
COSC 689: Deep
Reinforcement Learning

Spring 2019
Prof. Grace Hui Yang

Department of Computer Science

Georgetown University

Logistics

• Midterm grades are out (grading; comments)

• Final Project Due: May 5th.

• Be Active & Seek advice from me and the TA

• Be resourceful

• Optimize your own work routines

• Read well, design well, code well, experiment sufficiently, write
well

• How to come out with a strong project?

Outline
• What is Model?

• Model-Based vs. Model-free

• What is Planning? (Control and Planning)

• Approaches

• Optimal Control & Planning

• MCTS

• Model-Based RL Only

• Global Models (Gaussian Processes)

• Local Models

• Model Based RL + Policy Learning

• Dyna

• Backpropagation through policy (PILCO)

• Dagger-like (PLATO)

• Controlled optimization (GPS)

• Learning in Latent Space

• POMDPs

• Summary

Today
• What is Model?

• Model-Based vs. Model-free

• What is Planning? (Control and Planning)

• Approaches

• Optimal Control & Planning

• MCTS

• Model-Based RL Only

• Global Models (Gaussian Processes)

• Local Models

• Model Based RL + Policy Learning

• Dyna

• Backpropagation through policy (PILCO)

• Dagger-like (PLATO)

• Controlled optimization (GPS)

• Learning in Latent Space

• POMDPs

• Summary

Next Week
• What is Model?

• Model-Based vs. Model-free

• What is Planning? (Control and Planning)

• Approaches

• Optimal Control & Planning

• MCTS

• Model-Based RL Only

• Global Models (Gaussian Processes)

• Local Models

• Model Based RL + Policy Learning

• Dyna

• Backpropagation through policy (PILCO)

• Dagger-like (PLATO)

• Controlled optimization (GPS)

• Learning in Latent Space

• POMDPs

• Summary

What is “Model”?
• We use the word “model” very often in SML/RL

• The word “model” in “Model-based RL” specially means

• the “transition” model — from one state to the next state:

 deterministic case:

 stochastic case:

• That an agent can use it to predict how the environment would respond to
the agent’s actions.

• Note: the textbook also mentions that Model-based RL would learn the
“reward” function (reward the agent will receive given state and action), too.
However in contemporary DRL, reward function is learned via inverse RL (a
topic we won’t cover in this term).

p(s′ �|s, a)
s′� = f(s, a)

Model-Based vs. Model-Free
• Model-Based:

• Dynamic Programming

• Heuristic Search

• Do a lot of planning (by
controlling the system
dynamics via manipulating the
transition rules/probabilities)

• We can manipulate the model

• Inject prior knowledge or
heuristics

• Model-Free:

• Monte-Carlo Methods

• TD Methods

• Gradient-Based Methods

• Mostly learning from data

Efficiency (Speed)

From Sergey Levine’s CS CS 294-112

Which RL Algorithm to Use?

Diagram from Sergey Levine’s CS CS 294-112

What’s the use of Model?
• To directly decide which action to use (No policy)

• planning by search in discrete action space

• optimal control by action/trajectory optimization (mainly in
continuous spaces)

• To simulate experiences

• and feed them as training data to (model-free) policy learners or
to value-function learners

• Can help policy learner by back-propagating through the gradients

Anatomy of RL

Model-Based RL

Model-Based RL

• Planning

• Simulate more
experiences

• Backpropagate
gradients & help w/
policy

How we can make use of
experiences?

• Within a planning agent, there are at least two roles for real
experience:

• It can be used to improve the model (to make it more
accurately match the real environment) — model learning

• It can be used to directly improve the value function and
policy — those RL methods that we have seen so far

• It can be used to improve value functions and policies
indirectly via the model —planning

What is Planning?
• Something to make the policy better, based on a model

• It would change the system by influence either V or policy
(action) before the system moves on to next time step

• It won’t directly generate policy; instead, affect policy
learning indirectly

• It is indirect RL.

Planning vs. Learning

What is Planning?
• State-space planning

• A search through the state space for an optimal policy or
an optimal path to a goal

• Majority of RL planning is about it

• Plan-space planning

• A search through the space of plans (Remember GEP-
PG?)

• Quite difficult to be applied to stochastic sequential
decision making (the main focus of RL)

• Not popular

Q-Planning

• Background Model planning

• To gradually improve a policy or value function on the basis of simulated
experience obtained from a model (either a sample or a distribution model).

• Selecting actions is then a matter of comparing the current state's action
values obtained from a table

• Or, by evaluating a mathematical expression in the approximate methods

• Planning is not focused on the current state

• Decision-time Planning

• To begin and complete it after encountering each new state s, as a
computation whose output is the selection of a single action a; on the next
step planning begins with s’ to produce a’, and so on.

• They include heuristic search, and rollout algorithms like MCTS

What is Planning?

Approaches Overview
• Optimal Control & Planning

• MCTS

• Model-Based RL Only

• Global Models (Gaussian Processes)

• Local Models

• Model Based RL + Policy Learning

• Dyna

• Backpropagation through policy (PILCO)

• Dagger-like (PLATO)

• Controlled optimization (GPS)

• Learning in Latent Space

• POMDPs

Model-Based RL

• It would learn the transition dynamics, and then figure out
how to make use of it to choose actions

Planning with Known
Dynamics

• What if we’ve already known dynamics?

