

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Qi Li, Computer Science, Univ. Illinois at Urbana-Champaign, 2018

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Correlation

Summary

Types of Data Sets: (1) Record Data

Relational records

Relational tables, highly structured

Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Pers_ID	Surname	First_Name	City		
0	Miller	Paul	London		
1	Ortega	Alvaro	Valencia	 no relation 	
2	Huber	Urs	Zurich		
3	Blanc	Gaston	Paris		
4	Bertolini	Fabrizio	Rom		
Car:	Model	Voor	Value	Pers ID	1
Car: Car_ID 101	Model	Year 1973	Value	Pers_ID	
Car: Car_ID 101 102	Model Bentley Rolls Royce	Year 1973 1965	Value 100000 330000	Pers_ID 0 0	
Car: Car_ID 101 102 103	Model Bentley Rolls Royce Peugeot	Year 1973 1965 1993	Value 100000 330000 500	Pers_ID 0 0 3	
Car: Car_ID 101 102 103 104	Model Bentley Rolls Royce Peugeot Ferrari	Year 1973 1965 1993 2005	Value 100000 330000 500 150000	Pers_ID 0 0 3 4	
Car: Car_ID 101 102 103 104 105	Model Bentley Rolls Royce Peugeot Ferrari Renault	Year 1973 1965 1993 2005 1998	Value 100000 330000 500 150000 2000	Pers_ID 0 3 4 3	

2000

2

1999

	team	coach	pla y	ball	score	game	n <u>Vi</u>	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

107

Smart

Document data: Term-frequency vector (matrix) of text documents

Types of Data Sets: (2) Graphs and Networks

- Transportation network □ World Wide Web Ô Molecular Structures
- Social or information networks

Types of Data Sets: (3) Ordered Data

Video data: sequence of images

Temporal data: time-series

Sequential Data: transaction sequences

Genetic sequence data

	K2 CT	
	V Wall Jack	
		(c) jamkšinis 1996 original photopainting
	Human	Start GTTTTGAGG ATGTTCAACAAATGCTCCTTTCATTCCTCTATTTACAGACCTGCCGC
	Chimpanzee Macaque	GTTTTGAGGATGTTCAATAAATGCTGCTTTCACTCCTCTATTTACAGACCTGCCGC GTTTTGAGGATGCTCAATAAATGCTCCTTTCATTCCTCCATTTACAAACTTGCCGC
	Human	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTG
	Macaque	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTG
	Human Chimpanzee	GATCTGGAGACTAA-CTCTGAAATAAATAAGCTGATTATTTATTTATTTCTCAAAACA GATCTGGAGACTAAACTCTGAAATAAATAAGCTGATTATTTAT
	Macaque	TATCTGGAGACTAAACTCTGAAATAAATAAGCTGATTATTTAT
nces	Human Chimpanzee	CAGAATACGATTTAGCAAATTACTTCTTAAGATATTATTTTACATTTCTATATTCTCCT
	Macaque	CAGAATATGATTTAGCAAATTACCTCTTAAGATATTATTTTGCACTTCTATATTCTCCT
	Human Chimpanzee Macaque	CCC TGAGT TGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTATACA CCC TGAGT TGATGTGTGAGCCGTATGTCACTTTCATAAAGCCAGGTATACA CCC TGAGT TGATGTGTGAGCAATATGTCACTTCCACAAAGCCAGGTATATATA
	Human Chimpanzee	H I I Y S T F L S K GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAAAATTTTAAATTT GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAGAATTTTAAATTT
	Macaque	GACAGGTAAGTAAAAA-CATATTATTTATTCTAGGTTTTTGTCCAAGAGTTTTAAATTT
	Human Chimpanzee	A AC T G T T G C G C G T G T T G G T A A T G T A A A A C A A A C T C A G T A C A A A C T G T T G C G C G T G G T A G T A A T G T A A A A C A A A C T C A G T A C A

Types of Data Sets: (4) Spatial, image and multimedia Data

Image data:

Video data:

