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Chapter 5

Data Cube Technology

Data warehouse systems provide OLAP tools for interactive analysis of multidimensional
data at varied levels of granularity. OLAP tools typically use the data cube
and a multidimensional data model to provide flexible access to summarized
data. For example, a data cube can store precomputed measures (like count

and total sales) for multiple combinations of data dimensions (like item,

region, and customer). Users can pose OLAP queries on the data. They can
also interactively explore the data in a multidimensional way through OLAP
operations like drill-down (to see more specialized data, such as total sales per
city) or roll-up (to see the data at a more generalized level, such as total sales
per country).

Although the data cube concept was originally intended for OLAP, it is also
useful for data mining. Multidimensional data mining is an approach to
data mining that integrates OLAP-based data analysis with knowledge discov-
ery techniques. It is also known as exploratory multidimensional data mining
and online analytical mining (OLAM ). It searches for interesting patterns by
exploring the data in multidimensional space. This gives users the freedom to
dynamically focus on any subset of interesting dimensions. Users can interac-
tively drill down or roll up to varying levels of abstraction to find classification
models, clusters, predictive rules, and outliers.

This chapter focusses on data cube technology. In particular, we study
methods for data cube computation and methods for multidimensional data
analysis. Precomputing a data cube (or parts of a data cube) allows for fast
accessing of summarized data. Given the high dimensionality of most data,
multidimensional analysis can run into performance bottlenecks. Therefore, it
is important to study data cube computation techniques. Luckily, data cube
technology provides many effective and scalable methods for cube computation.
Studying such methods will also help in our understanding and the development
of scalable methods for other data mining tasks, such as the discovery of frequent
patterns (Chapters 6 and 7).

We begin in Section 5.1 with preliminary concepts for cube computation.
These summarize the notion of the data cube as a lattice of cuboids, and describe
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4 CHAPTER 5. DATA CUBE TECHNOLOGY

the basic forms of cube materialization. General strategies for cube computation
are given. Section 5.2 follows with an in-depth look at specific methods for data
cube computation. We study both full materialization (that is, where all of
the cuboids representing a data cube are precomputed and thereby ready for
use) and partial cuboid materialization (where, say, only the more “useful” parts
of the data cube are precomputed). The Multiway Array Aggregation method
is detailed for full cube computation. Methods for partial cube computation,
including BUC, Star-Cubing, and the use of cube shell fragments, are discussed.

In Section 5.3, we study cube-based query processing. The techniques de-
scribed build upon the standard methods of cube computation presented in
Section 5.2. You will learn about sampling cubes for OLAP query-answering
on sampling data (such as survey data, which represent a sample or subset of a
target data population of interest). In addition, you will learn how to compute
ranking cubes for efficient top-k (ranking) query processing in large relational
datasets.

In Section 5.4, we describe various ways to perform multidimensional data
analysis using data cubes. Prediction cubes are introduced, which facilitate
predictive modeling in multidimensional space. We discuss multifeature cubes,
which compute complex queries involving multiple dependent aggregates at mul-
tiple granularities. You will also learn about the exception-based discovery-
driven exploration of cube space, where visual cues are displayed to indicate
discovered data exceptions at all levels of aggregation, thereby guiding the user
in the data analysis process.

5.1 Data Cube Computation: Preliminary Con-

cepts

Data cubes facilitate the on-line analytical processing of multidimensional data.
“But how can we compute data cubes in advance, so that they are handy and
readily available for query processing?” This section contrasts full cube materi-
alization (i.e., precomputation) versus various strategies for partial cube mate-
rialization. For completeness, we begin with a review of the basic terminology
involving data cubes. We also introduce a cube cell notation that is useful for
describing data cube computation methods.

5.1.1 Cube Materialization: Full Cube, Iceberg Cube, Closed

Cube, and Cube Shell

Figure 5.1 shows a 3-D data cube for the dimensions A, B, and C, and an ag-
gregate measure, M . Commonly used measures include count, sum, min, max,
and total sales. A data cube is a lattice of cuboids. Each cuboid represents
a group-by. ABC is the base cuboid, containing all three of the dimensions.
Here, the aggregate measure, M , is computed for each possible combination
of the three dimensions. The base cuboid is the least generalized of all of the
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cuboids in the data cube. The most generalized cuboid is the apex cuboid,
commonly represented as all. It contains one value—it aggregates measure M
for all of the tuples stored in the base cuboid. To drill down in the data cube,
we move from the apex cuboid, downward in the lattice. To roll up, we move
from the base cuboid, upward. For the purposes of our discussion in this chap-
ter, we will always use the term data cube to refer to a lattice of cuboids rather
than an individual cuboid.

A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is
an aggregate cell. An aggregate cell aggregates over one or more dimensions,
where each aggregated dimension is indicated by a “∗” in the cell notation. Sup-
pose we have an n-dimensional data cube. Let a = (a1, a2, . . . , an, measures)
be a cell from one of the cuboids making up the data cube. We say that a is
an m-dimensional cell (that is, from an m-dimensional cuboid) if exactly m
(m ≤ n) values among {a1, a2, . . . , an} are not “∗”. If m = n, then a is a base
cell; otherwise, it is an aggregate cell (i.e., where m < n).

Example 5.1 Base and aggregate cells. Consider a data cube with the dimensions month,
city, and customer group, and the measure sales. (Jan, ∗ , ∗ , 2800) and
(∗, Chicago, ∗ , 1200) are 1-D cells, (Jan, ∗ , Business, 150) is a 2-D cell, and
(Jan, Chicago, Business, 45) is a 3-D cell. Here, all base cells are 3-D, whereas
1-D and 2-D cells are aggregate cells.

An ancestor-descendant relationship may exist between cells. In an n-
dimensional data cube, an i-D cell a = (a1, a2, . . . , an, measuresa) is an an-
cestor of a j-D cell b = (b1, b2, . . . , bn, measuresb), and b is a descendant of
a, if and only if (1) i < j, and (2) for 1 ≤ k ≤ n, ak = bk whenever ak 6= “∗”. In
particular, cell a is called a parent of cell b, and b is a child of a, if and only
if j = i + 1.

Example 5.2 Ancestor and descendant cells. Referring to our previous example, 1-D cell
a = (Jan, ∗ , ∗ , 2800) and 2-D cell b = (Jan, ∗ , Business, 150) are ancestors
of 3-D cell c = (Jan, Chicago, Business, 45); c is a descendant of both a and

Figure 5.1: Lattice of cuboids, making up a 3-D data cube with the dimensions
A, B, and C for some aggregate measure, M .



6 CHAPTER 5. DATA CUBE TECHNOLOGY

b; b is a parent of c, and c is a child of b.

In order to ensure fast on-line analytical processing, it is sometimes desirable
to precompute the full cube (i.e., all the cells of all of the cuboids for a given
data cube). A method of full cube computation is given in Section 4.4. Full cube
computation, however, is exponential to the number of dimensions. That is, a
data cube of n dimensions contains 2n cuboids. There are even more cuboids
if we consider concept hierarchies for each dimension.1 In addition, the size of
each cuboid depends on the cardinality of its dimensions. Thus, precomputation
of the full cube can require huge and often excessive amounts of memory.

Nonetheless, full cube computation algorithms are important. Individual
cuboids may be stored on secondary storage and accessed when necessary. Al-
ternatively, we can use such algorithms to compute smaller cubes, consisting of
a subset of the given set of dimensions, or a smaller range of possible values for
some of the dimensions. In such cases, the smaller cube is a full cube for the
given subset of dimensions and/or dimension values. A thorough understand-
ing of full cube computation methods will help us develop efficient methods for
computing partial cubes. Hence, it is important to explore scalable methods
for computing all of the cuboids making up a data cube, that is, for full mate-
rialization. These methods must take into consideration the limited amount of
main memory available for cuboid computation, the total size of the computed
data cube, as well as the time required for such computation.

Partial materialization of data cubes offers an interesting trade-off between
storage space and response time for OLAP. Instead of computing the full cube,
we can compute only a subset of the data cube’s cuboids, or subcubes consisting
of subsets of cells from the various cuboids.

Many cells in a cuboid may actually be of little or no interest to the data
analyst. Recall that each cell in a full cube records an aggregate value, such
as count or sum. For many cells in a cuboid, the measure value will be zero.
When the product of the cardinalities for the dimensions in a cuboid is large
relative to the number of nonzero-valued tuples that are stored in the cuboid,
then we say that the cuboid is sparse. If a cube contains many sparse cuboids,
we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up
by a large number of cells with very low measure values. This is because the
cube cells are often quite sparsely distributed within a multiple dimensional
space. For example, a customer may only buy a few items in a store at a time.
Such an event will generate only a few nonempty cells, leaving most other cube
cells empty. In such situations, it is useful to materialize only those cells in a
cuboid (group-by) whose measure value is above some minimum threshold. In
a data cube for sales, say, we may wish to materialize only those cells for which
count ≥ 10 (i.e., where at least 10 tuples exist for the cell’s given combination of
dimensions), or only those cells representing sales ≥ $100. This not only saves

1Equation (4.1) of Section 4.4.1 gives the total number of cuboids in a data cube where
each dimension has an associated concept hierarchy.
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processing time and disk space, but also leads to a more focused analysis. The
cells that cannot pass the threshold are likely to be too trivial to warrant further
analysis. Such partially materialized cubes are known as iceberg cubes. The
minimum threshold is called the minimum support threshold, or minimum
support (min sup), for short. By materializing only a fraction of the cells in a
data cube, the result is seen as the “tip of the iceberg,” where the “iceberg” is
the potential full cube including all cells. An iceberg cube can be specified with
an SQL query, as shown in the following example.

Example 5.3 Iceberg cube.
compute cube sales iceberg as
select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min sup

The compute cube statement specifies the precomputation of the iceberg cube,
sales iceberg, with the dimensionsmonth, city, and customer group, and the aggre-
gate measure count(). The input tuples are in the salesInfo relation. The cube by
clausespecifiesthataggregates (group-by’s)aretobe formedforeachofthepossible
subsets of the given dimensions. If we were computing the full cube, each group-by
would correspond to a cuboid in the data cube lattice. The constraint specified in
the having clause is known as the iceberg condition. Here, the iceberg measure is
count. Note that the iceberg cube computed for this example could be used to an-
swer group-by queries on any combination of the specified dimensions of the form
having count(*) >= v, where v ≥ min sup. Instead of count, the iceberg condition
could specify more complex measures, such as average.

If we were to omit the having clause of our example, we would end up with
the full cube. Let’s call this cube sales cube. The iceberg cube, sales iceberg,
excludes all the cells of sales cube whose count is less than min sup. Obviously,
if we were to set the minimum support to 1 in sales iceberg, the resulting cube
would be the full cube, sales cube.

A näıve approach to computing an iceberg cube would be to first compute
the full cube and then prune the cells that do not satisfy the iceberg condition.
However, this is still prohibitively expensive. An efficient approach is to compute
only the iceberg cube directly without computing the full cube. Sections 5.2.2
to 5.2.3 discuss methods for efficient iceberg cube computation.

Introducing iceberg cubes will lessen the burden of computing trivial aggre-
gate cells in a data cube. However, we could still end up with a large num-
ber of uninteresting cells to compute. For example, suppose that there are 2
base cells for a database of 100 dimensions, denoted as {(a1, a2, a3, . . . , a100) :
10, (a1, a2, b3, . . . , b100) : 10}, where each has a cell count of 10. If the mini-
mum support is set to 10, there will still be an impermissible number of cells
to compute and store, although most of them are not interesting. For exam-
ple, there are 2101 −6 distinct aggregate cells,2 like {(a1, a2, a3, a4, . . . , a99, ∗) :

2The proof is left as an exercise for the reader.
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(a1, a2, a3, ..., a100 ) : 10

(a1, a2, *, ..., *) : 20

(a1, a2, b3, ..., b100 ) : 10

Figure 5.2: Three closed cells forming the lattice of a closed cube.

10, . . . , (a1, a2, ∗ , a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10},
but most of them do not contain much new information. If we ignore all of
the aggregate cells that can be obtained by replacing some constants by ∗’s
while keeping the same measure value, there are only three distinct cells left:
{(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10, (a1, a2, ∗ , . . . , ∗) : 20}.
That is, out of 2101 − 4 distinct base and aggregate cells, only three really offer
valuable information.

To systematically compress a data cube, we need to introduce the concept of
closed coverage. A cell, c, is a closed cell if there exists no cell, d, such that d is a
specialization (descendant) of cell c (that is, where d is obtained by replacing a ∗ in
c with a non-∗ value), and d has the same measure value as c. A closed cube is a
data cube consisting of only closed cells. For example, the three cells derived above
are the three closed cells of the data cube for the data set: {(a1, a2, a3, . . . , a100) :
10, (a1, a2, b3, . . . , b100) : 10}. They form the lattice of a closed cube as shown in
Figure 5.2. Other nonclosed cells can be derived from their corresponding closed
cells in this lattice. For example, “(a1, ∗ , ∗ , . . . , ∗) : 20” can be derived from
“(a1, a2, ∗ , . . . , ∗) : 20” because the former is a generalized nonclosed cell of the
latter. Similarly, we have “(a1, a2, b3, ∗ , . . . , ∗) : 10”.