• e.g. the game of Go

• e.g. in a simulated environments (like video games)

• e.g. very simple models (car navigation)

• Then, we should go ahead make use them

• Let’s see how to do planning with known dynamics

Task of Planning

• When the dynamics are known, the task of planning is
reduced to

• How to choose a series of actions, given all the known
stuff

Deterministic Case

• After being at s1 and get reposes from the environment,
how should the agent to act in its most optimal way?

a1, a2, . . . , aT = arg max
a1,a2,...,aT

T

∑
t=1

r(st, at)

s.t. at+1 = f(st, at)

Diagram from Sergey Levine’s CS CS 294-112

Heuristic Search
• For each state encountered, a large tree of possible

continuations is considered

• The approximate value function is applied to the leaf
nodes and then backed up toward the current state at the
root.

• Once the backed-up values of these nodes are
computed, the best of them is chosen as the current
action, and then all backed-up values are discarded.

• Usually look ahead for 1-step

Heuristic Search

Rollout Algorithms

• Rollout from the current state:

• simulated trajectories that all begin at the current
environment state

• MCTS is a rollout algorithm

• Used in AlphaGo

Monte Carlo Tree Search
(MCTS)

• Discrete planning as a search

• Four steps are applied per search iteration:

1. Selection: Starting at the root node, a child selection policy is recursively
applied to descend through the tree until the most urgent expandable node is
reached. A node is expandable if it represents a nonterminal state and has
unvisited (i.e. unexpanded) children

2. Expansion: One (or more) child nodes are added to expand the tree,
according to the available actions.

3. Simulation: A simulation is run from the new node(s) according to the default
policy to produce an outcome.

4. Backpropagation: The simulation result is “backed up” (i.e. backpropagated)
through the selected nodes to update their statistics.

MCTS

UCB is used in MCTS

• Intuition:

• Cannot search all paths; then where to start first?

• choose nodes that are less visited before, but with
good rewards

• It’s used as a TreePolicy during selection (the first step):
choose a child with the best

Stochastic Case

• After being at s1 and get reposes from the environment,
how should the agent to act in its most optimal way?

a1, a2, . . . , aT = arg max
a1,a2,...,aT

E[
T

∑
t=1

r(st, at) |a1, a2, . . . , aT]

where pθ(s1, s2, . . . , sT |a1, a2, . . . , aT) = p(s1)
T

∏
t=1

p(st+1 |st, at)

Recall: the complete RL system is: pθ(s1, s2, . . . , sT |a1, a2, . . . , aT) = p(s1)
T

∏
t=1

πθ(at |st)p(st+1 |st, at)

Diagram from Sergey Levine’s CS CS 294-112

Random Shooting

• It is the simplest method

• Basically, it says guess and check

• Steps:

• Sample actions a1, a2, … an from some distribution J
(e.g. uniform, gaussian…)

• choose based on ai = arg max
i

J(ai)ai

Pros and Cons
• Pros:

• Very fast (especially paralleled)

• Very simple

• Cons:

• Would be easily suffered from the curse of
dimensionality

• Limited applications

Approaches Overview
• Optimal Control & Planning

• MCTS

• Model-Based RL Only

• Global Models (Gaussian Processes)

• Local Models

• Model Based RL + Policy Learning

• Dyna

• Backpropagation through policy (PILCO)

• Dagger-like (PLATO)

• Controlled optimization (GPS)

• Learning in Latent Space

• POMDPs

Dyna

• Integrate Planning and Learning

• Online Q-Learning (which is model-free) with a model
added now

Dyna

Dyna-Q

General Dyna-style RL
1. Collect some data, including transition dynamics: (s,a,s’,r)

2. Learn the transition model (and optionally the reward model
too):

3. Repeat K times:

3.1. sample from a buffer

3.2. choose action a (from B, from , or random)

3.3. simulate (optionally reward model)

3.4. train the policy (or V, or Q) on

3.5. take N more model-based steps

p(s′�|s, a)

s ∼ B

s′� ∼ p(s′�|s, a)

(s, a, s′�, r)

r(s, a)

r(s, a)

π

π

Prioritized Sweeping

• Planning can be much more efficient if simulated
transitions and updates are focused on particular state-
action pairs

• It is natural to prioritize the updates according to a
measure of their urgency, and perform them in order of
priority

• e.g. the measure could be the size of TD error

Prioritized Sweeping

Summary
• Planning is indirect RL, which relies on a model

• When the dynamics (transition functions) are known, we can do optimal
control and planning directly

• MCTS is discrete, online planning with known dynamics

• When the dynamics are unknown, we need to learn them and then use them

• Dyna integrates model learning, planning, and policy learning together

• It can be used in combination with a variety of RL methods (e.g.
Dyna-Q)

• Next class we will see more on learning the unknown dynamics or learning
dynamics and policy together

References

• RL Textbook Chapter 8.

• MCTS: http://mcts.ai/pubs/mcts-survey-master.pdf

• AlphaGo: https://storage.googleapis.com/deepmind-
media/alphago/AlphaGoNaturePaper.pdf

• Model-Based RL with Global Model: https://rse-
lab.cs.washington.edu/papers/robot-rl-rss-11.pdf

• UC Berkeley CS294-112 Deep Reinforcement Learning