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- □ A data object represents an entity
- **Examples:**
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*
- Data objects are described by attributes
- □ Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

Attribute (or dimensions, features, variables)

- A data field, representing a characteristic or feature of a data object.
- □ E.g., customer_ID, name, address

Types:

- Nominal (e.g., red, blue)
- Binary (e.g., {true, false})
- Ordinal (e.g., {freshman, sophomore, junior, senior})
- Numeric: quantitative
 - □ Interval-scaled: 100°C is interval scales
 - □ Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K

Attribute Types

□ Nominal: categories, states, or "names of things"

- Hair_color = {auburn, black, blond, brown, grey, red, white}
- marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- □ <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

Quantity (integer or real-valued)

Interval

- Measured on a scale of equal-sized units
- Values have order
 - □ E.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - **E.g.**, zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - Median, max, min, quantiles, outliers, variance, …
- Numerical dimensions correspond to sorted intervals
 - Data dispersion:
 - Analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
- Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency: (1) Mean

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

□ Weighted arithmetic mean:

$$\overline{x} = \frac{\sum_{i=1}^{n} W_i x_i}{\sum_{i=1}^{n} W_i}$$

Trimmed mean:

□ Chopping extreme values (e.g., Olympics gymnastics score computation)

Measuring the Central Tendency: (2) Median

□ <u>Median</u>:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for *grouped data*):

Measuring the Central Tendency: (3) Mode

Mode: Value that occurs most frequently in the data

- 🗅 Unimodal
 - Empirical formula:

 $mean-mode = 3 \times (mean-median)$

Right skewed distribution: Mean is to the right

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Properties of Normal Distribution Curve

Measures Data Distribution: Variance and Standard Deviation

Variance and standard deviation (sample: s, population: σ)

Variance: (algebraic, scalable computation)

Q: Car you compute it incrementally and efficiently?

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$
Note: The subtle difference of formulae for sample vs. population
$$n: \text{ the size of the sample}$$
Note: The subtle difference of formulae for sample vs. population
$$N: \text{ the size of the population}$$

Note: The subtle difference of formulae for sample vs. population

Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Measuring the Dispersion of Data: Quartiles & Boxplots

- **Quartiles**: Q₁ (25th percentile), Q₃ (75th percentile)
- **Inter-quartile range**: $IQR = Q_3 Q_1$
- **Trive number summary**: min, Q_1 , median, Q_3 , max
- **Boxplot**: Data is represented with a box
 - Q₁, Q₃, IQR: The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - \Box Median (Q₂) is marked by a line within the box
 - Whiskers: two lines outside the box extended to

Minimum and Maximum

- Outliers: points beyond a specified outlier threshold, plotted individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR

Visualization of Data Dispersion: 3-D Boxplots

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- Differences between histograms and bar charts
 - Histograms are used to show distributions of variables while bar charts are used to compare variables
 - Histograms plot binned quantitative data while bar charts plot categorical data
 - Bars can be reordered in bar charts but not in histograms
 - Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width

Olympic Medals of all Times (till 2012 Olympics)

Histogram

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
- The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i% of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- □ View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

Uncorrelated Data

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Correlation

Summary

Data Visualization

- Why data visualization?
 - **Gain insight** into an information space by mapping data onto graphical primitives
 - Provide qualitative overview of large data sets
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help find interesting regions and suitable parameters for further quantitative analysis
 - Provide a visual proof of computer representations derived
- Categorization of visualization methods:
 - Pixel-oriented visualization techniques
 - **Geometric projection** visualization techniques
 - Icon-based visualization techniques
 - Hierarchical visualization techniques
 - □ Visualizing complex data and relations

Pixel-Oriented Visualization Techniques

- For a data set of *m* dimensions, create *m* windows on the screen, one for each dimension
- □ The *m* dimension values of a record are mapped to *m* pixels at the corresponding positions in the windows
- □ The colors of the pixels reflect the corresponding values

Laying Out Pixels in Circle Segments

To save space and show the connections among multiple dimensions, space filling is often done in a circle segment