Another strategy for partial materialization is to precompute only the cuboids
involving a small number of dimensions, such as 3 to 5. These cuboids form
a cube shell for the corresponding data cube. Queries on additional combina-
tions of the dimensions will have to be computed on the fly. For example, we
could compute all cuboids with 3 dimensions or less in an n-dimensional data
cube, resulting in a cube shell of size 3. This, however, can still result in a large
number of cuboids to compute, particularly when n is large. Alternatively, we
can choose to precompute only portions or fragments of the cube shell, based
on cuboids of interest. Section 5.2.4 discusses a method for computing such
shell fragments and explores how they can be used for efficient OLAP query
processing.

5.1.2 General Strategies for Data Cube Computation

There are several methods for efficient data cube computation, based on the vari-
ous kinds of cubes described above. In general, there are two basic data structures
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used for storing cuboids. The implementation of relational OLAP (ROLAP) uses
relational tables, whereas multidimensional arrays are used in multidimensional
OLAP(MOLAP). AlthoughROLAPandMOLAPmayeachexploredifferentcube
computation techniques, some optimization “tricks” can be shared among the dif-
ferent data representations. The following are general optimization techniques for
efficient computation of data cubes.

Optimization Technique 1: Sorting, hashing, and grouping. Sorting,
hashing, and grouping operations should be applied to the dimension attributes
in order to reorder and cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that
share the same set of dimension values. Thus it is important to explore sorting,
hashing, and grouping operations to access and group such data together to
facilitate computation of such aggregates.

For example, to compute total sales by branch, day, and item, it can be
more efficient to sort tuples or cells by branch, and then by day, and then group
them according to the item name. Efficient implementations of such opera-
tions in large data sets have been extensively studied in the database research
community. Such implementations can be extended to data cube computation.

This technique can also be further extended to perform shared-sorts (i.e.,
sharing sorting costs across multiple cuboids when sort-based methods are used),
or to perform shared-partitions (i.e., sharing the partitioning cost across mul-
tiple cuboids when hash-based algorithms are used).

Optimization Technique 2: Simultaneous aggregation and caching in-
termediate results. In cube computation, it is efficient to compute higher-
level aggregates from previously computed lower-level aggregates, rather than
from the base fact table. Moreover, simultaneous aggregation from cached in-
termediate computation results may lead to the reduction of expensive disk I/O
operations.

For example, to compute sales by branch, we can use the intermediate results
derived from the computation of a lower-level cuboid, such as sales by branch
and day. This technique can be further extended to perform amortized scans
(i.e., computing as many cuboids as possible at the same time to amortize disk
reads).

Optimization Technique 3: Aggregation from the smallest child, when
there exist multiple child cuboids. When there exist multiple child cuboids,
it is usually more efficient to compute the desired parent (i.e., more generalized)
cuboid from the smallest, previously computed child cuboid.

For example, to compute a sales cuboid, Cbranch, when there exist two previ-
ously computed cuboids, C{branch,year} and C{branch,item}, it is obviously more
efficient to compute Cbranch from the former than from the latter if there are
many more distinct items than distinct years.

Many other optimization techniques may further improve the computational
efficiency. For example, string dimension attributes can be mapped to integers
with values ranging from zero to the cardinality of the attribute.
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In iceberg cube computation the following optimization technique plays a
particularly important role.

Optimization Technique 4: The Apriori pruning method can be ex-
plored to compute iceberg cubes efficiently. The Apriori property,3

in the context of data cubes, states as follows: If a given cell does not satisfy
minimum support, then no descendant of the cell (i.e., more specialized cell)
will satisfy minimum support either. This property can be used to substantially
reduce the computation of iceberg cubes.

Recall that the specification of iceberg cubes contains an iceberg condition,
which is a constraint on the cells to be materialized. A common iceberg con-
dition is that the cells must satisfy a minimum support threshold, such as a
minimum count or sum. In this situation, the Apriori property can be used
to prune away the exploration of the descendants of the cell. For example, if
the count of a cell, c, in a cuboid is less than a minimum support threshold,
v, then the count of any of c’s descendant cells in the lower-level cuboids can
never be greater than or equal to v, and thus can be pruned. In other words,
if a condition (e.g., the iceberg condition specified in a having clause) is vio-
lated for some cell c, then every descendant of c will also violate that condition.
Measures that obey this property are known as antimonotonic.4 This form
of pruning was made popular in frequent pattern mining, yet also aids in data
cube computation by cutting processing time and disk space requirements. It
can lead to a more focused analysis because cells that cannot pass the threshold
are unlikely to be of interest.

In the following subsections, we introduce several popular methods for ef-
ficient cube computation that explore some or all of the above optimization
strategies.

5.2 Data Cube Computation Methods

Data cube computation is an essential task in data warehouse implementation.
The precomputation of all or part of a data cube can greatly reduce the response
time and enhance the performance of on-line analytical processing. However,
such computation is challenging because it may require substantial computa-
tional time and storage space. This section explores efficient methods for data
cube computation. Section 5.2.1 describes the multiway array aggregation
(MultiWay) method for computing full cubes. Section 5.2.2 describes a method
known as BUC, which computes iceberg cubes from the apex cuboid, downward.
Section 5.2.3 describes the Star-Cubing method, which integrates top-down and
bottom-up computation. Finally, Section 5.2.4 describes a shell-fragment cub-
ing approach that computes shell fragments for efficient high-dimensional OLAP.

3The Apriori property was proposed in the Apriori algorithm for association rule mining by
R. Agrawal and R. Srikant [AS94]. Many algorithms in association rule mining have adopted
this property. Association rule mining is the topic of Chapter 6.

4Antimonotone is based on condition violation. This differs from monotone, which is
based on condition satisfaction.
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To simplify our discussion, we exclude the cuboids that would be generated by
climbing up any existing hierarchies for the dimensions. Such kinds of cubes can
be computed by extension of the discussed methods. Methods for the efficient
computation of closed cubes are left as an exercise for interested readers.

5.2.1 Multiway Array Aggregation for Full Cube Compu-

tation

The Multiway Array Aggregation (or simply MultiWay) method computes
a full data cube by using a multidimensional array as its basic data structure. It
is a typical MOLAP approach that uses direct array addressing, where dimen-
sion values are accessed via the position or index of their corresponding array
locations. Hence, MultiWay cannot perform any value-based reordering as an
optimization technique. A different approach is developed for the array-based
cube construction, as follows:

1. Partition the array into chunks. A chunk is a subcube that is small
enough to fit into the memory available for cube computation. Chunking
is a method for dividing an n-dimensional array into small n-dimensional
chunks, where each chunk is stored as an object on disk. The chunks are
compressed so as to remove wasted space resulting from empty array cells.
A cell is empty if it does not contain any valid data, i.e., its cell count is
zero. For instance, “chunkID + offset” can be used as a cell addressing
mechanism to compress a sparse array structure and when searching
for cells within a chunk. Such a compression technique is powerful at
handling sparse cubes, both on disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells.
The order in which cells are visited can be optimized so as to minimize
the number of times that each cell must be revisited, thereby reducing
memory access and storage costs. The trick is to exploit this ordering so
that portions of the aggregate cells in multiple cuboids can be computed
simultaneously, and any unnecessary revisiting of cells is avoided.

This chunking technique involves “overlapping” some of the aggregation com-
putations, therefore, it is referred to as multiway array aggregation. It
performs simultaneous aggregation—that is, it computes aggregations si-
multaneously on multiple dimensions.

We explain this approach to array-based cube construction by looking at a
concrete example.

Example 5.4 Multiway array cube computation. Consider a 3-D data array containing
the three dimensions A, B, and C. The 3-D array is partitioned into small,
memory-based chunks. In this example, the array is partitioned into 64 chunks
as shown in Figure 5.3. Dimension A is organized into four equal-sized par-
titions, a0, a1, a2, and a3. Dimensions B and C are similarly organized into
four partitions each. Chunks 1, 2, . . . , 64 correspond to the subcubes a0b0c0,
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Figure 5.3: A 3-D array for the dimensions A, B, and C, organized into 64
chunks. Each chunk is small enough to fit into the memory available for cube
computation. The ∗’s indicate the chunks from 1 to 13 that have been aggre-
gated so far in the process.

a1b0c0, . . . , a3b3c3, respectively. Suppose that the cardinality of the dimensions
A, B, and C is 40, 400, and 4000, respectively. Thus, the size of the array for
each dimension, A, B, and C, is also 40, 400, and 4000, respectively. The size
of each partition in A, B, and C is therefore 10, 100, and 1000, respectively.
Full materialization of the corresponding data cube involves the computation
of all of the cuboids defining this cube. The resulting full cube consists of the
following cuboids:

• The base cuboid, denoted by ABC (from which all of the other cuboids
are directly or indirectly computed). This cube is already computed and
corresponds to the given 3-D array.

• The 2-D cuboids, AB, AC, and BC, which respectively correspond to the
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group-by’s AB, AC, and BC. These cuboids must be computed.

• The 1-D cuboids, A, B, and C, which respectively correspond to the
group-by’s A, B, and C. These cuboids must be computed.

• The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by
(); that is, there is no group-by here. This cuboid must be computed. It
consists of only one value. If, say, the data cube measure is count, then
the value to be computed is simply the total count of all of the tuples in
ABC.

Let’s look at how the multiway array aggregation technique is used in this
computation. There are many possible orderings with which chunks can be read
into memory for use in cube computation. Consider the ordering labeled from 1
to 64, shown in Figure 5.3. Suppose we would like to compute the b0c0 chunk of
the BC cuboid. We allocate space for this chunk in chunk memory. By scanning
chunks 1 to 4 of ABC, the b0c0 chunk is computed. That is, the cells for b0c0 are
aggregated over a0 to a3. The chunk memory can then be assigned to the next
chunk, b1c0, which completes its aggregation after the scanning of the next four
chunks of ABC: 5 to 8. Continuing in this way, the entire BC cuboid can be
computed. Therefore, only one chunk of BC needs to be in memory, at a time,
for the computation of all of the chunks of BC.

In computing the BC cuboid, we will have scanned each of the 64 chunks.
“Is there a way to avoid having to rescan all of these chunks for the computation
of other cuboids, such as AC and AB?” The answer is, most definitely—yes.
This is where the “multiway computation” or “simultaneous aggregation” idea
comes in. For example, when chunk 1 (i.e., a0b0c0) is being scanned (say, for
the computation of the 2-D chunk b0c0 of BC, as described above), all of the
other 2-D chunks relating to a0b0c0 can be simultaneously computed. That is,
when a0b0c0 is being scanned, each of the three chunks, b0c0, a0c0, and a0b0,
on the three 2-D aggregation planes, BC, AC, and AB, should be computed
then as well. In other words, multiway computation simultaneously aggregates
to each of the 2-D planes while a 3-D chunk is in memory.

Now let’s look at how different orderings of chunk scanning and of cuboid
computation can affect the overall data cube computation efficiency. Recall
that the size of the dimensions A, B, and C is 40, 400, and 4000, respectively.
Therefore, the largest 2-D plane is BC (of size 400 × 4000 = 1, 600, 000). The
second largest 2-D plane is AC (of size 40×4000 = 160, 000). AB is the smallest
2-D plane (with a size of 40 × 400 = 16, 000).

Suppose that the chunks are scanned in the order shown, from chunk 1 to 64.
As mentioned above, b0c0 is fully aggregated after scanning the row containing
chunks 1 to 4; b1c0 is fully aggregated after scanning chunks 5 to 8, and so on.
Thus, we need to scan four chunks of the 3-D array in order to fully compute
one chunk of the BC cuboid (where BC is the largest of the 2-D planes). In
other words, by scanning in this order, one chunk of BC is fully computed for
each row scanned. In comparison, the complete computation of one chunk
of the second largest 2-D plane, AC, requires scanning 13 chunks, given the
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ordering from 1 to 64. That is, a0c0 is fully aggregated only after the scanning
of chunks 1, 5, 9, and 13. Finally, the complete computation of one chunk of
the smallest 2-D plane, AB, requires scanning 49 chunks. For example, a0b0 is
fully aggregated after scanning chunks 1, 17, 33, and 49. Hence, AB requires the
longest scan of chunks in order to complete its computation. To avoid bringing
a 3-D chunk into memory more than once, the minimum memory requirement
for holding all relevant 2-D planes in chunk memory, according to the chunk
ordering of 1 to 64, is as follows: 40×400 (for the whole AB plane) + 40×1000
(for one column of the AC plane) + 100×1000 (for one chunk of the BC plane)
= 16, 000 + 40, 000 + 100, 000 = 156, 000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21,
37, 53, and so on. That is, suppose the scan is in the order of first aggregating
toward the AB plane, and then toward the AC plane, and lastly toward the
BC plane. The minimum memory requirement for holding 2-D planes in chunk
memory would be as follows: 400× 4000 (for the whole BC plane) + 40× 1000
(for one row of the AC plane) + 10 × 100 (for one chunk of the AB plane) =
1,600,000 + 40,000 + 1000 = 1,641,000 memory units. Notice that this is more
than 10 times the memory requirement of the scan ordering of 1 to 64.

