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Types of Data Sets: (1) Record Data
 Relational records
 Relational tables, highly structured

 Data matrix, e.g., numerical matrix, crosstabs

 Transaction data

 Document data: Term-frequency vector (matrix) of text documents
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1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Types of Data Sets: (2) Graphs and Networks

 Transportation network

 World Wide Web

 Molecular Structures

 Social or information networks
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Types of Data Sets: (3) Ordered Data
 Video data: sequence of images

 Temporal data: time-series

 Sequential Data: transaction sequences

 Genetic sequence data



6

Types of Data Sets: (4) Spatial, image and multimedia Data

 Spatial data: maps

 Image data: 

 Video data:
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Important Characteristics of Structured Data

 Dimensionality

 Curse of dimensionality

 Sparsity

 Only presence counts

 Resolution

 Patterns depend on the scale

 Distribution

 Centrality and dispersion
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Data Objects

 Data sets are made up of data objects

 A data object represents an entity

 Examples: 

 sales database:  customers, store items, sales

 medical database: patients, treatments

 university database: students, professors, courses

 Also called samples , examples, instances, data points, objects, tuples

 Data objects are described by attributes

 Database rows → data objects; columns → attributes
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Attributes
 Attribute (or dimensions, features, variables) 

 A data field, representing a characteristic or feature of a data object.

 E.g., customer _ID, name, address

 Types:

 Nominal (e.g., red, blue)

 Binary (e.g., {true, false})

 Ordinal (e.g., {freshman, sophomore, junior, senior})

 Numeric: quantitative

 Interval-scaled: 100○C is interval scales

 Ratio-scaled: 100○K is ratio scaled since it is twice as high as 50 ○K
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Attribute Types 
 Nominal: categories, states, or “names of things”

 Hair_color = {auburn, black, blond, brown, grey, red, white}

 marital status, occupation, ID numbers, zip codes

 Binary

 Nominal attribute with only 2 states (0 and 1)

 Symmetric binary: both outcomes equally important

 e.g., gender

 Asymmetric binary: outcomes not equally important.  

 e.g., medical test (positive vs. negative)

 Convention: assign 1 to most important outcome (e.g., HIV positive)

 Ordinal

 Values have a meaningful order (ranking) but magnitude between successive 
values is not known

 Size = {small, medium, large}, grades, army rankings
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Numeric Attribute Types 
 Quantity (integer or real-valued)

 Interval

 Measured on a scale of equal-sized units

 Values have order

 E.g., temperature in C˚or F˚, calendar dates

 No true zero-point

 Ratio

 Inherent zero-point

 We can speak of values as being an order of magnitude larger than the unit 
of measurement (10 K˚ is twice as high as 5 K˚).

 e.g., temperature in Kelvin, length, counts, monetary quantities
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Discrete vs. Continuous Attributes 
 Discrete Attribute

 Has only a finite or countably infinite set of values

 E.g., zip codes, profession, or the set of words in a collection of documents 

 Sometimes, represented as integer variables

 Note: Binary attributes are a special case of discrete attributes 

 Continuous Attribute

 Has real numbers as attribute values

 E.g., temperature, height, or weight

 Practically, real values can only be measured and represented using a finite 
number of digits

 Continuous attributes are typically represented as floating-point variables
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Basic Statistical Descriptions of Data
 Motivation

 To better understand the data: central tendency, variation and spread

 Data dispersion characteristics

 Median, max, min, quantiles, outliers, variance, ...

 Numerical dimensions correspond to sorted intervals

 Data dispersion: 

 Analyzed with multiple granularities of precision

 Boxplot or quantile analysis on sorted intervals

 Dispersion analysis on computed measures

 Folding measures into numerical dimensions

 Boxplot or quantile analysis on the transformed cube
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Measuring the Central Tendency:  (1) Mean
 Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size. 