(b) Laying out pixels in circle segment

Geometric Projection Visualization Techniques

- Visualization of geometric transformations and projections of the data
- Methods
 - Direct visualization
 - Scatterplot and scatterplot matrices
 - Landscapes
 - Projection pursuit technique: Help users find meaningful projections of multidimensional data
 - Prosection views
 - Hyperslice
 - Parallel coordinates

Direct Data Visualization

Scatterplot Matrices

- Matrix of scatterplots (x-y-diagrams) of the k-dim. data
- A total of k(k-1)/2 distinct scatterplots

Landscapes

- Visualization of the data as perspective landscape
- The data needs to be transformed into a (possibly artificial) 2D spatial representation which preserves the characteristics of the data

news articles visualized as a landscape

Parallel Coordinates

- n equidistant axes which are parallel to one of the screen axes and correspond to the attributes
- The axes are scaled to the [minimum, maximum]: range of the corresponding attribute
- Every data item corresponds to a polygonal line which intersects each of the axes at the point which corresponds to the value for the attribute

Parallel coordinate plot, Fisher's Iris data

Parallel Coordinates of a Data Set

Icon-Based Visualization Techniques

- Visualization of the data values as features of icons
- Typical visualization methods
 - Chernoff Faces
 - Stick Figures
- General techniques
 - □ Shape coding: Use shape to represent certain information encoding
 - Color icons: Use color icons to encode more information
 - Tile bars: Use small icons to represent the relevant feature vectors in document retrieval

Chernoff Faces

- A way to display variables on a two-dimensional surface, e.g., let x be eyebrow slant, y be eye size, z be nose length, etc.
- The figure shows faces produced using 10 characteristics--head eccentricity, eye size, eye spacing, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, mouth size, and mouth opening): Each assigned one of 10 possible values, generated using *Mathematica* (S. Dickson)
- REFERENCE: Gonick, L. and Smith, W. <u>The</u>
 <u>Cartoon Guide to Statistics</u>. New York: Harper
 Perennial, p. 212, 1993
- Weisstein, Eric W. "Chernoff Face." From MathWorld--A Wolfram Web Resource.
 <u>mathworld.wolfram.com/ChernoffFace.html</u>

Stick Figure

- A census data figure showing age, income, gender, education, etc.
- A 5-piece stick figure (1 body and 4 limbs w. different angle/length)

43

Hierarchical Visualization Techniques

- Visualization of the data using a hierarchical partitioning into subspaces
- Methods
 - Dimensional Stacking
 - Worlds-within-Worlds
 - Tree-Map
 - Cone Trees
 - InfoCube

Dimensional Stacking

- Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 'stacked' into each other
- Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.
- □ Adequate for data with ordinal attributes of low cardinality
- But, difficult to display more than nine dimensions
- Important to map dimensions appropriately

Dimensional Stacking

Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Tree-Map

- Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values
- The x- and y-dimension of the screen are partitioned alternately according to the attribute values (classes)

Schneiderman@UMD: Tree-Map of a File System

Schneiderman@UMD: Tree-Map to support large data sets of a million items

InfoCube

- A 3-D visualization technique where hierarchical information is displayed as nested semi-transparent cubes
- The outermost cubes correspond to the top level data, while the subnodes or the lower level data are represented as smaller cubes inside the outermost cubes, etc.

Visualizing Complex Data and Relations: Tag Cloud

- Tag cloud: Visualizing user-generated tags
 - The importance of tag is represented by font size/color
 - Popularly used to visualize word/phrase distributions

Newsmap: Google News Stories in 2005

Visualizing Complex Data and Relations: Social Networks

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Correlation

Summary

Similarity, Dissimilarity, and Proximity

Similarity measure or similarity function

- A real-valued function that quantifies the similarity between two objects
- Measure how two data objects are alike: The higher value, the more alike
- □ Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- **Dissimilarity** (or **distance**) measure
 - Numerical measure of how different two data objects are
 - □ In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition
- **Proximity** usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- A data matrix of n data points with l dimensions
- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j)
 (typically metric)
 - Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

