keep everything. It would be very inefficient


• How recent the experiences should be? 


• If you use very recent date only, then it again easily overfit to 
recent samples


• If you use a lot of past experiences, which means to keep 
more data in the buffer, it will slow you down


• Tuning is thus important 



Naive DQN + Experience 
Replay

Repeat: 


    collect experiences                        , add them to 
replay buffer 


    Repeat: 


          sample a batch of                       from      


          calculate TD error’s target


          update  

(si, ai, s′�i, ri)
yi = r(si, ai) + γ max

a′�
Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − yi]

B

{(si, ai, s′�i, ri)}
B



Issue - Moving Target
Repeat: 


    Take some action       and observe 


    Calculate TD error’s target


    Update  

ai (si, ai, s′�i, ri)
yi = r(si, ai) + γ max

a′�
Qϕ(s′�i, a′�i)

ϕ ← ϕ − α
dQϕ

dϕ
(si, ai)[Qϕ(si, ai) − (r(si, ai) + γ max

a′ �
Qϕ(s′ �i, a′�i))]

gradient is not through this part 

• The targets don’t change in the inner loop

• Q-learning (Naive DQN) is not gradient descent

• The learning is super unstable  



Solution to moving target - 
Target Network

• Idea: 


• Use a separate target network (parameterized by     ) in Q-value fitting


• In the new target network, we use a set of parameters that is close to     
, but not exactly it, with a time delay 


• Ways to do it:


• Directly copy over the learned    from Q-network to the target 
network (as in DQN):


• Use Polyak averaging (as in DDPG)

ϕ

ϕ

ϕ′�

ϕ′� ← ϕ

for instance



Naive DQN + Experience 
Replay + Target Network
Repeat: 


          Update target network parameter by copying:     


          Repeat (N times): 


                collect experiences                      , add them to 


                Repeat (K times): 


                       sample a batch of                      from      


                       compute TD error’s target using target network 
parameters


                       update  

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ



Naive DQN + Experience 
Replay + Target Network
Repeat: 


          Update target network parameter by copying:     


          Repeat (N times): 


                collect experiences                      , add them to 


                Repeat (K times): 


                       sample a batch of                      from      


                       compute TD error’s target using target network 
parameters


                       update  

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ

Note the index 
changes from 

i to j

N: skipping 
steps 

K: times of 
random 

sampling



Illustration

• Online Q-learning (last lecture): evict immediately, process 1, 
process 2, and process 3 all run at the same speed •


• DQN: process 1 and process 3 run at the same speed, 
process 2 is slow
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Deep Q-Network (DQN)

• It is Naive DQN + Experience Replay + Target Network, 
when N=1 and K=1.


• DQN Paper: Human-level control through deep 
reinforcement learning: Q-learning with convolutional 
networks for playing Atari. https://www.nature.com/
articles/nature14236

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236


DQN
Repeat: 


          Update target network parameter by copying:     


          Repeat (N times): 


                collect experiences                      , add them to 


                Repeat (K times): 


                       sample a batch of                      from      


                       compute TD error’s target using target network 
parameters


                       update  

{(sj, aj, s′�j, rj)}

yj = r(sj, aj) + γ max
a′�

Q′�ϕ(s′�j, a′�j)

ϕ ← ϕ − α
dQϕ

dϕ
(sj, aj)[Qϕ(sj, aj) − yj]

B

{(si, ai, s′�i, ri)} B

ϕ′� ← ϕ

It is your Homework 3. 

N=1 and K=1 



DQN Algo in the Paper



Further Improvement: 
Double Q-learning

• Overestimation in Q-learning


• (We mentioned in last lecture) It is because Q-learning is a 
greedy algorithm


• Or at least \epsilon-greedy


• It can be biased towards overestimation of the next value



Overestimation in Q-
Learning

action selectionevaluate Q-
value

they both depend 
on Qϕ′�



Double Q-Learning
• Idea: 


• Do not use the same network for choosing actions and 
evaluating values 


• Instead, use two different networks to do the above  (with 0.5 
probably for each)


• In practice, we use target network to evaluate Q-value and 
current network to choose action



Double Q-Learning
• In practice, we use target network to evaluate Q-value 

and use current network to choose action: 

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′�

Qϕ(s′�j, a′�j))

Qϕ′�



Double Q-Learning
• In practice, we use target network to evaluate Q-value 

and use current network to choose action: 

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′�

Qϕ(s′�j, a′�j))

Not Qϕ′�



Further Improvement: N-
Step Return

• Q-learning’s target is high in bias and low in variance.


• It is because it only looks ahead 1 step and 1 reward


• How to improve (to make it low in both)? 


• We can use N-step returns as in actor-critic 

yj = r(sj, aj) + γQϕ′�(s′�j, arg max
a′ �

Qϕ(s′�j, a′�j))



Q-learning + N-Step Return
• Q-learning target becomes: 


• When we do action selection, 


     we will need transitions                             all to come from 
the same policy     for all  


• It is hard to do though - so we sometimes  ignore the 
problem

π t′�− t < N − 1



Summary: DQN

• What are working?

• Experience replay

• Use a Target network

• Double Q-Learning

• N-Step Q-learning



Deep Q-learning with 
Continuous Actions

• DQN select actions based on the following or \epsilon-greedy: 


• This works well with discrete actions


• However, when use DQN with continuous actions, we cannot 
exhaustively evaluate all actions in the space to find out the 
max


• Moreover, solving this optimization (the max) is in the inner 
loop of calculating the target, which makes the optimization 
highly nontrivial 



Deep Q-learning with 
Continuous Actions

• DQN select actions based on the following or \epsilon-greedy: 


• This works well with discrete actions


• However, when use DQN with continuous actions, we cannot 
exhaustively evaluate all actions in the space to find out the 
max


• Moreover, solving this optimization (the max) is in the inner 
loop of calculating the target, which makes the optimization 
highly nontrivial 

a painfully 
expensive 
subroutine



Deep Q-learning with 
Continuous Actions

• Solution: 


• Parameterize the entire argmax part                           by  


• Then,  learn a maximizer  (another network)       to 
approximate it -


• Assumption: the Q-function is differentiable w.r.t the 
action


• This leads to DDPG 

θ

μθ



Deep Deterministic Policy 
Gradient (DDPG)

•  


• Then, 


• After this action selection, the new target becomes 


• DDPG paper: Continuous control with deep 
reinforcement learning: continuous Q-learning with 
actor network for approximate maximization.



DDPG

• DDPG paper: Continuous control with deep 
reinforcement learning: continuous Q-learning with 
actor network for approximate maximization.

Adapted from UC Berkeley CS294-112



DDPG in the Paper



DDPG
• It is an actor-critic method


• The value learning part (critic) is similar to DQN


• The action section (actor) is using Policy Gradient


• It also uses tricks including


• experience replay


• target network 



Practical Tips for Q-learning
• Test on easy, reliable tasks first, make sure your implementation is correct


• Large replay buffers help improve stability


• Start with high exploration (\epsilon) and gradually reduce


• Start with high learning rate (\alpha) and gradually reduce


• Q-learning could be slow, so be patient 


• Double Q-learning helps a lot in practice, simple and no downsides 


• N-step returns also help a lot, but have some downsides


• Run multiple random seeds, it could be inconsistent between runs



Summary: Deep TD-
Learning

• Widely used value-based method family 


• Connects well with psychology and neuroscience 


• TD error 


• DQN is a state-of-art RL method


• DDPG can be used for continuous action space; and works 
as an actor-critic method


• Key techniques to increase training stability:


• experience replay


• target network
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