 Weighted arithmetic mean:

 Trimmed mean: 

 Chopping extreme values (e.g., Olympics gymnastics score computation)
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Measuring the Central Tendency: (2) Median

 Median: 

 Middle value if odd number of values, or average of the middle two values otherwise

 Estimated by interpolation (for grouped data):

width
freq

freqn
Lmedian

median

l
)

)(2/
(1




Approximate 
median

Low interval limit

Interval width (L2 – L1)

Sum before the median interval
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Measuring the Central Tendency: (3) Mode
 Mode: Value that occurs most frequently in the data

 Unimodal

 Empirical formula:

 Multi-modal

 Bimodal

 Trimodal

)(3 medianmeanmodemean 
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Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, 

positively and negatively skewed data

positively skewed negatively skewed

symmetric
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Properties of Normal Distribution Curve
← — ————Represent data dispersion, spread — ————→

Represent central tendency
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Measures Data Distribution: Variance and Standard Deviation

 Variance and standard deviation (sample: s, population: σ)

 Variance: (algebraic, scalable computation)

 Q: Can you compute it incrementally and efficiently?

 Standard deviation s (or σ) is the square root of variance s2 (or σ2)
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Note: The subtle difference of 
formulae for sample vs. population
• n : the size of the sample 
• N : the size of the population
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Graphic Displays of Basic Statistical Descriptions
 Boxplot: graphic display of five-number summary

 Histogram: x-axis are values, y-axis repres. frequencies 

 Quantile plot:  each value xi is paired with fi indicating that approximately 100 fi % 
of data  are  xi

 Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution 
against the corresponding quantiles of another

 Scatter plot: each pair of values is a pair of coordinates and plotted as points in the 
plane
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Measuring the Dispersion of Data: Quartiles & Boxplots   
 Quartiles: Q1 (25th percentile), Q3 (75th percentile)

 Inter-quartile range: IQR = Q3 – Q1 

 Five number summary: min, Q1, median, Q3, max

 Boxplot: Data is represented with a box

 Q1, Q3, IQR:  The ends of the box are at the first and 

third quartiles, i.e., the height of the box is IQR

 Median (Q2) is marked by a line within the box 

 Whiskers: two lines outside the box extended to 

Minimum and Maximum
 Outliers: points beyond a specified outlier threshold, plotted individually

 Outlier: usually, a value higher/lower than 1.5 x IQR
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Visualization of Data Dispersion: 3-D Boxplots
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Histogram Analysis
 Histogram: Graph display of tabulated 

frequencies, shown as bars

 Differences between histograms and bar charts

 Histograms are used to show distributions of 
variables while bar charts are used to compare 
variables

 Histograms plot binned quantitative data while 
bar charts plot categorical data

 Bars can be reordered in bar charts but not in 
histograms

 Differs from a bar chart in that it is the area of 
the bar that denotes the value, not the height 
as in bar charts, a crucial distinction when the 
categories are not of uniform width 

Histogram

Bar chart
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Histograms Often Tell More than Boxplots

 The two histograms shown in the left 

may have the same boxplot 

representation

 The same values for: min, Q1, 

median, Q3, max

 But they have rather different data 

distributions



26 Data Mining: Concepts and Techniques

Quantile Plot

 Displays all of the data (allowing the user to assess both the overall behavior and 
unusual occurrences)

 Plots quantile information

 For a data xi data sorted in increasing order, fi indicates that approximately 100 
fi% of the data are below or equal to the value xi
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Quantile-Quantile (Q-Q) Plot
 Graphs the quantiles of one univariate distribution against the corresponding 

quantiles of another

 View: Is there is a shift in going from one distribution to another?

 Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.  
Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2
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Scatter plot

 Provides a first look at bivariate data to see clusters of points, outliers, etc.

 Each pair of values is treated as a pair of coordinates and plotted as points in the 
plane
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Positively and Negatively Correlated Data

 The left half fragment is 

positively correlated

 The right half is negative 

correlated
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Uncorrelated Data
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Data Visualization
 Why data visualization?