 $D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$

Standardizing Numeric Data

$$z = \frac{x - \mu}{\sigma}$$

- \Box X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- □ negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n}(|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

standardized measure (*z-score*):

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x</i> 4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x2</i>	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x</i> 4	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i, j) = \sqrt[p]{|x_{i1} - x_{j1}|^p} + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and *p* is the order (the distance so defined is also called L-*p* norm)

Properties

- □ d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positivity)
- \Box d(i, j) = d(j, i) (Symmetry)
- □ $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- □ Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

 \square *p* = 1: (L₁ norm) Manhattan (or city block) distance

□ E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i, j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \dots + |x_{il} - x_{il}|$

\square *p* = 2: (L₂ norm) Euclidean distance

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

 \square $p \rightarrow \infty$: (L_{max} norm, L_∞ norm) "supremum" distance

□ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p} + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|^p$$

Example: Minkowski Distance at Special Cases

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Proximity Measure for Binary Attributes

A contingency table for binary data

	Object <i>j</i>					
		1	0	sum		
Object <i>i</i>	1	q	r	q+r		
	0	8	t	s+t		
	sum	q+s	r+t	p		

- Distance measure for symmetric binary variables
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (*similarity* measure for

asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q+r+s}$$

 $d(i, j) = \frac{r+s}{q+r+s+t}$

□ Note: Jaccard coefficient is the same as (a concept discussed in Pattern Discovery) $coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q+r) + (q+s) - q}$

Example: Dissimilarity between Asymmetric Binary Variables

1

0

 Σ_{col}

Jim

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Μ	Y	Ν	Р	Ν	Ν	Ν
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	Μ	Y	P	N	N	Ν	Ν

- Gender is a symmetric attribute (not counted in)
- □ The remaining attributes are asymmetric binary
- □ Let the values Y and P be 1, and the value N be 0

Distance:
$$d(i, j) = \frac{r+s}{q+r+s}$$

 $d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$
 $d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$
 $d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$

Proximity Measure for Categorical Attributes

Categorical data, also called nominal attributes

- Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - □ *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - □ Replace an ordinal variable value by its rank: $r_{if} \in \{1, ..., M_f\}$
 - □ Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} - 1}{M_f - 1}$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - □ Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i, j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- □ If *f* is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- If f is ordinal

Compute ranks
$$z_{if}$$
 (where $z_{if} = \frac{r_{if} - 1}{M_f - 1}$
Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

A document can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	base ball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

Calculating Cosine Similarity:
$$d_1 \bullet d_2$$

 $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$

$$sim(A,B) = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Ex: Find the **similarity** between documents 1 and 2.

 $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

□ First, calculate vector dot product

 $d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$

□ Then, calculate $||d_1||$ and $||d_2||$

 $||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$

 $||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$

Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$

Correlation Analysis (for Categorical Data)

observed $\chi^{2} = \sum_{i}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$ expected

- Null hypothesis: The two distributions are independent
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
 - □ The larger the X² value, the more likely the variables are related
- □ Note: Correlation does not imply causality

□ X² (chi-square) test:

- # of hospitals and # of car-theft in a city are correlated
- Both are causally linked to the third variable: population

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (X1)	200 (X2)	450
Not like science fiction	50 (X3)	1000 (X4)	1050
Sum(col.)	300	1200	1500

- Null hypothesis: The two distributions are independent
 - What does that mean?
 - The ratio between people who play chess vs not play chess is the same for both groups of like science fiction and not like science fiction
 - □ X1:X2=X3:X4=300:1200
 - □ X1:X3=X2:X4=450:1050
 - □ X1+X2=450 X3+X4=1050
 - □ X1+X3=300 X2+X4=1200

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

How to derive 90? 450/1500 * 300 = 90

0 001

We can reject the

X² (chi-square) calculation (numbers in parenthesis are expected independence at a counts calculated based on the data distribution in the two categories) confidence level of

$$\chi^{2} = \frac{\left(250 - 90\right)^{2}}{90} + \frac{\left(50 - 210\right)^{2}}{210} + \frac{\left(200 - 360\right)^{2}}{360} + \frac{\left(1000 - 840\right)^{2}}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