Similarly, we can work out the minimum memory requirements for the mul-
tiway computation of the 1-D and 0-D cuboids. Figure 5.4 shows the most
efficient way to compute 1-D cuboids. Chunks for 1-D cuboids A and B are
computed during the computation of the smallest 2-D cuboid, AB. The small-
est 1-D cuboid, A, will have all of its chunks allocated in memory, whereas the
larger 1-D cuboid, B, will have only one chunk allocated in memory at a time.
Similarly, chunk C is computed during the computation of the second smallest
2-D cuboid, AC, requiring only one chunk in memory at a time. Based on this
analysis, we see that the most efficient ordering in this array cube computa-
tion is the chunk ordering of 1 to 64, with the above stated memory allocation
strategy.

Example 5.4 assumes that there is enough memory space for one-pass cube
computation (i.e., to compute all of the cuboids from one scan of all of the
chunks). If there is insufficient memory space, the computation will require
more than one pass through the 3-D array. In such cases, however, the basic
principle of ordered chunk computation remains the same. MultiWay is most
effective when the product of the cardinalities of dimensions is moderate and
the data are not too sparse. When the dimensionality is high or the data are
very sparse, the in-memory arrays become too large to fit in memory, and this
method becomes infeasible.

With theuse of appropriate sparse arraycompression techniquesandcareful or-
dering of the computation of cuboids, it has been shown by experiments that Mul-
tiWay array cube computation is significantly faster than traditional ROLAP (re-
lational record-based) computation. Unlike ROLAP, the array structure of Mul-
tiWay does not require saving space to store search keys. Furthermore, MultiWay
uses direct array addressing, which is faster than the key-based addressing search
strategy of ROLAP. For ROLAP cube computation, instead of cubing a table di-



5.2. DATA CUBE COMPUTATION METHODS 15

a0 a3a2a1

b3

b2

b1

b0

AB

AB

*
*
*

*

****

*****
*

* *
*

*
a0 a1 a2 a3

AC

C

*
*

*

*****

*
*

(a) (b)

b3

b1

b0

b2

a0 a2a1 a3

c0

c1

c2

c3

c0

c1

c2

c3

Figure 5.4: Memory allocation and order of computation for computing the
1-D cuboids of Example 5.4. (a) The 1-D cuboids, A and B, are aggregated
during the computation of the smallest 2-D cuboid, AB (b) The 1-D cuboid, C,
is aggregated during the computation of the second smallest 2-D cuboid, AC.
The ∗’s represent chunks that have been aggregated to so far in the process.

rectly, it can be faster to convert the table to an array, cube the array, and then
convert the result back to a table. However, this observation works only for cubes
with a relatively small number of dimensions because the number of cuboids to be
computed is exponential to the number of dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?”
Remember that the Apriori property states that if a given cell does not satisfy
minimum support, then neither will any of its descendants. Unfortunately,
MultiWay’s computation starts from the base cuboid and progresses upward
toward more generalized, ancestor cuboids. It cannot take advantage of Apriori
pruning, which requires a parent node to be computed before its child (i.e.,
more specific) nodes. For example, if the count of a cell c in, say, AB, does
not satisfy the minimum support specified in the iceberg condition, we cannot
prune away cell c because the count of c’s ancestors in the A or B cuboids
may be greater than the minimum support, and their computation will need
aggregation involving the count of c.



16 CHAPTER 5. DATA CUBE TECHNOLOGY

5.2.2 BUC: Computing Iceberg Cubes from the Apex Cuboid

Downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Un-
like MultiWay, BUC constructs the cube from the apex cuboid toward the base
cuboid. This allows BUC to share data partitioning costs. This order of process-
ing also allows BUC to prune during construction, using the Apriori property.

Figure 5.5 shows a lattice of cuboids, making up a 3-D data cube with the
dimensions A, B, and C. The apex (0-D) cuboid, representing the concept all
(that is, (∗, ∗ , ∗)), is at the top of the lattice. This is the most aggregated or
generalized level. The 3-D base cuboid, ABC, is at the bottom of the lattice. It
is the least aggregated (most detailed or specialized) level. This representation
of a lattice of cuboids, with the apex at the top and the base at the bottom,
is commonly accepted in data warehousing. It consolidates the notions of drill-
down (where we can move from a highly aggregated cell to lower, more detailed
cells) and roll-up (where we can move from detailed, low-level cells to higher-
level, more aggregated cells).

BUC stands for “Bottom-Up Construction.” However, according to the lat-
tice convention described above and used throughout this book, the order of
processing of BUC is actually top-down! The authors of BUC view a lattice of
cuboids in the reverse order, with the apex cuboid at the bottom and the base
cuboid at the top. In that view, BUC does bottom-up construction. However,
because we adopt the application worldview where drill-down refers to drilling
from the apex cuboid down toward the base cuboid, the exploration process of
BUC is regarded as top-down. BUC’s exploration for the computation of a 3-D
data cube is shown in Figure 5.5.

The BUC algorithm is shown in Figure 5.6. We first give an explanation of
the algorithm and then follow up with an example. Initially, the algorithm is
called with the input relation (set of tuples). BUC aggregates the entire input
(line 1) and writes the resulting total (line 3). (Line 2 is an optimization feature
that is discussed later in our example.) For each dimension d (line 4), the input

all

AB

ABC

AC BC

BA C

Figure 5.5: BUC’s exploration for the computation of a 3-D data cube. Note
that the computation starts from the apex cuboid.
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Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

• input: the relation to aggregate;

• dim: the starting dimension for this iteration.

Globals:

• constant numDims: the total number of dimensions;

• constant cardinality[numDims]: the cardinality of each dimension;

• constant min sup: the minimum number of tuples in a partition in order for it to be output;

• outputRec: the current output record;

• dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size cardinal-
ity[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization

WriteDescendants(input[0], dim); return;
endif

(3) write outputRec;
(4) for (d = dim; d < numDims; d + +) do //Partition each dimension
(5) C = cardinality[d];
(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d

(7) k = 0;
(8) for (i = 0; i < C; i + +) do // for each partition (each value of dimension d)
(9) c = dataCount[d][i];
(10) if c >= min sup then // test the iceberg condition
(11) outputRec.dim[d] = input[k].dim[d];
(12) BUC(input[k..k + c − 1], d + 1); // aggregate on next dimension
(13) endif

(14) k +=c;
(15) endfor

(16) outputRec.dim[d] = all;
(17) endfor

Figure 5.6: BUC algorithm for the computation of sparse or iceberg cubes
[BR99].

is partitioned on d (line 6). On return from Partition(), dataCount contains
the total number of tuples for each distinct value of dimension d. Each distinct
value of d forms its own partition. Line 8 iterates through each partition. Line
10 tests the partition for minimum support. That is, if the number of tuples
in the partition satisfies (i.e., is ≥) the minimum support, then the partition
becomes the input relation for a recursive call made to BUC, which computes
the iceberg cube on the partitions for dimensions d + 1 to numDims (line 12).
Note that for a full cube (i.e., where minimum support in the having clause is
1), the minimum support condition is always satisfied. Thus, the recursive call
descends one level deeper into the lattice. Upon return from the recursive call,
we continue with the next partition for d. After all the partitions have been
processed, the entire process is repeated for each of the remaining dimensions.

We explain how BUC works with the following example.

Example 5.5 BUC construction of an iceberg cube. Consider the iceberg cube expressed
in SQL as follows:

compute cube iceberg cube as

select A, B, C, D, count(*)

from R
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C
2

Figure 5.7: Snapshot of BUC partitioning given an example 4-D data set.

cube by A, B, C, D

having count(*) >= 3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C,
and D, where the minimum support count is 3. Suppose that dimension A has
four distinct values, a1, a2, a3, a4; B has four distinct values, b1, b2, b3, b4; C has
two distinct values, c1, c2; and D has two distinct values, d1, d2. If we consider
each group-by to be a partition, then we must compute every combination of
the grouping attributes that satisfy minimum support (i.e., that have 3 tuples).

Figure 5.7 illustrates how the input is partitioned first according to the
different attribute values of dimension A, and then B, C, and D. To do so, BUC
scans the input, aggregating the tuples to obtain a count for all, corresponding to
the cell (∗, ∗ , ∗ , ∗). Dimension A is used to split the input into four partitions,
one for each distinct value of A. The number of tuples (counts) for each distinct
value of A is recorded in dataCount.

BUC uses the Apriori property to save time while searching for tuples that
satisfy the iceberg condition. Starting with A dimension value, a1, the a1 parti-
tion is aggregated, creating one tuple for the A group-by, corresponding to the
cell (a1, ∗ , ∗ , ∗). Suppose (a1, ∗ , ∗ , ∗) satisfies the minimum support, in which
case a recursive call is made on the partition for a1. BUC partitions a1 on the
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dimension B. It checks the count of (a1, b1, ∗ , ∗) to see if it satisfies the min-
imum support. If it does, it outputs the aggregated tuple to the AB group-by
and recurses on (a1, b1, ∗ , ∗) to partition on C, starting with c1. Suppose the
cell count for (a1, b1, c1, ∗) is 2, which does not satisfy the minimum support.
According to the Apriori property, if a cell does not satisfy minimum support,
then neither can any of its descendants. Therefore, BUC prunes any further ex-
ploration of (a1, b1, c1, ∗). That is, it avoids partitioning this cell on dimension
D. It backtracks to the a1, b1 partition and recurses on (a1, b1, c2, ∗), and so
on. By checking the iceberg condition each time before performing a recursive
call, BUC saves a great deal of processing time whenever a cell’s count does not
satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort.
CountingSort is fast because it does not perform any key comparisons to find
partition boundaries. In addition, the counts computed during the sort can
be reused to compute the group-by’s in BUC. Line 2 is an optimization for
partitions having a count of 1, such as (a1, b2, ∗ , ∗) in our example. To save
on partitioning costs, the count is written to each of the tuple’s descendant
group-by’s. This is particularly useful since, in practice, many partitions have
a single tuple.

The performance of BUC is sensitive to the order of the dimensions and
to skew in the data. Ideally, the most discriminating dimensions should be
processed first. Dimensions should be processed in the order of decreasing car-
dinality. The higher the cardinality is, the smaller the partitions are, and thus,
the more partitions there will be, thereby providing BUC with a greater oppor-
tunity for pruning. Similarly, the more uniform a dimension is (i.e., having less
skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However,
unlike MultiWay, it does not share the computation of aggregates between par-
ent and child group-by’s. For example, the computation of cuboid AB does not
help that of ABC. The latter needs to be computed essentially from scratch.

5.2.3 Star-Cubing: Computing Iceberg Cubes Using

a Dynamic Star-tree Structure

In this section, we describe the Star-Cubing algorithm for computing ice-
berg cubes. Star-Cubing combines the strengths of the other methods we have
studied up to this point. It integrates top-down and bottom-up cube compu-
tation and explores both multidimensional aggregation (similar to MultiWay)
and Apriori-like pruning (similar to BUC). It operates from a data structure
called a star-tree, which performs lossless data compression, thereby reducing
the computation time and memory requirements.

The Star-Cubing algorithm explores both the bottom-up and top-down com-
putation models as follows: On the global computation order, it uses the bottom-
up model. However, it has a sublayer underneath based on the top-down model,
which explores the notion of shared dimensions, as we shall see below. This in-
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tegration allows the algorithm to aggregate on multiple dimensions while still
partitioning parent group-by’s and pruning child group-by’s that do not satisfy
the iceberg condition.

Star-Cubing’s approach is illustrated in Figure 5.8 for the computation of
a 4-D data cube. If we were to follow only the bottom-up model (similar to
Multiway), then the cuboids marked as pruned by Star-Cubing would still be
explored. Star-Cubing is able to prune the indicated cuboids because it consid-
ers shared dimensions. ACD/A means cuboid ACD has shared dimension A,
ABD/AB means cuboid ABD has shared dimension AB, ABC/ABC means
cuboid ABC has shared dimension ABC, and so on. This comes from the
generalization that all the cuboids in the subtree rooted at ACD include di-
mension A, all those rooted at ABD include dimensions AB, and all those
rooted at ABC include dimensions ABC (even though there is only one such
cuboid). We call these common dimensions the shared dimensions of those
particular subtrees.

The introduction of shared dimensions facilitates shared computation. Be-
cause the shared dimensions are identified early on in the tree expansion, we
can avoid recomputing them later. For example, cuboid AB extending from
ABD in Figure 5.8 would actually be pruned because AB was already com-
puted in ABD/AB. Similarly, cuboid A extending from AD would also be
pruned because it was already computed in ACD/A.

Shared dimensions allow us to do Apriori-like pruning if the measure of
an iceberg cube, such as count, is antimonotonic; that is, if the aggregate
value on a shared dimension does not satisfy the iceberg condition, then all
of the cells descending from this shared dimension cannot satisfy the iceberg
condition either. Such cells and all of their descendants can be pruned, because
these descendant cells are, by definition, more specialized (i.e., contain more
dimensions) than those in the shared dimension(s). The number of tuples
covered by the descendant cells will be less than or equal to the number of
tuples covered by the shared dimensions. Therefore, if the aggregate value
on a shared dimension fails the iceberg condition, the descendant cells cannot

Figure 5.8: Star-Cubing: Bottom-up computation with top-down expansion of
shared dimensions.
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satisfy it either.