 Gain insight into an information space by mapping data onto graphical primitives

 Provide qualitative overview of large data sets

 Search for patterns, trends, structure, irregularities, relationships among data

 Help find interesting regions and suitable parameters for further quantitative 
analysis

 Provide a visual proof of computer representations derived

 Categorization of visualization methods:

 Pixel-oriented visualization techniques

 Geometric projection visualization techniques

 Icon-based visualization techniques

 Hierarchical visualization techniques

 Visualizing complex data and relations
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Pixel-Oriented Visualization Techniques
 For a data set of m dimensions, create m windows on the screen, one for each 

dimension

 The m dimension values of a record are mapped to m pixels at the corresponding 

positions in the windows

 The colors of the pixels reflect the corresponding values

(a) Income (b) Credit Limit (c) transaction volume (d) age
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Laying Out Pixels in Circle Segments
 To save space and show the connections among multiple dimensions, space filling is 

often done in a circle segment

(a) Representing a data record 
in circle segment (b) Laying out pixels in circle segmentRepresenting about 265,000 50-dimensional Data Items 

with the ‘Circle Segments’ Technique
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Geometric Projection Visualization Techniques
 Visualization of geometric transformations and projections of the data

 Methods

 Direct visualization

 Scatterplot and scatterplot matrices

 Landscapes

 Projection pursuit technique: Help users find meaningful projections of 

multidimensional data

 Prosection views

 Hyperslice

 Parallel coordinates
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Direct Data Visualization
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From Wiki: Scatter plot: A 3D scatter 
plot to visualize multivariate data
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Scatterplot Matrices

 Matrix of scatterplots 
(x-y-diagrams) of the 
k-dim. data 

 A total of k(k-1)/2 
distinct scatterplots
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news articles visualized as a landscape
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Landscapes

 Visualization of the data as 
perspective landscape

 The data needs to be 
transformed into a (possibly 
artificial) 2D spatial 
representation which 
preserves the 
characteristics of the data 
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Parallel Coordinates

 n equidistant axes which are parallel to 
one of the screen axes and correspond 
to the attributes 

 The axes are scaled to the [minimum, 
maximum]: range of the corresponding 
attribute

 Every data item corresponds to a 
polygonal line which intersects each of 
the axes at the point which 
corresponds to the value for the 
attribute



40

Parallel Coordinates of a Data Set
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Icon-Based Visualization Techniques

 Visualization of the data values as features of icons

 Typical visualization methods

 Chernoff Faces

 Stick Figures

 General techniques

 Shape coding: Use shape to represent certain information encoding

 Color icons: Use color icons to encode more information

 Tile bars: Use small icons to represent the relevant feature vectors in document 

retrieval
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Chernoff Faces
 A way to display variables on a two-dimensional surface, e.g., let x be eyebrow slant, 

y be eye size, z be nose length, etc. 

 The figure shows faces produced using 10 characteristics--head eccentricity, eye 

size, eye spacing, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, 

mouth size, and mouth opening): Each assigned one of 10 possible values, 

generated using Mathematica (S. Dickson)

 REFERENCE: Gonick, L. and Smith, W. The 

Cartoon Guide to Statistics. New York: Harper 

Perennial, p. 212, 1993

 Weisstein, Eric W. "Chernoff Face." From 

MathWorld--A Wolfram Web Resource. 

mathworld.wolfram.com/ChernoffFace.html

http://www.wolfram.com/products/mathematica/
http://www.amazon.com/exec/obidos/ASIN/0062731025/ref=nosim/weisstein-20
http://mathworld.wolfram.com/ChernoffFace.html
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Stick Figure

 A census data figure showing 

age, income, gender, 

education, etc.

 A 5-piece stick figure (1 body 

and 4 limbs w. different 

angle/length)
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Hierarchical Visualization Techniques
 Visualization of the data using a hierarchical partitioning into subspaces

 Methods

 Dimensional Stacking

 Worlds-within-Worlds

 Tree-Map 

 Cone Trees

 InfoCube
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Dimensional Stacking

 Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 
‘stacked’ into each other

 Partitioning of the attribute value ranges into classes.  The important attributes 
should be used on the outer levels.