	А	В	С	D	Sum (row)
1					200
0					1000
Sum(col.)	300	300	300	300	1200

Degree of freedom

- (#categories_in_variable_A -1)((#categories_in_variable_B -1)
- number of values that are free to vary

		Play chess	Not play chess	Sum (row)		
	Like science fiction	250 (90)	200 (360)	450		
	Not like science fiction	50 (210)	1000 (840)	1050		
	Sum(col.)	300	1200	1500		We can reiect the
α^2 –	$(250-90)^2$ $(50-2)$	$(210)^2$ (20	$(10-360)^2$ (10	$(00-840)^2$	- 507 03	null hypothesis of
χ –	90 + 21	0 +	360	840	307.93	independence at a
Degree o	f freedom =?					0.001

Values of the Chi-squared distribution

 χ^2

Ρ

	Ρ										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
				1			1				

Variance for Single Variable (Numerical Data)

The variance of a random variable X provides a measure of how much the value of X deviates from the mean or expected value of X:

 $\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$

- u where σ^2 is the variance of X, σ is called *standard deviation* μ is the mean, and μ = E[X] is the expected value of X
- □ That is, variance is the expected value of the square deviation from the mean
- □ It can also be written as: $\sigma^2 = \operatorname{var}(X) = E[(X \mu)^2] = E[X^2] \mu^2 = E[X^2] [E(x)]^2$
- Sample variance

$$s^{2} = \frac{1}{n} \sum_{i}^{n} (x_{i} - \hat{\mu})^{2} \qquad s^{2} = \frac{1}{n-1} \sum_{i}^{n} (x_{i} - \hat{\mu})^{2}$$

Covariance for Two Variables

Covariance between two variables X_1 and X_2

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$$

where $\mu_1 = E[X_1]$ is the respective mean or **expected value** of X_1 ; similarly for μ_2

- Sample covariance between X₁ and X₂: $\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} \hat{\mu}_1)(x_{i2} \hat{\mu}_2)$
- Sample covariance is a generalization of the sample variance:

$$\hat{\sigma}_{11} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \widehat{\mu_1})(x_{i1} - \widehat{\mu_1})$$

- **D Positive covariance:** If $\sigma_{12} > 0$
- **Negative covariance**: If $\sigma_{12} < 0$
Covariance for Two Variables

- Independence: If X_1 and X_2 are independent, $\sigma_{12} = 0$ but the reverse is not true
- Some pairs of random variables may have a covariance 0 but are not independent
- Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence
- **Example:**

<i>X</i> ₁	1	-1	
X_2	0	1	-1

 $\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$

 $E(X_1) = ?$ $E(X_2) = ?$ $E(X_1X_2) = ?$

Example: Calculation of Covariance

- Suppose two stocks X_1 and X_2 have the following values in one week:
 - **(**2, 5), (3, 8), (5, 10), (4, 11), (6, 14)
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- Covariance formula

 $\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$

Its computation can be simplified as: $\sigma_{12} = E[X_1X_2] - E[X_1]E[X_2]$

$$\Box \quad E(X_1) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$$

$$\Box \quad E(X_2) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6$$

- $\Box \quad \sigma_{12} = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, X_1 and X_2 rise together since $\sigma_{12} > 0$

Correlation between Two Numerical Variables

 \Box Correlation between two variables X₁ and X₂ is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

Sample correlation for two attributes X_1 and X_2 : $\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1) (x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$ where n is the number of tuples, μ_1 and μ_2 are the respective means of X_1 and X_2 , σ_1 and σ_2 are the respective standard deviation of X₁ and X₂

- If $\rho_{12} > 0$: A and B are positively correlated (X₁'s values increase as X₂'s)
 - The higher, the stronger correlation
- If $\rho_{12} = 0$: independent (under the same assumption as discussed in co-variance)
- If $\rho_{12} < 0$: negatively correlated