Example 5.6 Pruning shared dimensions. If the value in the shared dimension A is a1

and it fails to satisfy the iceberg condition, then the whole subtree rooted at
a1CD/a1 (including a1C/a1C, a1D/a1, a1/a1) can be pruned because they are
all more specialized versions of a1.

To explain how the Star-Cubing algorithm works, we need to explain a few
more concepts, namely, cuboid trees, star-nodes, and star-trees.

We use trees to represent individual cuboids. Figure 5.9 shows a fragment of
the cuboid tree of the base cuboid, ABCD. Each level in the tree represents
a dimension, and each node represents an attribute value. Each node has four
fields: the attribute value, aggregate value, pointer to possible first child, and
pointer to possible first sibling. Tuples in the cuboid are inserted one by one into
the tree. A path from the root to a leaf node represents a tuple. For example,
node c2 in the tree has an aggregate (count) value of 5, which indicates that there
are five cells of value (a1, b1, c2, ∗). This representation collapses the common
prefixes to save memory usage and allows us to aggregate the values at internal
nodes. With aggregate values at internal nodes, we can prune based on shared
dimensions. For example, the cuboid tree of AB can be used to prune possible
cells in ABD.

If the single dimensional aggregate on an attribute value p does not satisfy
the iceberg condition, it is useless to distinguish such nodes in the iceberg cube
computation. Thus the node p can be replaced by ∗ so that the cuboid tree
can be further compressed. We say that the node p in an attribute A is a
star-node if the single dimensional aggregate on p does not satisfy the iceberg
condition; otherwise, p is a non-star-node. A cuboid tree that is compressed
using star-nodes is called a star-tree.

The following is an example of star-tree construction.

Example 5.7 Star-tree construction. A base cuboid table is shown in Table 5.1. There

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5 

d2: 3d1: 2 

Figure 5.9: A fragment of the base cuboid tree.
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Table 5.1: Base (Cuboid) Table: Before star
reduction.
A B C D count

a1 b1 c1 d1 1
a1 b1 c4 d3 1
a1 b2 c2 d2 1
a2 b3 c3 d4 1
a2 b4 c3 d4 1

are 5 tuples and 4 dimensions. The cardinalities for dimensions A, B, C, D
are 2, 4, 4, 4, respectively. The one-dimensional aggregates for all attributes
are shown in Table 5.2. Suppose min sup = 2 in the iceberg condition. Clearly,
only attribute values a1, a2, b1, c3, d4 satisfy the condition. All the other values
are below the threshold and thus become star-nodes. By collapsing star-nodes,
the reduced base table is Table 5.3. Notice that the table contains two fewer
rows and also fewer distinct values than Table 5.1.

Table 5.2: One-Dimensional Aggregates.
Dimension count = 1 count ≥ 2

A — a1(3), a2(2)
B b2, b3, b4 b1(2)
C c1, c2, c4 c3(2)
D d1, d2, d3 d4(2)

We use the reduced base table to construct the cuboid tree because it is
smaller. The resultant star-tree is shown in Figure 5.10.

Now, let’s see how the Star-Cubing algorithm uses star-trees to compute an
iceberg cube. The algorithm is given in Figure 5.13.

Example 5.8 Star-Cubing. Using the star-tree generated in Example 5.7 (Figure 5.10), we
start the process of aggregation by traversing in a bottom-up fashion. Traversal
is depth-first. The first stage (i.e., the processing of the first branch of the
tree) is shown in Figure 5.11. The leftmost tree in the figure is the base star-

Table 5.3: Compressed Base Table: After star
reduction.
A B C D count
a1 b1 ∗ ∗ 2
a1 ∗ ∗ ∗ 1
a2 ∗ c3 d4 2
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root:5

a1:3 a2:2

b*:1

c*:1

d*:1

b1:2

c*:2

d*:2

b*:2

c3:2

d4:2

Figure 5.10: Star-tree of the compressed base table.

Figure 5.11: Aggregation Stage One: Processing of the left-most branch of
BaseTree.

tree. Each attribute value is shown with its corresponding aggregate value. In
addition, subscripts by the nodes in the tree show the order of traversal. The
remaining four trees are BCD, ACD/A, ABD/AB, ABC/ABC. They are the
child trees of the base star-tree, and correspond to the level of three-dimensional
cuboids above the base cuboid in Figure 5.8. The subscripts in them correspond
to the same subscripts in the base tree—they denote the step or order in which
they are created during the tree traversal. For example, when the algorithm is
at step 1, the BCD child tree root is created. At step 2, the ACD/A child tree
root is created. At step 3, the ABD/AB tree root and the b∗ node in BCD are
created.

Whenthealgorithmhasreachedstep5, thetrees inmemoryareexactlyasshown
in Figure 5.11. Because the depth-first traversal has reached a leaf at this point, it
starts backtracking. Before traversingback, the algorithmnotices that all possible
nodes in the base dimension (ABC) have beenvisited. Thismeans theABC/ABC
tree is complete, so the count is output and the tree is destroyed. Similarly, upon
movingback fromd∗ to c∗ and seeing that c∗hasno siblings, the count inABD/AB
is also output and the tree is destroyed.

When the algorithm is at b∗ during the back-traversal, it notices that there
exists a sibling in b1. Therefore, it will keep ACD/A in memory and perform
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Figure 5.12: Aggregation Stage Two: Processing of the second branch of Base-
Tree.

a depth-first search on b1 just as it did on b∗. This traversal and the resultant
trees are shown in Figure 5.12. The child trees ACD/A and ABD/AB are
created again but now with the new values from the b1 subtree. For example,
notice that the aggregate count of c∗ in the ACD/A tree has increased from 1
to 3. The trees that remained intact during the last traversal are reused and
the new aggregate values are added on. For instance, another branch is added
to the BCD tree.

Just like before, the algorithm will reach a leaf node at d∗ and traverse back.
This time, it will reach a1 and notice that there exists a sibling in a2. In this
case, all child trees except BCD in Figure 5.12 are destroyed. Afterward, the
algorithm will perform the same traversal on a2. BCD continues to grow while
the other subtrees start fresh with a2 instead of a1.

A node must satisfy two conditions in order to generate child trees: (1) the
measure of the node must satisfy the iceberg condition; and (2) the tree to
be generated must include at least one non-star (i.e., nontrivial) node. This
is because if all the nodes were star-nodes, then none of them would satisfy
min sup. Therefore, it would be a complete waste to compute them. This
pruning is observed in Figures 5.11 and 5.12. For example, the left subtree
extending from node a1 in the base-tree in Figure 5.11 does not include any non-
star-nodes. Therefore, the a1CD/a1 subtree should not have been generated.
It is shown, however, for illustration of the child tree generation process.

Star-Cubing is sensitive to the ordering of dimensions, as with other ice-
berg cube construction algorithms. For best performance, the dimensions are
processed in order of decreasing cardinality. This leads to a better chance of
early pruning, because the higher the cardinality, the smaller the partitions, and
therefore the higher possibility that the partition will be pruned.

Star-Cubing can also be used for full cube computation. When computing
the full cube for a dense data set, Star-Cubing’s performance is comparable with
MultiWay and is much faster than BUC. If the data set is sparse, Star-Cubing
is significantly faster than MultiWay and faster than BUC, in most cases. For
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Algorithm: Star-Cubing. Compute iceberg cubes by Star-Cubing.

Input:

• R: a relational table

• min support: minimum support threshold for the iceberg condition (taking count as the measure).

Output: The computed iceberg cube.

Method: Each star-tree corresponds to one cuboid tree node, and vice versa.

BEGIN

scan R twice, create star-table S and star-tree T ;
output count of T.root;
call starcubing(T, T.root);

END

procedure starcubing(T, cnode)// cnode: current node
{
(1) for each non-null child C of T ’s cuboid tree
(2) insert or aggregate cnode to the corresponding

position or node in C’s star-tree;
(3) if (cnode.count ≥ min support) then {
(4) if (cnode 6= root) then

(5) output cnode.count;
(6) if (cnode is a leaf) then

(7) output cnode.count;
(8) else { // initiate a new cuboid tree
(9) create CC as a child of T ’s cuboid tree;
(10) let TC be CC ’s star-tree;

(11) TC.root′s count = cnode.count;
(12) }
(13) }
(14) if (cnode is not a leaf) then

(15) starcubing(T, cnode.first child);
(16) if (CC is not null) then {
(17) starcubing(TC, TC.root);
(18) remove CC from T ’s cuboid tree; }
(19) if (cnode has sibling) then

(20) starcubing(T, cnode.sibling);
(21) remove T ;
}

Figure 5.13: The Star-Cubing algorithm.

iceberg cube computation, Star-Cubing is faster than BUC, where the data are
skewed and the speedup factor increases as min sup decreases.

5.2.4 Precomputing Shell Fragments for Fast High-Dimensional

OLAP

Recall the reason that we are interested in precomputing data cubes: Data cubes
facilitate fast on-line analytical processing (OLAP) in a multidimensional data
space. However, a full data cube of high dimensionality needs massive storage
space and unrealistic computation time. Iceberg cubes provide a more feasible
alternative, as we have seen, wherein the iceberg condition is used to specify
the computation of only a subset of the full cube’s cells. However, although
an iceberg cube is smaller and requires less computation time than its corre-
sponding full cube, it is not an ultimate solution. For one, the computation and
storage of the iceberg cube can still be costly. For example, if the base cuboid
cell, (a1, a2, . . . , a60), passes minimum support (or the iceberg threshold), it will
generate 260 iceberg cube cells. Second, it is difficult to determine an appropri-
ate iceberg threshold. Setting the threshold too low will result in a huge cube,
whereas setting the threshold too high may invalidate many useful applications.
Third, an iceberg cube cannot be incrementally updated. Once an aggregate
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cell falls below the iceberg threshold and is pruned, its measure value is lost.
Any incremental update would require recomputing the cells from scratch. This
is extremely undesirable for large real-life applications where incremental ap-
pending of new data is the norm.

One possible solution, which has been implemented in some commercial
data warehouse systems, is to compute a thin cube shell. For example, we
could compute all cuboids with three dimensions or less in a 60-dimensional
data cube, resulting in cube shell of size 3. The resulting set of cuboids would
require much less computation and storage than the full 60-dimensional data
cube. However, there are two disadvantages of this approach. First, we would
still need to compute

(

60

3

)

+
(

60

2

)

+ 60 = 36, 050 cuboids, each with many cells.
Second, such a cube shell does not support high-dimensional OLAP because (1)
it does not support OLAP on four or more dimensions, and (2) it cannot even
support drilling along three dimensions, such as, say, (A4, A5, A6), on a subset
of data selected based on the constants provided in three other dimensions, such
as (A1, A2, A3), because this essentially requires the computation of the corre-
sponding six-dimensional cuboid (notice there is no cell in cuboid (A4, A5, A6)
computed for any particular constant set, such as (a1, a2, a3), associated with
dimensions (A1, A2, A3)).

Instead of computing a cube shell, we can compute only portions or frag-
ments of it. This section discusses the shell fragment approach for OLAP query
processing. It is based on the following key observation about OLAP in high-
dimensional space. Although a data cube may contain many dimensions, most
OLAP operations are performed on only a small number of dimensions at a
time. In other words, an OLAP query is likely to ignore many dimensions (i.e.,
treating them as irrelevant), fix some dimensions (e.g., using query constants as
instantiations), and leave only a few to be manipulated (for drilling, pivoting,
etc.). This is because it is neither realistic nor fruitful for anyone to comprehend
the changes of thousands of cells involving tens of dimensions simultaneously
in a high-dimensional space at the same time. Instead, it is more natural to
first locate some cuboids of interest and then drill along one or two dimensions
to examine the changes of a few related dimensions. Most analysts will only
need to examine, at any one moment, the combinations of a small number of
dimensions. This implies that if multidimensional aggregates can be computed
quickly on a small number of dimensions inside a high-dimensional space, we
may still achieve fast OLAP without materializing the original high-dimensional
data cube. Computing the full cube (or, often, even an iceberg cube or cube
shell) can be excessive. Instead, a semi-on-line computation model with certain
preprocessing may offer a more feasible solution. Given a base cuboid, some
quick preparation computation can be done first (i.e., off-line). After that, a
query can then be computed on-line using the preprocessed data.

The shell fragment approach follows such a semi-on-line computation strat-
egy. It involves two algorithms: one for computing cube shell fragments and
the other for query processing with the cube fragments. The shell fragment
approach can handle databases of high dimensionality and can quickly compute
small local cubes on-line. It explores the inverted index data structure, which
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is popular in information retrieval and Web-based information systems. The
basic idea is as follows. Given a high-dimensional data set, we partition the di-
mensions into a set of disjoint dimension fragments, convert each fragment into
its corresponding inverted index representation, and then construct cube shell
fragments while keeping the inverted indices associated with the cube cells. Us-
ing the precomputed cubes shell fragments, we can dynamically assemble and
compute cuboid cells of the required data cube on-line. This is made efficient
by set intersection operations on the inverted indices.