 Adequate for data with ordinal attributes of low cardinality

 But, difficult to display more than nine dimensions

 Important to map dimensions appropriately
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Used by permission of M. Ward, Worcester Polytechnic Institute

Visualization of oil mining data with longitude and latitude mapped to the 
outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Dimensional Stacking
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Tree-Map
 Screen-filling method which uses a hierarchical partitioning of the screen into 

regions depending on the attribute values

 The x- and y-dimension of the screen are partitioned alternately according to the 
attribute values (classes)

Schneiderman@UMD: Tree-Map of a File System Schneiderman@UMD: Tree-Map to support 
large data sets of a million items 
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InfoCube
 A 3-D visualization technique where hierarchical information is displayed as nested 

semi-transparent cubes 

 The outermost cubes correspond to the top level data, while the subnodes or the 
lower level data are represented as smaller cubes inside the outermost cubes, etc.
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Visualizing Complex Data and Relations: Tag Cloud
 Tag cloud: Visualizing user-generated 

tags

 The importance of tag is 
represented by font size/color

 Popularly used to visualize 
word/phrase distributions

Newsmap: Google News Stories in 2005

KDD 2013 Research Paper Title Tag Cloud
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Visualizing Complex Data and Relations: Social Networks

 Visualizing non-numerical data: social and information networks

A typical network structure 

A social network

organizing 
information networks
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Similarity, Dissimilarity, and Proximity
 Similarity measure or similarity function

 A real-valued function that quantifies the similarity between two objects

 Measure how two data objects are alike: The higher value, the more alike

 Often falls in the range [0,1]:  0: no similarity; 1: completely similar

 Dissimilarity (or distance) measure

 Numerical measure of how different two data objects are

 In some sense, the inverse of similarity: The lower, the more alike

 Minimum dissimilarity is often 0 (i.e., completely similar)

 Range [0, 1] or [0, ∞) , depending on the definition

 Proximity usually refers to either similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix
 Data matrix

 A data matrix of n data points with l dimensions

 Dissimilarity (distance) matrix

 n data points, but registers only the distance d(i, j) 
(typically metric)

 Usually symmetric, thus a triangular matrix

 Distance functions are usually different for real, boolean, 
categorical, ordinal, ratio, and vector variables

 Weights can be associated with different variables based 
on applications and data semantics
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Standardizing Numeric Data

 Z-score: 

 X: raw score to be standardized, μ: mean of the population, σ: standard deviation

 the distance between the raw score and the population mean in units of the 

standard deviation

 negative when the raw score is below the mean, “+” when above

 An alternative way: Calculate the mean absolute deviation

where

 standardized measure (z-score):

 Using mean absolute deviation is more robust than using standard deviation 
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Example: Data Matrix and Dissimilarity Matrix

point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix (by Euclidean Distance)

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix
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Distance on Numeric Data: Minkowski Distance
 Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xil) and j = (xj1, xj2, …, xjl) are two l-dimensional data 
objects, and p is the order (the distance so defined is also called L-p norm)

 Properties

 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positivity)

 d(i, j) = d(j, i) (Symmetry)

 d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

 A distance that satisfies these properties is a metric

 Note:  There are nonmetric dissimilarities, e.g., set differences

1 1 2 2( , ) | | | | | |p p pp
i j i j il jld i j x x x x x x      
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Special Cases of Minkowski Distance

 p = 1: (L1 norm) Manhattan (or city block) distance

 E.g., the Hamming distance: the number of bits that are different between 
two binary vectors

 p = 2:  (L2 norm) Euclidean distance

 p : (Lmax norm, L norm) “supremum” distance

 The maximum difference between any component (attribute) of the vectors

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x      

2 2 2

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x      
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Example: Minkowski Distance at Special Cases
point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum (L) 
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Proximity Measure for Binary Attributes
 A contingency table for binary data

 Distance measure for symmetric binary variables: 

 Distance measure for asymmetric binary variables: 

 Jaccard coefficient (similarity measure for 

asymmetric binary variables): 

 Note: Jaccard coefficient is the same as 

“coherence”:

Object i

Object j

(a concept discussed in Pattern Discovery)
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Example: Dissimilarity between Asymmetric Binary Variables

 Gender is a symmetric attribute (not counted in)

 The remaining attributes are asymmetric binary

 Let the values Y and P be 1, and the value N be 0

 Distance: 

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N

75.0
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21
),(

67.0
111
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),(

33.0
102

10
),(



















maryjimd

jimjackd

maryjackd

1 0 ∑row
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0 1 3 4

∑col 2 4 6
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∑col 3 3 6

Jim

Mary

Jack
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Proximity Measure for Categorical Attributes

 Categorical data, also called nominal attributes

 Example:  Color (red, yellow, blue, green), profession, etc.  