Visualizing Changes of Correlation Coefficient

- Correlation coefficient value range:
 [-1, 1]
- A set of scatter plots shows sets of points and their correlation coefficients changing from -1 to 1

Covariance Matrix

The variance and covariance information for the two variables X₁ and X₂ can be summarized as 2 X 2 covariance matrix as

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{T}] = E[(\frac{X_{1} - \mu_{1}}{X_{2} - \mu_{2}})(X_{1} - \mu_{1} \quad X_{2} - \mu_{2})]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})]\\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix}$$
evaluations we have

Generalizing it to *d* dimensions, we have,

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

KL Divergence: Comparing Two Probability Distributions

- The Kullback-Leibler (KL) divergence:
 Measure the difference between two probability distributions over the same variable x
 - From information theory, closely related to *relative entropy*, *information divergence*, and *information for discrimination*
- □ $D_{KL}(p(x) || q(x))$: divergence of q(x) from p(x), measuring the information lost when q(x) is used to approximate p(x) $D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$

$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

crete form

$$D_{KL}(p(x)||q(x)) = \int_{-\infty}^{\infty} p(x) \ln \frac{p(x)}{q(x)} dx$$

Dis

More on KL Divergence

$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

- The KL divergence measures the expected number of extra bits required to code samples from p(x) ("true" distribution) when using a code based on q(x), which represents a theory, model, description, or approximation of p(x)
- □ The KL divergence is not a distance measure, not a metric: asymmetric, not satisfy triangular inequality $(D_{KL}(P||Q))$ does not equal $D_{KL}(Q||P)$)
- In applications, P typically represents the "true" distribution of data, observations, or a precisely calculated theoretical distribution, while Q typically represents a theory, model, description, or approximation of P.
- □ The Kullback–Leibler divergence from Q to P, denoted D_{KL}(P||Q), is a measure of the information gained when one revises one's beliefs from the prior probability distribution Q to the posterior probability distribution P. In other words, it is the amount of information lost when Q is used to approximate P.
- □ The KL divergence is sometimes also called the information gain achieved if *P* is used instead of *Q*. It is also called the relative entropy of *P* with respect to *Q*.

Subtlety at Computing the KL Divergence

- □ Base on the formula, $D_{KL}(P,Q) \ge 0$ and $D_{KL}(P \mid \mid Q) = 0$ if and only if P = Q
- $\Box \quad How about when p = 0 or q = 0?$
 - $\Box \quad \lim_{p \to 0} p \log p = 0$

80

$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

- when p != 0 but q = 0, $D_{KL}(p || q)$ is defined as ∞ , i.e., if one event e is possible (*i.e.*, p(e) > 0), and the other predicts it is absolutely impossible (*i.e.*, q(e) = 0), then the two distributions are absolutely different
- However, in practice, P and Q are derived from frequency distributions, not counting the possibility of unseen events. Thus *smoothing* is needed
- □ Example: *P* : (*a* : 3/5, *b* : 1/5, *c* : 1/5). *Q* : (*a* : 5/9, *b* : 3/9, *d* : 1/9)
 - □ need to introduce a small constant ϵ , e.g., ϵ = 10⁻³
 - The sample set observed in P, SP = $\{a, b, c\}$, SQ = $\{a, b, d\}$, SU = $\{a, b, c, d\}$
 - \Box Smoothing, add missing symbols to each distribution, with probability ϵ
 - $\square P': (a: 3/5 \epsilon/3, b: 1/5 \epsilon/3, c: 1/5 \epsilon/3, d: \epsilon)$
 - $\Box \quad Q': (a: 5/9 \epsilon/3, b: 3/9 \epsilon/3, c: \epsilon, d: 1/9 \epsilon/3)$
- \square $D_{K}(P' \mid \mid Q')$ can then be computed easily

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Correlation

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- □ Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity and correlation
- Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research

References

- □ W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- □ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- **E.** R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009