To illustrate the shell fragment approach, we use the tiny database of Ta-
ble 5.4 as a running example. Let the cube measure be count(). Other mea-
sures will be discussed later. We first look at how to construct the inverted
index for the given database.

Example 5.9 Construct the inverted index. For each attribute value in each dimension,
list the tuple identifiers (TIDs) of all the tuples that have that value. For
example, attribute value a2 appears in tuples 4 and 5. The TIDlist for a2 then
contains exactly two items, namely 4 and 5. The resulting inverted index table
is shown in Table 5.5. It retains all of the information of the original database.
If each table entry takes one unit of memory, Tables 5.4 and 5.5 each takes 25
units, i.e., the inverted index table uses the same amount of memory as the
original database.

“How do we compute shell fragments of a data cube?” The shell fragment
computation algorithm, Frag-Shells, is summarized in Figure 5.14. We first
partition all the dimensions of the given data set into independent groups of
dimensions, called fragments (line 1). We scan the base cuboid and construct
an inverted index for each attribute (lines 2 to 6). Line 3 is for when the
measure is other than the tuple count(), which will be described later. For
each fragment, we compute the full local (i.e., fragment-based) data cube while
retaining the inverted indices (lines 7 to 8). Consider a database of 60 dimen-
sions, namely, A1, A2, . . . , A60. We can first partition the 60 dimensions into
20 fragments of size 3: (A1, A2, A3), (A4, A5, A6), . . ., (A58, A59, A60). For
each fragment, we compute its full data cube while recording the inverted in-
dices. For example, in fragment (A1, A2, A3), we would compute seven cuboids:
A1, A2, A3, A1A2, A2A3, A1A3, A1A2A3. Furthermore, an inverted index is re-
tained for each cell in the cuboids. That is, for each cell, its associated TIDlist

Table 5.4: The original database.
TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3
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Algorithm: Frag-Shells. Compute shell fragments on a given high-dimensional base table
(i.e., base cuboid).

Input: A base cuboid, B, of n dimensions, namely, (A1, . . . , An).

Output:

• a set of fragment partitions, {P1, . . . Pk}, and their corresponding (local) fragment
cubes, {S1, . . . , Sk}, where Pi represents some set of dimension(s) and P1∪. . .∪Pk

make up all the n dimensions

• an ID measure array if the measure is not the tuple count, count()

Method:

(1) partition the set of dimensions (A1, . . . , An) into
a set of k fragments P1, . . . , Pk (based on data & query distribution)

(2) scan base cuboid, B, once and do the following {
(3) insert each 〈TID, measure〉 into ID measure array
(4) for each attribute value aj of each dimension Ai

(5) build an inverted index entry: 〈aj , TIDlist〉
(6) }
(7) for each fragment partition Pi

(8) build a local fragment cube, Si, by intersecting their
corresponding TIDlists and computing their measures

Figure 5.14: Algorithm for shell fragment computation.

is recorded.

The benefit of computing local cubes of each shell fragment instead of com-
puting the complete cube shell can be seen by a simple calculation. For a base
cuboid of 60 dimensions, there are only 7 × 20 = 140 cuboids to be computed
according to the above shell fragment partitioning. This is in contrast to the
36, 050 cuboids computed for the cube shell of size 3 described earlier! Notice
that the above fragment partitioning is based simply on the grouping of con-
secutive dimensions. A more desirable approach would be to partition based on
popular dimension groupings. Such information can be obtained from domain

Table 5.5: The inverted index.
Attribute Value Tuple ID List List Size

a1 {1, 2, 3} 3
a2 {4, 5} 2
b1 {1, 4, 5} 3
b2 {2, 3} 2
c1 {1, 2, 3, 4, 5} 5
d1 {1, 3, 4, 5} 4
d2 {2} 1
e1 {1, 2} 2
e2 {3, 4} 2
e3 {5} 1
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Table 5.6: Cuboid AB.
Cell Intersection Tuple ID List List Size

(a1, b1) {1, 2, 3} ∩ {1, 4, 5} {1} 1
(a1, b2) {1, 2, 3} ∩ {2, 3} {2, 3} 2
(a2, b1) {4, 5} ∩ {1, 4, 5} {4, 5} 2
(a2, b2) {4, 5} ∩ {2, 3} {} 0

Table 5.7: Cuboid DE.
Cell Intersection Tuple ID List List Size

(d1, e1) {1, 3, 4, 5} ∩ {1, 2} {1} 1
(d1, e2) {1, 3, 4, 5} ∩ {3, 4} {3, 4} 2
(d1, e3) {1, 3, 4, 5} ∩ {5} {5} 1
(d2, e1) {2} ∩ {1, 2} {2} 1

experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 5.10 Compute shell fragments. Suppose we are to compute the shell fragments of
size 3. We first divide the five dimensions into two fragments, namely (A, B, C)
and (D, E). For each fragment, we compute the full local data cube by inter-
secting the TIDlists in Table 5.5 in a top-down depth-first order in the cuboid
lattice. For example, to compute the cell (a1, b2, *), we intersect the tuple ID
lists of a1 and b2 to obtain a new list of {2, 3}. Cuboid AB is shown in Table 5.6.

After computing cuboid AB, we can then compute cuboid ABC by inter-
secting all pairwise combinations between Table 5.6 and the row c1 in Table 5.5.
Notice that because cell (a2, b2) is empty, it can be effectively discarded in sub-
sequent computations, based on the Apriori property. The same process can
be applied to compute fragment (D, E), which is completely independent from
computing (A, B, C). Cuboid DE is shown in Table 5.7.

If the measure in the iceberg condition is count() (as in tuple counting),
there is no need to reference the original database for this because the length
of the TIDlist is equivalent to the tuple count. “Do we need to reference the
original database if computing other measures, such as average()?” Actually,
we can build and reference an ID measure array instead, which stores what we
need to compute other measures. For example, to compute average(), we let
the ID measure array hold three elements, namely, (TID, item count, sum),
for each cell (line 3 of the shell computation algorithm). The average() measure
for each aggregate cell can then be computed by accessing only this ID measure
array, using sum()/item count(). Considering a database with 106 tuples, each
taking 4 bytes each for TID, item count, and sum, the ID measure array requires
12 MB, whereas the corresponding database of 60 dimensions will require (60+
3)×4×106 = 252 MB (assuming each attribute value takes 4 bytes). Obviously,
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ID measure array is a more compact data structure and is more likely to fit in
memory than the corresponding high-dimensional database.

To illustrate the design of the ID measure array, let’s look at the following
example.

Example 5.11 Computing cubes with the average() measure. Table 5.8 shows an exam-
ple sales database where each tuple has two associated values, such as item count
and sum, where item count is the count of items sold.

To compute a data cube for this database with the measure average(), we
need to have a TIDlist for each cell: {TID1, . . . , TIDn}. Because each TID
is uniquely associated with a particular set of measure values, all future com-
putation just needs to fetch the measure values associated with the tuples in
the list. In other words, by keeping an ID measure array in memory for on-line
processing, we can handle complex algebraic measures, such as average, vari-
ance, and standard deviation. Table 5.9 shows what exactly should be kept for
our example, which is substantially smaller than the database itself.

The shell fragments are negligible in both storage space and computation
time in comparison with the full data cube. Note that we can also use the
Frag-Shells algorithm to compute the full data cube by including all of the
dimensions as a single fragment. Because the order of computation with respect
to the cuboid lattice is top-down and depth-first (similar to that of BUC), the
algorithm can perform Apriori pruning if applied to the construction of iceberg
cubes.

“Once we have computed the shell fragments, how can they be used to answer
OLAP queries?” Given the precomputed shell fragments, we can view the cube
space as a virtual cube and perform OLAP queries related to the cube on-line.
In general, two types of queries are possible: (1) point query and (2) subcube
query.

In a point query, all of the relevant dimensions in the cube have been
instantiated (that is, there are no inquired dimensions in the relevant set of
dimensions). For example, in an n-dimensional data cube, A1A2 . . . An, a point
query could be in the form of 〈A1, A5, A9 : M?〉, where A1 = {a11, a18}, A5 =
{a52, a55, a59}, A9 = a94, and M is the inquired measure for each correspond-
ing cube cell. For a cube with a small number of dimensions, we can use “*”
to represent a “don’t care” position where the corresponding dimension is ir-

Table 5.8: A database with two measure values.
TID A B C D E item count sum

1 a1 b1 c1 d1 e1 5 70
2 a1 b2 c1 d2 e1 3 10
3 a1 b2 c1 d1 e2 8 20
4 a2 b1 c1 d1 e2 5 40
5 a2 b1 c1 d1 e3 2 30
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relevant, that is, neither inquired nor instantiated. For example, in the query
〈a2, b1, c1, d1, ∗ : count()?〉 for the database in Table 5.4, the first four di-
mension values are instantiated to a2, b1, c1, and d1, respectively, while the
last dimension is irrelevant, and count() (which is the tuple count by context)
is the inquired measure.

In a subcube query, at least one of the relevant dimensions in the cube is
inquired. For example, in an n-dimensional data cube A1A2 . . . An, a subcube
query could be in the form 〈A1, A5?, A9, A21? : M?〉, where A1 = {a11, a18}
and A9 = a94, A5 and A21 are the inquired dimensions, and M is the inquired
measure. For a cube with a small number of dimensions, we can use “∗” for
an irrelevant dimension and “?” for an inquired one. For example, in the query
〈a2, ?, c1, ∗ , ? : count()?〉 we see that the first and third dimension values are
instantiated to a2 and c1, respectively, while the fourth is irrelevant, and the
second and the fifth are inquired. A subcube query computes all possible value
combinations of the inquired dimensions. It essentially returns a local data cube
consisting of the inquired dimensions.

“How can we use shell fragments to answer a point query?” Because a point
query explicitly provides the set of instantiated variables on the set of relevant
dimensions, we can make maximal use of the precomputed shell fragments by
finding the best fitting (that is, dimension-wise completely matching) fragments
to fetch and intersect the associated TIDlists.

Let the point query be of the form 〈αi, αj , αk, αp : M?〉, where αi represents
a set of instantiated values of dimension Ai, and so on for αj , αk, and αp. First,
we check the shell fragment schema to determine which dimensions among Ai,
Aj , Ak, and Ap are in the same fragment(s). Suppose Ai and Aj are in the
same fragment, while Ak and Ap are in two other fragments. We fetch the
corresponding TIDlists on the precomputed 2-D fragment for dimensions Ai

and Aj using the instantiations αi and αj , and fetch the TIDlists on the 1-
D fragments for dimensions Ak and Ap using the instantiations αk and αp,
respectively. The obtained TIDlists are intersected to derive the TIDlist table.
This table is then used to derive the specified measure (e.g., by taking the length
of the TIDlists for tuple count(), or by fetching item count() and sum() from the
ID measure array to compute average()) for the final set of cells.

Example 5.12 Point query. Suppose a user wants to compute the point query, 〈a2, b1,

Table 5.9: ID measure array of
Table 5.8.
TID item count sum

1 5 70
2 3 10
3 8 20
4 5 40
5 2 30
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c1, d1, ∗: count()?〉, for our database in Table 5.4 and that the shell frag-
ments for the partitions (A, B, C) and (D, E) are precomputed as described
in Example 4.10. The query is broken down into two subqueries based on the
precomputed fragments: 〈a2, b1, c1, ∗ , ∗〉 and 〈∗, ∗ , ∗ , d1, ∗〉. The best
fit precomputed shell fragments for the two subqueries are ABC and D. The
fetch of the TIDlists for the two subqueries returns two lists: {4, 5} and {1, 3,
4, 5}. Their intersection is the list {4, 5}, which is of size 2. Thus the final
answer is count() = 2.

“How can we use shell fragments to answer a subcube query?” A subcube
query returns a local data cube based on the instantiated and inquired dimen-
sions. Such a data cube needs to be aggregated in a multidimensional way
so that on-line analytical processing (such as drilling, dicing, pivoting, etc.)
can be made available to users for flexible manipulation and analysis. Because
instantiated dimensions usually provide highly selective constants that dramat-
ically reduce the size of the valid TIDlists, we should make maximal use of the
precomputed shell fragments by finding the fragments that best fit the set of
instantiated dimensions, and fetching and intersecting the associated TIDlists
to derive the reduced TIDlist. This list can then be used to intersect the best-
fitting shell fragments consisting of the inquired dimensions. This will generate
the relevant and inquired base cuboid, which can then be used to compute the
relevant subcube on the fly using an efficient on-line cubing algorithm.

Let the subcubequerybeof the form 〈αi,αj ,Ak?,αp, Aq? : M?〉, whereαi,αj ,
and αp represent a set of instantiated values of dimension Ai, Aj , and Ap, respec-
tively, and Ak and Aq represent two inquired dimensions. First, we check the shell
fragment schema todeterminewhichdimensions among (1)Ai,Aj , andAp, and (2)
among Ak and Aq are in the same fragment partition. Suppose Ai and Aj belong
to the same fragment, as do Ak and Aq, but that Ap is in a different fragment. We
fetch the corresponding TIDlists in the precomputed 2-D fragment for Ai and Aj

using the instantiations αi and αj , then fetch the TIDlist on the precomputed 1-D
fragment for Ap using instantiation αp, and then fetch the TIDlists on the precom-
puted 2-D fragments for Ak and Aq, respectively, using no instantiations (i.e., all
possible values). The obtained TIDlists are intersected to derive the final TIDlists,
which are used to fetch the corresponding measures from the ID measure array to
derive the “base cuboid” of a 2-D subcube for two dimensions (Ak, Aq). A fast
cube computation algorithm can be applied to compute this 2-D cube based on the
derived base cuboid. The computed 2-D cube is then ready for OLAP operations.