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: Use a large number of binary attributes

 Creating a new binary attribute for each of the M nominal states

p
mp

jid


),(
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Ordinal Variables

 An ordinal variable can be discrete or continuous

 Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)

 Can be treated like interval-scaled 

 Replace an ordinal variable value by its rank:

 Map the range of each variable onto [0, 1] by replacing i-th object in 
the f-th variable by 

 Example:  freshman: 0; sophomore: 1/3; junior: 2/3; senior 1

 Then distance:  d(freshman, senior) = 1, d(junior, senior) = 1/3

 Compute the dissimilarity using methods for interval-scaled variables
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Attributes of Mixed Type
 A dataset may contain all attribute types

 Nominal, symmetric binary, asymmetric binary, numeric, and ordinal

 One may use a weighted formula to combine their effects:

 If f is numeric: Use the normalized distance

 If f is binary or nominal:   dij
(f) = 0  if xif = xjf; or dij

(f) = 1 otherwise

 If f is ordinal

 Compute ranks zif (where                       )

 Treat zif as interval-scaled
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Cosine Similarity of Two Vectors
 A document can be represented by a bag of terms or a long vector, with each 

attribute recording the frequency of a particular term (such as word, keyword, or 
phrase) in the document

 Other vector objects: Gene features in micro-arrays 

 Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

 Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

where • indicates vector dot product, ||d||: the length of vector d

1 2
1 2

1 2

( , )
|| || || ||

d d
cos d d

d d

•
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Example: Calculating Cosine Similarity
 Calculating Cosine Similarity:

where • indicates vector dot product, ||d||: the length of vector d

 Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

 First, calculate vector dot product

d1•d2 = 5 X 3 + 0 X 0 + 3 X 2 + 0 X 0 + 2 X 1 + 0 X 1 + 0 X 1 + 2 X 1 + 0 X 0 + 0 X 1 = 25

 Then, calculate ||d1|| and ||d2||

 Calculate cosine similarity: cos(d1, d2 ) = 25/ (6.481 X 4.12) = 0.94

1 3 3 0 0 2 2 0 0 0 0 2 2 0 0 0 0 6.48|| || 5 0 0 15d                   

2 3 2 2 0 0 1 1 1 1|| | 0 0 1 1 0 0 1 1 4.12| 3 0 0d                    

1 2
1 2

1 2

( , )
|| || || ||

d d
cos d d

d d

•
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Correlation Analysis (for Categorical Data)

 Χ2 (chi-square) test:

 Null hypothesis: The two distributions are independent

 The cells that contribute the most to the Χ2 value are those whose actual count is 

very different from the expected count

 The larger the Χ2 value, the more likely the variables are related

 Note:  Correlation does not imply causality

 # of hospitals and # of car-theft in a city are correlated

 Both are causally linked to the third variable: population
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Chi-Square Calculation: An Example
Play chess Not play chess Sum (row)

Like science fiction 250 (X1) 200 (X2) 450

Not like science fiction 50 (X3) 1000 (X4) 1050

Sum(col.) 300 1200 1500

 Null hypothesis: The two distributions are independent

 What does that mean?

 The ratio between people who play chess vs not play chess is the same for both 
groups of like science fiction and not like science fiction 

 X1:X2=X3:X4=300:1200

 X1:X3=X2:X4=450:1050

 X1+X2=450 X3+X4=1050

 X1+X3=300 X2+X4=1200
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Chi-Square Calculation: An Example

 Χ2 (chi-square) calculation (numbers in parenthesis are expected 

counts calculated based on the data distribution in the two categories)

 It shows that like_science_fiction and play_chess are correlated in the 

group

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 













Play chess Not play chess Sum (row)

Like science fiction 250 (90) 200 (360) 450

Not like science fiction 50 (210) 1000 (840) 1050

Sum(col.) 300 1200 1500
We can reject the
null hypothesis of
independence at a 
confidence level of 
0.001

How to derive 90?
450/1500 * 300 = 90
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Chi-Square Calculation: An Example

 Degree of freedom

 (#categories_in_variable_A -1)((#categories_in_variable_B -1)

 number of values that are free to vary

A B C D Sum (row)

1 200

0 1000

Sum(col.) 300 300 300 300 1200
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Chi-Square Calculation: An Example

 Degree of freedom =?