Example 5.13 Subcube query. Suppose a user wants to compute the subcube query,
〈a2, b1, ?, ∗ , ? : count()?〉, for our database in Table 5.4, and that the shell
fragments have been precomputed as described in Example 4.10. The query
can be broken into three best-fit fragments according to the instantiated and
inquired dimensions: AB, C, and E, where AB has the instantiation (a2, b1).
The fetch of the TIDlists for these partitions returns: (a2, b1):{4, 5}, (c1):{1, 2,
3, 4, 5}, and {(e1:{1, 2}), (e2:{3, 4}), (e3:{5})}, respectively. The intersection of
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these corresponding TIDlists contains a cuboid with two tuples: {(c1, e2):{4}
5,

(c1, e3):{5}}. This base cuboid can be used to compute the 2-D data cube,
which is trivial.

For large data sets, a fragment size of 2 or 3 typically results in reasonable
storage requirements for the shell fragments and for fast query response time.
Querying with shell fragments is substantially faster than answering queries us-
ing precomputed data cubes that are stored on disk. In comparison to full cube
computation, Frag-Shells is recommended if there are less than four inquired
dimensions. Otherwise, more efficient algorithms, such as Star-Cubing, can be
used for fast on-line cube computation. Frag-Shells can easily be extended to
allow incremental updates, the details of which are left as an exercise.

5.3 Processing Advanced Kinds of Queries by

Exploring Cube Technology

Data cubes are not confined to the simple multidimensional structure illustrated
above for typical business data warehouse applications. The methods described
in this section further develop data cube technology for effective processing of
advanced kinds of queries. Section 5.3.1 explores sampling cubes. This exten-
sion of data cube technology can be used to answer queries on sample data (such
as survey data, which represent a sample or subset of a target data population of
interest). Section 5.3.2 explains how ranking cubes can be computed to answer
top-k queries, such as “find the top 5 cars” according to some user-specified
criteria.

The basic data cube structure has been further extended for various sophis-
ticated types of data and new applications. Here we list some examples, such as
spatial data cubes for the design and implementation of geo-spatial data ware-
houses, and multimedia data cubes for the multidimensional analysis of mul-
timedia data (those containing images and videos). RFID data cubes handle
the compression and multidimensional analysis of RFID (i.e., radio-frequency
identification) data. Text cubes and topic cubes were developed for the appli-
cation of vector-space models and generative language models, respectively, in
the analysis of multidimensional text databases (which contain both structure
attributes and narrative text attributes). Data mining techniques with these
cubes will be introduced in the second volume of this book.

5.3.1 Sampling Cubes: OLAP-based Mining on Sampling

Data

When collecting data, we often collect only a subset of the data we would
ideally like to gather. In statistics, this is know as collecting a sample of the
data population. The resulting data are called sample data. Data are often

5That is, the intersection of the TIDlists for (a2, b1), (c1), and (e2) is {4}.
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sampled to save on costs, manpower, time, and materials. In many applications,
the collection of the entire data population of interest is unrealistic. In the study
of TV ratings or pre-election polls, for example, it is impossible to gather the
opinion of everyone in the population. Most published ratings or polls rely
on a sample of the data for analysis. The results are extrapolated for the
entire population, and associated with certain statistical measures, such as a
confidence interval. The confidence interval tells us how reliable a result is.
Statistical surveys based on sampling are a common tool in many fields, like
politics, healthcare, market research, and social and natural sciences.

“How effective is OLAP on sample data?” OLAP traditionally has the full
data population on hand, yet with sample data, we have only a small subset.
If we try to apply traditional OLAP tools to sample data, we encounter three
challenges. First, sample data are often sparse in the multidimensional sense.
When a user drills down on the data, it is easy to reach a point with very few or
no samples even when the overall sample size is large. Traditional OLAP simply
uses whatever data are available to compute a query answer. To extrapolate
such an answer for a population based on a small sample could be misleading: A
single outlier or a slight bias in the sampling can distort the answer significantly.
Second, with sample data, statistical methods are used to provide a measure
of reliability (such as a confidence interval) to indicate the quality of the query
answer as it pertains to the population. Traditional OLAP is not equipped with
such tools. A sampling cube framework was introduced to tackle each of
the above challenges.

The Sampling Cube Framework

The sampling cube is a data cube structure that stores the sample data and
their multidimensional aggregates. It supports OLAP on sample data. It calcu-
lates confidence intervals as a quality measure, for any multidimensional query.
Given a sample data relation (i.e., base cuboid) R, the sampling cube CR typ-
ically computes the sample mean, sample standard deviation, and other task-
specific measures. A confidence interval is associated with each computed
measure.

In statistics, a confidence interval is used to indicate the reliability of an
estimate. Suppose we want to estimate the mean age of all viewers of a given
TV show. We have sample data (a subset) of this data population. Let’s say our
sample mean is 35 years. This becomes our estimate for the entire population
of viewers as well, but how confident can we be that 35 is also the mean of the
true population? It is unlikely that the sample mean will be exactly equal to the
true population mean because of sampling error. Therefore, we need to qualify
our estimate in some way to indicate the general magnitude of this error. This
is typically done by computing a confidence interval, which is an estimated
range of values with a given high probability of covering the true population value.
A confidence interval for our example could be “the actual mean will not vary
by +/- two standard deviations 95% of the time”. (Recall that the standard
deviation is just a number, which can be computed as shown in Section 2.2.2.)
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A confidence interval is always qualified by a particular confidence level. In our
example, it is 95%.

The confidence interval is calculated as follows. Let x be a set of samples.
The mean of the samples is denoted by x̄, and the number of samples in x
is denoted by l. Assuming that the standard deviation of the population is
unknown, the sample standard deviation of x is denoted by s. Given a desired
confidence level, the confidence interval for x̄ is

x̄ ± tcσ̂x̄ (5.1)

where tc is the critical t-value associated with the confidence level and σ̂x̄ = s√
l

is the estimated standard error of the mean. To find the appropriate tc, we
specify the desired confidence level (e.g., 95%) and also the degree of freedom,
which is just l − 1.

The important thing to note is that the computation involved in computing
a confidence interval is algebraic. Let’s look at the three terms involved in
Equation (5.1). The first is the mean of the sample set, x̄, which is algebraic;
the second is the critical t-value, which is calculated by a lookup, and with
respect to x, it depends on l, a distributive measure; and the third is σ̂x̄ = s√

l
,

which also turns out to be algebraic if one records the linear sum (
∑l

i=1
xi)

and squared sum (
∑l

i=1
x2

i ). Because the terms involved are either algebraic or
distributive, the confidence interval computation is algebraic. Actually, since
both the mean and confidence interval are algebraic, at every cell, exactly three
values are sufficient to calculate them—all of which are either distributive or
algebraic. These are:

1. l

2. sum =
∑l

i=1
xi

3. squared sum =
∑l

i=1
x2

i

There are many efficient techniques for computing algebraic and distributive
measures (Section 4.2.5). Therefore, any of the previously developed cubing
algorithms can be used to efficiently construct a sampling cube.

Now that we have established that sampling cubes can be computed effi-
ciently, our next step is to find a way of boosting the confidence of results
obtained for queries on sample data.

Query Processing: Boosting Confidences for Small Samples

A query posed against a data cube can be either a point query or a range
query. Without loss of generality, consider the case of a point query. Here, it
corresponds to a cell in sampling cube CR. The goal is to provide an accurate
point estimate for the samples in that cell. Because the cube also reports the
confidence interval associated with the sample mean, there is some measure
of “reliability” to the returned answer. If the confidence interval is small, the
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reliability is deemed good; however, if the interval is large, the reliability is
questionable.

“What can we do to boost the reliability of query answers?” Consider what
affects the size of the confidence interval. There are two main factors – the
variance of the sample data, and the sample size. First, a rather large variance
in the cell may indicate that the chosen cube cell is poor for prediction. A
better solution is probably to drill down on the query cell to a more specific
one, i.e., asking more specific queries. Second, a small sample size can cause a
large confidence interval. When there are very few samples, the corresponding
tc is large because of the small degree of freedom. This in turn could cause a
large confidence interval. Intuitively, this makes sense. Suppose one is trying to
figure out the average income of people in the United States. Just asking two
or three people does not give much confidence to the returned response.

The best way to solve this small sample size problem is to get more data.
Fortunately, there is usually an abundance of additional data available in the
cube. The data do not match the query cell exactly, however, we can consider
data from cells that are “close by”. There are two ways to incorporate such data
to enhance the reliability of the query answer: (i) intra-cuboid query expansion,
where we consider nearby cells within the same cuboid, and (ii) inter-cuboid
query expansion, where we consider more general versions (from parent cuboids)
of the query cell. Let’s see how this works, starting with intra-cuboid query
expansion.

Method 1. Intra-cuboid query expansion. Here, we expand the sample
size by including nearby cells in the same cuboid as the queried cell, as shown
in Figure 5.15(a). We just have to be careful that the new samples serve to
increase the confidence in the answer without changing the semantics of the
query.

So, the first question is “Which dimensions should be expanded?” The best
candidates should be the dimensions that are uncorrelated or weakly correlated
with the measure value (i.e., the value to be predicted). Expanding within these
dimensions will likely increase the sample size and not shift the answer of the
query. Consider an example of a 2-D query specifying Education = “College”
and Birth Month = “July”. Let the cube measure be average Income. Intu-
itively, education has a high correlation to income while birth month does not.
It would be harmful to expand the Education dimension to include values such
as “Graduate” or “High School.” They are likely to alter the final result. How-
ever, expansion in the Birth Month dimension to include other month values
could be helpful, because it is unlikely to change the result but will increase
sampling size.

To mathematically measure the correlation of a dimension to the cube value,
the correlation between the dimension’s values and their aggregated cube mea-
sures is computed. Pearson’s correlation coefficient for numeric data and the
χ2 correlation test for nominal data are popularly used correlation measures, al-
though many other measures, such as covariance, can be used. (These measures
were presented in Section 3.3.2.) A dimension that is strongly correlated with
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(Age, Occupation) cuboid

(a) Intra-cuboid expansion
Age cuboid Occupation cuboid

(Age, Occupation) cuboid (b) Inter-cuboid expansion

Figure 5.15: Query expansion within sampling cube: Given samll data samples,
both methods use strategies to boost the reliability of query answers by consid-
ering additional data cell values. (a) Intra-cuboid expansion considers nearby
cells in the same cuboid as the queried cell. (b) Inter-cuboid expansion considers
more general cells from parent cuboids.

the value to be predicted should not be a candidate for expansion. Notice that
since the correlation of a dimension with the cube measure is independent of a
particular query, it should be precomputed and stored with the cube measure
to facilitate efficient online analysis.

After selecting dimensions for expansion, the next question is “Which values
within these dimensions should the expansion use?” This relies on the semantic
knowledge of the dimensions in question. The goal should be to select seman-
tically similar values in order to minimize the risk of altering the final result.
Consider the Age dimension – similarity of values in this dimension is clear.
There is a definite (numeric) order to the values. Dimensions with numeric
or ordinal (ranked) data (like Education) have a definite ordering among data
values. Therefore, we can select values that are close to the instantiated query
value. For nominal data of a dimension that is organized in a multilevel hier-
archy in a data cube (such as Location), we should select those values located
in the same branch of the tree (such as in the same district or city).

By considering additional data during query expansion, we are aiming for
a more accurate and reliable answer. As mentioned above, strongly correlated
dimensions are precluded from expansion for this purpose. An additional strat-
egy is to ensure that new samples share the “same” cube measure value (e.g.,
mean income) as the existing samples in the query cell. The two sample t-test
is a relatively simple statistical method that can be used to determine whether
two samples have the same mean (or any other point estimate), where “same”
means that they do not differ significantly. (It is described in greater detail in
Section 8.5.5 on estimating confidence intervals.) The test determines whether
two samples have the same mean (the null hypothesis) with the only assumption
being that they are both normally distributed. The test fails if there is evidence
that the two samples do not share the same mean. Furthermore, the test can be
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performed with a confidence level as an input. This allows the user to control
how strict or loose the query expansion will be.

The next example shows how the strategies described above for intra-cuboid
expansion can be used to answer a query on sample data.

Example 5.14 Intra-cuboid query expansion to answer a query on sample data. Con-
sider a book retailer trying to learn more about its customers’ annual income
levels. In Table 5.10, a sample of the survey data collected is shown6. In
the survey, customers are segmented by four attributes, namely Gender, Age,
Education, and Occupation.

Gender Age Education Occupation Income

Female 23 College Teacher $85,000
Female 40 College Programmer $50,000
Female 31 College Programmer $52,000
Female 50 Graduate Teacher $90,000
Female 62 Graduate CEO $500,000
Male 25 Highschool Programmer $50,000
Male 28 Highschool CEO $250,000
Male 40 College Teacher $80,000
Male 50 College Programmer $45,000
Male 57 Graduate Programmer $80,000

Table 5.10: Sample customer survey data.

Let a query on customer income be “Age = 25”, where the user specifies a
95% confidence level. Suppose this returns an Income value of $50,000 with a
rather large confidence interval7. Suppose also, that this confidence interval is
larger than a preset threshold and that the Age dimension was found to have
little correlation with Income in this dataset. Therefore, intra-cuboid expansion
starts within the Age dimension. The nearest cell is “Age = 23,” which returns
an Income of $85,000. The two sample t-test at the 95% confidence level passes
so the query expands; it is now “Age = {23, 25}” with a smaller confidence
interval than initially. However, it is still larger than the threshold so expansion
continues to the next nearest cell: “Age = 28”, which returns an Income of
$250,000. The two sample t-test between this cell and the original query cell
fails; as a result, it is ignored. Next, “Age = 31” is checked and it passes the
test. The confidence interval of the three cells combined is now below the
threshold and the expansion finishes at “Age = {23, 25, 31}.” The mean of
the Income values at these three cells is 85,000+50,000+52,000

3
= $62, 333, which is

returned as the query answer. It has a smaller confidence interval and thus is

6For the sake of illustration, ignore the fact that the sample size is too small to be
statistically significant.

7For the sake of the example, suppose this is true even though there is only one sample.
In practice, more points are needed to calculate a legitimate value.
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more reliable than the response of $50,000, which would have been returned if
intra-cuboid expansion had not been considered.

Method 2. Inter-cuboid query expansion. In this case, the expansion
occurs by looking to a more general cell, as shown in Figure 5.15(b). For
example, the cell in the 2-D cuboid Age-Occupation can use its parent in either
of the 1-D cuboids, Age or Occupation. Think of inter-cuboid expansion as
just an extreme case of intra-cuboid expansion, where all the cells within a
dimension are used in the expansion. This essentially sets the dimension to ∗
and thus generalizes to a higher level cuboid.

A k-dimensional cell has k direct parents in the cuboid lattice, where each
parent is (k − 1)-dimensional. There are many more ancestor cells in the data
cube (e.g., if multiple dimensions are rolled up simultaneously). However, we
choose only one parent here to make the search space tractable and to limit the
change in the semantics of the query. As with intra-cuboid query expansion,
correlated dimensions are not allowed in inter-cuboid expansions. Within the
uncorrelated dimensions, the two sample t-test can be performed to confirm that
the parent and the query cell share the same sample mean. If multiple parent
cells pass the test, the confidence level of the test can be adjusted progressively
higher until only one passes. Alternatively, multiple parent cells can be used
to boost the confidence simultaneously. The choice is application dependent.

Example 5.15 Inter-cuboid expansion to answer a query on sample data. Given the
input relation in Table 5.10, let the query on Income be “Occupation= Teacher
∧ Gender = Male.” There is only one sample in Table 5.10 that matches the
query, and it has an Income of $80,000. Suppose the corresponding confidence
interval is larger than a preset threshold. We use inter-cuboid expansion to find
a more reliable answer. There are two parent cells in the data cube: “Gender =
Male” and “Occupation = Teacher.” By moving up to “Gender = Male” (and
thus setting Occupation to ∗), the mean Income is $101,000. A two sample
t-test reveals that this parent’s sample mean differs significantly from that of
the original query cell, so it is ignored. Next, “Occupation = Teacher” is
considered. It has a mean Income of $85,000 and passes the two sample t-test.
As a result, the query is expanded to “Occupation = Teacher” and an Income

value of $85,000 is returned with acceptable reliability.

“How can we determine which method to choose – intra-cuboid expansion or
inter-cuboid expansion?” This is difficult to answer without knowing the data
and the application. A strategy for choosing between the two is to consider
what the tolerance is for change in the semantics of the query. This depends
on the specific dimensions chosen in the query. For instance, the user might
tolerate a bigger change in semantics for the Age dimension than Education.
The difference in tolerance could be so large that the user is willing to set Age
to ∗ (i.e., inter-cuboid expansion) rather than letting Education change at all.
Domain knowledge is helpful here.
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So far, our discussion has only focused on full materialization of the sam-
pling cube. In many real-world problems, this is often impossible, especially for
high dimensional cases. Real-world survey data, for example, can easily contain
over 50 variables (i.e., dimensions). The sampling cube size would grow expo-
nentially with the number of dimensions. To handle high-dimensional data, a
sampling cube method called Sampling Cube Shell was developed. It integrates
the Frag-Shell method of Section 5.2.4 with the query expansion approach dis-
cussed above. The shell computes only a subset of the full sampling cube. The
subset should consist of relatively low dimensional cuboids (that are commonly
queried) and cuboids that offer the most benefit to the user. The details are left
to interested readers as an exercise. The method was tested on both real and
synthetic data and found to be efficient and effective in answering queries.

5.3.2 Ranking Cubes: Efficient Computation of Top-k Queries

The data cube helps not only online analytical processing of multidimensional
queries but also search and data mining. In this section, we introduce a new cube
structure called Ranking Cube and examine how it contributes to the efficient
processing of top-k queries. Instead of returning a large set of indiscriminative
answers to a query, a top-k query (or ranking query) returns only the best
k results according to a user-specified preference. The results are returned in
ranked order, so that the best is at the top. The user-specified preference gen-
erally consists of two components: a selection condition and a ranking function.
Top-k queries are common in many applications like searching Web databases,
k-nearest neighbor searches with approximate matches, and similarity queries
in multimedia databases.

An example of a top-k query is as follows.

Example 5.16 A top-k query. Consider an online used car database, R, that maintains the
following information for each car: maker (e.g., Ford, Honda), model (e.g., Tau-
rus, Honda), type (e.g., sedan, convertible), color (e.g., red, silver), transmission
(e.g., auto, manual), price, mileage, and so on. A typical top-k query over this
database is:

Q1: select top 5 * from R
where maker = “Ford” and type = “sedan”
order by (price − 10K)2 + (mileage− 30K)2 asc

Within the dimensions (or attributes) for R, maker and type are used here
as selection dimensions. The ranking function is given in the “order by”
clause. It specifies the ranking dimensions, price and mileage. Q1 searches
for the top-5 sedans made by Ford. The entries found are ranked or sorted
in ascending (“asc”) order, according to the ranking function. The ranking
function is formulated so that entries whose price and mileage are closest to the
user’s specified values of $10K and 30K, respectively, appear towards the top
of the list.

The database may have many dimensions that could be used for selection,
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describing, for example, whether a car has power windows, air conditioning,
or a sunroof. Users may pick any subset of dimensions and issue a top-k
query using their preferred ranking function. There are many other similar
application scenarios. For example, when searching for hotels, ranking functions
are often constructed based on price and distance to an area of interest. Selection
conditions can be imposed on, say, the hotel location district, the star rating, and
whether the hotel offers complimentary treats or Internet access. The ranking
functions may be linear, quadratic or any other form.

As shown in the above examples, individual users may not only propose ad
hoc ranking functions, but also have different data subsets of interest. Users
often want to thoroughly study the data via multi-dimensional analysis of the
top-k query results. For example, if unsatisfied by the top-5 results returned by
Q1, the user may roll up on the maker dimension to check the top-5 results on
all sedans. The dynamic nature of the problem imposes a great challenge to
researchers. OLAP requires off-line pre-computation so that multi-dimensional
analysis can be performed on the fly, yet the ad-hoc ranking functions prohibit
full materialization. A natural compromise is to adopt a semi off-line material-
ization and semi online computation model.

Suppose a relation R has selection dimensions (A1, A2, . . . , AS) and ranking
dimensions (N1, N2, . . . , NR). Values in each ranking dimension can be parti-
tioned into multiple intervals according to the data and expected query distri-
butions. Regarding the price of used cars, for example, we may have, say, these
four partitions (or value ranges): ≤ 5K, [5 − 10K), [10 − 15K), and ≥ 15K.
A ranking cube can be constructed by performing multidimensional aggrega-
tions on selection dimensions. We can store the count for each partition of each
ranking dimension, thereby making the cube “rank-aware”. The top-k queries
can be answered by first accessing the cells in the more preferred value ranges
before consulting the cells in the less preferred value ranges.

Example 5.17 Using a ranking cube to answer a top-k query. Suppose Table 5.11
shows CMT , a materialized (i.e., precomputed) cuboid of a ranking cube for
used car sales. The cuboid, CMT , is for the selection dimensions maker and
type. It shows the count and corresponding transaction ID numbers (TIDs) for
various partitions of the ranking dimensions, price and mileage.

Maker Type Price Mileage count TIDs
Ford sedan <5K 30-40K 7 t6, . . . , t68
Ford sedan 5-10K 30-40K 50 t15, . . . , t152

Honda sedan 10-15K 30-40K 20 h8, . . . , h32

. . . . . . . . . . . . . . . . . .

Table 5.11: A cuboid of a ranking cube
for used car sales.

Query Q1 can be answered by using a selection condition to select the ap-
propriate selection dimension values (i.e., maker = “Ford” and type = “sedan”)



42 CHAPTER 5. DATA CUBE TECHNOLOGY

in cuboid CMT . In addition, the ranking function “(price−10K)2 +(mileage−
30K)2” is used to find those tuples that most closely match the user’s criteria.
If there are not enough matching tuples found in the closest matching cells,
the next closest matching cells will need to be accessed. We may even drill
down to the corresponding lower level cells to see the count distributions of cells
that match the ranking function and additional criteria regarding, say, model,
maintenance situation, or other loaded features. Only users who really want to
see more detailed information, such as interior photos, will need to access the
physical records stored in the database.

Most real life top-k queries are likely to involve only a small subset of selec-
tion attributes. To support high-dimensional ranking cubes, we can carefully
select the cuboids that need to be materialized. For example, we could choose
to materialize only the 1-D cuboids that contain single selection dimensions.
This will achieve low space overhead and still have high performance when the
number of selection dimensions is large. In some cases, there may exist many
ranking dimensions to support multiple users with rather different preferences.
For example, buyers may search for houses by considering various factors like
price, distance to school or shopping, number of years old, floor space, and tax.
In this case, a possible solution is to create multiple data partitions, each of
which consists of a subset of the ranking dimensions. The query processing may
need to search over a joint space involving multiple data partitions.

In summary, the general philosophy of ranking cubes is to materialize such
cubes on the set of selection dimensions. Use of the interval-based partitioning in
ranking dimensions makes the ranking cube efficient and flexible at supporting
ad hoc user queries. Various implementation techniques and query optimization
methods have been developed for efficient computation and query processing
based on this framework.

5.4 Multidimensional Data Analysis in Cube Space

Data cubes create a flexible and powerful means to group and aggregate subsets
of data. They allow data to be explored in multiple dimensional combinations
and at varying aggregate granularities. This capability greatly increases the
analysis bandwidth and helps effective discovery of interesting patterns and
knowledge from data. The use of cube space makes the data space both mean-
ingful and tractable.

This section presents methods of multidimensional data analysis that make
use of data cubes to organize data into intuitive regions of interest at varying
granularities. Section 5.4.1 presents prediction cubes, a technique for multidi-
mensional data mining that facilitates predictive modeling in multidimensional
space. Section 5.4.2 describes how to construct multifeature cubes. These
support complex analytical queries involving multiple dependent aggregates at
multiple granularities. Finally, Section 5.4.3 describes an interactive method for
users to systematically explore cube space. In such exception-based discovery-
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driven exploration, interesting exceptions or anomalies in the data are automat-
ically detected and marked for users with visual cues.

5.4.1 Prediction Cubes: Prediction Mining in Cube Space

Recently, researchers have turned their attention towards multidimensional
data mining to uncover knowledge at varying dimensional combinations and
granularities. Such mining is also known as exploratory multidimensional data
mining and online analytical data mining (OLAM). Multidimensional data space
is huge. In preparing the data, how can we identify the interesting subspaces
for exploration? To what granularities should we aggregate the data? Multi-
dimensional data mining in cube space organizes data of interest into intuitive
regions at various granularities. It analyzes and mines the data by applying
various data mining techniques systematically over these regions.

There are at least four ways in which OLAP-style analysis can be fused with
data mining techniques:

1. Use cube space to define the data space for mining. Each region in cube
space represents a subset of data over which we wish to find interesting
patterns. Cube space is defined by a set of expert-designed, informative
dimension hierarchies, not just a set of arbitrary subsets of data. There-
fore, the use of cube space makes the data space both meaningful and
tractable.

2. Use OLAP queries to generate features and targets for mining. The fea-
tures and even the targets (that we wish to learn to predict) can some-
times be naturally defined as OLAP aggregate queries over regions in cube
space.

3. Use data-mining models as building blocks in a multi-step mining process.
Multidimensional data mining in cube space may consist of multiple steps,
where data-mining models can be viewed as building blocks that are used
to describe the behavior of interesting data sets, rather than the end re-
sults.