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 













Play chess Not play chess Sum (row)

Like science fiction 250 (90) 200 (360) 450

Not like science fiction 50 (210) 1000 (840) 1050

Sum(col.) 300 1200 1500
We can reject the
null hypothesis of
independence at a 
confidence level of 
0.001
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Variance for Single Variable (Numerical Data)
 The variance of a random variable X provides a measure of how much the value of 

X deviates from the mean or expected value of X:

 where σ2 is the variance of X, σ is called standard deviation

µ is the mean, and µ = E[X] is the expected value of X

 That is, variance is the expected value of the square deviation from the mean

 It can also be written as:

 Sample variance

2

2 2

2

( ) ( ) if  is discrete

var( ) [(X ) ]

( ) ( ) if  is continuous

x

x f x X

X E

x f x dx X
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𝑖

𝑛

𝑥𝑖 − ො𝜇 2 𝑠2 =
1
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𝑖

𝑛

𝑥𝑖 − ො𝜇 2
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Covariance for Two Variables 
 Covariance between two variables X1 and X2

where µ1 = E[X1] is the respective mean or expected value of X1; similarly for µ2

 Sample covariance between X1 and X2: ො𝜎12 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖1 −ෞ𝜇1 𝑥𝑖2 −ෞ𝜇2

 Sample covariance is a generalization of the sample variance:

ො𝜎11 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖1 −ෞ𝜇1 𝑥𝑖1 −ෞ𝜇1

 Positive covariance: If σ12 > 0

 Negative covariance: If σ12  < 0 

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X          
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Covariance for Two Variables 
 Independence: If X1 and X2 are independent, σ12 = 0 but the reverse is not true

 Some pairs of random variables may have a covariance 0 but are not independent

 Only under some additional assumptions (e.g., the data follow multivariate normal 
distributions) does a covariance of 0 imply independence

 Example:

E(𝑋1)=?

E(𝑋2)=?

E(𝑋1𝑋2)=?

𝑿𝟏 1 -1

𝑿𝟐 0 1 -1

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X          
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Example:  Calculation of Covariance
 Suppose two stocks X1 and X2 have the following values in one week:  

 (2, 5), (3, 8), (5, 10), (4, 11), (6, 14)

 Question:  If the stocks are affected by the same industry trends, will their prices 
rise or fall together?

 Covariance formula

 Its computation can be simplified as: 

 E(X1) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4

 E(X2) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

 σ12 = (2×5 + 3×8 + 5×10 + 4×11 + 6×14)/5 − 4 × 9.6 = 4

 Thus, X1 and X2 rise together since σ12 > 0

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X          

12 1 2 1 2[ ] [ ] [ ]E X X E X E X  
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Correlation between Two Numerical Variables
 Correlation between two variables X1 and X2 is the standard covariance, obtained by 

normalizing the covariance with the standard deviation of each variable

 Sample correlation for two attributes X1 and X2: 

where n is the number of tuples, µ1 and µ2 are the respective means of X1 and X2 , 
σ1 and σ2 are the respective standard deviation of X1 and X2

 If ρ12 > 0: A and B are positively correlated (X1’s values increase as X2’s)

 The higher, the stronger correlation

 If ρ12 = 0: independent (under the same assumption as discussed in co-variance)

 If ρ12 < 0: negatively correlated

12 12
12

2 2
1 2 1 2

 


   
 

ො𝜌12 =
ො𝜎12
ො𝜎1 ො𝜎2

=
σ𝑖=1
𝑛 𝑥𝑖1 − ො𝜇1 𝑥𝑖2 − ො𝜇2

σ𝑖=1
𝑛 𝑥𝑖1 − ො𝜇1

2σ𝑖=1
𝑛 𝑥𝑖2 − ො𝜇2

2
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Visualizing Changes of Correlation Coefficient

 Correlation coefficient value range: 
[–1, 1]

 A set of scatter plots shows sets of 
points and their correlation 
coefficients changing from –1 to 1  



77

Covariance Matrix
 The variance and covariance information for the two variables X1 and X2

can be summarized as 2 X 2 covariance matrix as 

 Generalizing it to d dimensions, we have,

1 1

1 1 2 2

2 2

[( )( ) ] [( )( )]T
X

E E X X
X


   




      


X X

1 1 1 1 1 1 2 2

2 2 1 1 2 2 2 2

2

1 12

2

21 2

[( )( )] [( )( )]
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KL Divergence: Comparing Two Probability Distributions 

 The Kullback-Leibler (KL) divergence: 
Measure the difference between two 
probability distributions over the same 
variable x

 From information theory, closely 
related to relative entropy, 
information divergence, and 
information for discrimination

 DKL(p(x) || q(x)):  divergence of q(x) from 
p(x), measuring the information lost 
when q(x) is used to approximate p(x)

Ack.: Wikipedia entry: The Kullback-Leibler (KL) divergence 
Discrete form

Continuous form
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More on KL Divergence
 The KL divergence measures the expected number of extra bits required to code 

samples from p(x) (“true” distribution) when using a code based on q(x), which 
represents a theory, model, description, or approximation of p(x)

 The KL divergence is not a distance measure, not a metric: asymmetric, not satisfy 
triangular inequality (DKL(P‖Q) does not equal DKL(Q‖P))

 In applications, P typically represents the "true" distribution of data, observations, 
or a precisely calculated theoretical distribution, while Q typically represents a 
theory, model, description, or approximation of P.

 The Kullback–Leibler divergence from Q to P, denoted DKL(P‖Q), is a measure of the 
information gained when one revises one's beliefs from the prior probability 
distribution Q to the posterior probability distribution P. In other words, it is the 
amount of information lost when Q is used to approximate P.

 The KL divergence is sometimes also called the information gain achieved if P is 
used instead of Q. It is also called the relative entropy of P with respect to Q.
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Subtlety at Computing the KL Divergence
 Base on the formula, DKL(P,Q) ≥ 0 and DKL(P || Q) = 0 if and only if P = Q

 How about when p = 0 or q = 0?

 limp→0 p log p = 0

 when p != 0 but q = 0, DKL(p || q) is defined as ∞, i.e., if one event e is possible 
(i.e., p(e) > 0), and the other predicts it is absolutely impossible (i.e., q(e) = 0), 
then the two distributions are absolutely different

 However, in practice, P and Q are derived from frequency distributions, not counting 
the possibility of unseen events. Thus smoothing is needed

 Example: P : (a : 3/5, b : 1/5, c : 1/5).  Q : (a : 5/9, b : 3/9, d : 1/9)

 need to introduce a small constant ϵ, e.g., ϵ = 10−3

 The sample set observed in P, SP = {a, b, c},  SQ = {a, b, d},  SU = {a, b, c, d}

 Smoothing, add missing symbols to each distribution, with probability ϵ

 P′ : (a : 3/5 − ϵ/3, b : 1/5 − ϵ/3, c : 1/5 − ϵ/3, d : ϵ) 

 Q′ : (a : 5/9 − ϵ/3, b : 3/9 − ϵ/3, c : ϵ, d : 1/9 − ϵ/3)

 DKL(P’ || Q’) can then be computed easily
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Chapter 2.  Getting to Know Your Data

 Data Objects and Attribute Types

 Basic Statistical Descriptions of Data

 Data Visualization

 Measuring Data Similarity and Correlation

 Summary
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Summary

 Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

 Many types of data sets, e.g., numerical, text, graph, Web, image.

 Gain insight into the data by:

 Basic statistical data description: central tendency, dispersion,  graphical displays

 Data visualization: map data onto graphical primitives

 Measure data similarity and correlation

 Above steps are the beginning of data preprocessing 

 Many methods have been developed but still an active area of research
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