4. Use data-cube computation techniques to speed up repeated model construc-
tion. Multidimensional data mining in cube space may require build-
ing a model for each candidate data space, which is usually too expen-
sive to be feasible. However, by carefully sharing computation across
model-construction for different candidates based on data-cube computa-
tion techniques, efficient mining is achievable.

In this section we study prediction cubes, an example of multidimensional
data mining where the cube space is explored for prediction tasks. A prediction
cube is a cube structure that stores prediction models in multidimensional data
space and supports prediction in an OLAP manner. Recall that in a data cube,
each cell value is an aggregate number (e.g., count) computed over the subset
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of data in that cell. However, each cell value in a prediction cube is computed
by evaluating a predictive model built on the subset of data in that cell, thereby
representing the predictive behavior of that subset. Instead of seeing prediction
models as the end result, prediction cubes use prediction models as building
blocks to define the interestingness of subsets of data, that is, they identify
subsets of data that indicate more accurate prediction.

This is best explained with an example.

Example 5.18 Prediction cube for identification of interesting cube subspaces. Sup-
pose a company has a customer table with the attributes: Time (with two
levels of granularity: Month and Year), Location (with two levels of granu-
larity: State and Country), Gender, Salary, and one class-label attribute:
Valued Customer. A manager wants to analyze the decision process of whether
a customer is highly-valued with respect to Time and Location. In particular,
he is interested in the question: “Are there times and locations in which the
value of a customer depended greatly on the customers gender?” Notice that he
believes Time and Location play a role in predicting valued customers, but at
what levels of granularity do they depend on Gender for this task? For example,
is performing analysis using {Month, Country} better than {Year, State}?

Consider a data table D (e.g., the Customer table). Let X be the set
of attributes for which no concept hierarchy has been defined (e.g., Gender,
Salary). Let Y be the class-label attribute (e.g., Valued Customer), and Z be
the set of multilevel attributes, that is, attributes for which concept hierarchies
have been defined (e.g., Time, Location). Let V be the set of attributes for
which we would like to define their predictiveness. In our example, this set is
{Gender}. The predictiveness of V on a subset of data can be quantified
by the difference in accuracy between the model built on that subset using X
to predict Y and the model built on that subset using X − V (e.g., {Salary})
to predict Y. The intuition is that, if the difference is large, V must play an
important role in the prediction of class label Y.

Given a set of attributes V, and a learning algorithm, the prediction cube
at granularity 〈l1, . . . , ld〉 (e.g., 〈Y ear, State〉) is a d-dimensional array, in which
the value in each cell (e.g., [2010, Illinois]) is the predictiveness of V evaluated
on the subset defined by the cell (e.g., the records in the Customer table with
Time in 2010 and Location in Illinois).

Supporting OLAP roll-up and drill-down operations on a prediction cube is
a computational challenge requiring the materialization of cell values at many
different granularities. For simplicity, we can consider only full materializa-
tion. A näıve way to fully materialize a prediction cube is to exhaustively
build models and evaluate them for each cell and for each granularity. This
method is very expensive if the base dataset is large. An ensemble method
called Probability-Based Ensemble (PBE) was developed as a more feasi-
ble alternative. It requires model construction for only the finest-grained cells.
OLAP-style bottom-up aggregation is then used to generate the values of the
coarser-grained cells.
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The prediction of a predictive model can be seen as finding a class label that
maximizes a scoring function. PBE was developed to approximately make the
scoring function of any predictive model distributively decomposable. In our
discussion of data cube measures in Section 4.5.2, we showed that distributive
and algebraic measures can be computed efficiently. Therefore, if the scoring
function used is distributively or algebraically decomposable, prediction cubes
can also be computed with efficiency. In this way, the PBE method reduces
prediction cube computation to data cube computation. For example, pre-
vious studies have shown that the näıve Bayes classifier has an algebraically
decomposable scoring function, and the kernel density-based classifier has a dis-
tributively decomposable scoring function8. Therefore, either of these could
be used to implement prediction cubes efficiently. The PBE method presents a
novel approach to multidimensional data mining in cube space.

5.4.2 Multifeature Cubes: Complex Aggregation at Mul-

tiple Granularities

Data cubes facilitate the answering of analytical or mining-oriented queries as
they allow the computation of aggregate data at multiple levels of granular-
ity. Traditional data cubes are typically constructed on commonly-used dimen-
sions (like time, location, and product) using simple measures (like count,
average, and sum). In this section, you will learn a newer way to define data
cubes called multifeature cubes. Multifeature cubes enable more in-depth
analysis. They can compute more complex queries whose measures depend on
groupings of multiple aggregates at varying levels of granularity. The queries
posed can be much more elaborate and task-specific than traditional queries, as
we shall illustrate in the next examples. Many complex data mining queries can
be answered by multifeature cubes without significant increase in computational
cost, in comparison to cube computation for simple queries with traditional data
cubes.

To illustrate the idea of multifeature cubes, let’s first look at an example of
a query on a simple data cube.

Example 5.19 A simple data cube query. Let the query be “find the total sales in 2010,
broken down by item, region, and month, with subtotals for each dimension”.
To answer this query, a traditional data cube is constructed that aggregates the
total sales at the following eight different levels of granularity: {(item, region,
month), (item, region), (item, month), (month, region), (item), (month), (re-
gion), ()}, where () represents all. This data cube is a simple in that it does not
involve any dependent aggregates.

To illustrate what is mean by ‘dependent aggregates’, let’s examine a more
complex query, which can be computed with a multifeature cube.

8Näıve Bayes classifiers are detailed in Chapter 8. Kernel density-based classifiers, such as
support vector machines, are described in Chapter 9.
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Example 5.20 A complex query involving dependent aggregates. Suppose the query
is “grouping by all subsets of {item, region, month}, find the maximum price in
2010 for each group and the total sales among all maximum price tuples”.

The specification of such a query using standard SQL can be long, repeti-
tive, and difficult to optimize and maintain. Alternatively, it can be specified
concisely using an extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases
where year = 2010
cube by item, region, month: R
such that R.price = max(price)

The tuples representing purchases in 2010 are first selected. The cube by
clause computes aggregates (or group-by’s) for all possible combinations of the
attributes item, region, and month. It is an n-dimensional generalization of
the group by clause. The attributes specified in the cube by clause are the
grouping attributes. Tuples with the same value on all grouping attributes
form one group. Let the groups be g1, . . . , gr. For each group of tuples gi, the
maximum price maxgi

among the tuples forming the group is computed. The
variable R is a grouping variable, ranging over all tuples in group gi whose
price is equal to maxgi

(as specified in the such that clause). The sum of
sales of the tuples in gi that R ranges over is computed and returned with the
values of the grouping attributes of gi. The resulting cube is a multifeature cube
in that it supports complex data mining queries for which multiple dependent
aggregates are computed at a variety of granularities. For example, the sum of
sales returned in this query is dependent on the set of maximum price tuples
for each group. In general, multifeature cubes give users the flexibility to define
sophisticated, task-specific cubes on which multidimensional aggregation and
OLAP-based mining can be performed.

“How can multifeature cubes be computed efficiently?” The computation of
a multifeature cube depends on the types of aggregate functions used in the
cube. In Chapter 4, we saw that aggregate functions can be categorized as
either distributive, algebraic, or holistic. Multifeature cubes can be organized
into the same categories and computed efficiently by minor extension of the
cube computation methods of Section 5.2.

5.4.3 Exception-Based Discovery-Driven Exploration of Cube

Space

As studied in previous sections, a data cube may have a large number of cuboids,
and each cuboid may contain a large number of (aggregate) cells. With such an
overwhelmingly large space, it becomes a burden for users to even just browse a
cube, let alone think of exploring it thoroughly. Tools need to be developed to
assist users in intelligently exploring the huge aggregated space of a data cube.
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In this section, we describe a discovery-driven approach to exploring cube
space. Precomputed measures indicating data exceptions are used to guide the
user in the data analysis process, at all levels of aggregation. We hereafter
refer to these measures as exception indicators. Intuitively, an exception is
a data cube cell value that is significantly different from the value anticipated,
based on a statistical model. The model considers variations and patterns in the
measure value across all of the dimensions to which a cell belongs. For example,
if the analysis of item-sales data reveals an increase in sales in December in
comparison to all other months, this may seem like an exception in the time
dimension. However, it is not an exception if the item dimension is considered,
since there is a similar increase in sales for other items during December. The
model considers exceptions hidden at all aggregated group-by’s of a data cube.
Visual cues such as background color are used to reflect the degree of exception of
each cell, based on the precomputed exception indicators. Efficient algorithms
have been proposed for cube construction, as discussed in Section 5.2. The
computation of exception indicators can be overlapped with cube construction,
so that the overall construction of data cubes for discovery-driven exploration
is efficient.

Three measures are used as exception indicators to help identify data anoma-
lies. These measures indicate the degree of surprise that the quantity in a cell
holds, with respect to its expected value. The measures are computed and
associated with every cell, for all levels of aggregation. They are as follows:

• SelfExp: This indicates the degree of surprise of the cell value, relative
to other cells at the same level of aggregation.

• InExp: This indicates the degree of surprise somewhere beneath the cell,
if we were to drill down from it.

• PathExp: This indicates the degree of surprise for each drill-down path
from the cell.

The use of these measures for discovery-driven exploration of data cubes is
illustrated in the following example.

Example 5.21 Discovery-driven exploration of a data cube. Suppose that you would
like to analyze the monthly sales at AllElectronics as a percentage difference
from the previous month. The dimensions involved are item, time, and region.
You begin by studying the data aggregated over all items and sales regions for
each month, as shown in Figure 5.16.

To view the exception indicators, you would click on a button marked high-
light exceptions on the screen. This translates the SelfExp and InExp values into
visual cues, displayed with each cell. The background color of each cell is based
on its SelfExp value. In addition, a box is drawn around each cell, where the
thickness and color of the box are a function of its InExp value. Thick boxes
indicate high InExp values. In both cases, the darker the color, the greater the
degree of exception. For example, the dark, thick boxes for sales during July,
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August, and September signal the user to explore the lower-level aggregations
of these cells by drilling down.

Drill-downs can be executed along the aggregated item or region dimensions.
“Which path has more exceptions?” you wonder. To find this out, you select a
cell of interest and trigger a path exception module that colors each dimension
based on the PathExp value of the cell. This value reflects the degree of surprise
of that path. Suppose that the path along item contains more exceptions.

A drill-down along item results in the cube slice of Figure 5.17, showing
the sales over time for each item. At this point, you are presented with many
different sales values to analyze. By clicking on the highlight exceptions button,
the visual cues are displayed, bringing focus toward the exceptions. Consider
the sales difference of 41% for “Sony b/w printers” in September. This cell has
a dark background, indicating a high SelfExp value, meaning that the cell is an
exception. Consider now the sales difference of −15% for “Sony b/w printers”
in November, and of −11% in December. The −11% value for December is
marked as an exception, while the −15% value is not, even though −15% is a
bigger deviation than −11%. This is because the exception indicators consider
all of the dimensions that a cell is in. Notice that the December sales of most
of the other items have a large positive value, while the November sales do not.
Therefore, by considering the position of the cell in the cube, the sales difference
for “Sony b/w printers” in December is exceptional, while the November sales
difference of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are
not visible at the current level. Consider the cells for “IBM desktop computers”
in July and September. These both have a dark, thick box around them, indi-
cating high InExp values. You may decide to further explore the sales of “IBM
desktop computers” by drilling down along region. The resulting sales difference
by region is shown in Figure 5.18, where the highlight exceptions option has been
invoked. The visual cues displayed make it easy to instantly notice an exception
for the sales of “IBM desktop computers” in the southern region, where such
sales have decreased by −39% and −34% in July and September, respectively.
These detailed exceptions were far from obvious when we were viewing the data
as an item-time group-by, aggregated over region in Figure 5.17. Thus, the
InExp value is useful for searching for exceptions at lower-level cells of the cube.

“How are the exception values computed?” The SelfExp, InExp, and PathExp

Sum of sales Month

Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1% −1% 0% 1% 3% −1% −9% −1% 2% −4% 3%

Figure 5.16: Change in sales over time.
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Figure 5.17: Change in sales for each item-time combination.

Avg. sales Month

North

South

East

West

JanRegion Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−1%

−1%

−1%

4%

−3%

1%

−2%

0%

−1%

−9%

2%

−1%

0%

6%

−3%

−3%

3%

−1%

1%

5%

4%

−39%

18%

1%

−7%

9%

−2%

−18%

1%

−34%

11%

8%

0%

4%

−3%

5%

−3%

1%

−2%

−8%

−3%

7%

−1%

1%

Figure 5.18: Change in sales for the item IBM desktop computer per region.

measures are based on a statistical method for table analysis. They take into
account all of the group-by’s (aggregations) in which a given cell value partic-
ipates. A cell value is considered an exception based on how much it differs
from its expected value, where its expected value is determined with a statis-
tical model described below. The difference between a given cell value and its
expected value is called a residual. Intuitively, the larger the residual, the more
the given cell value is an exception. The comparison of residual values requires
us to scale the values based on the expected standard deviation associated with
the residuals. A cell value is therefore considered an exception if its scaled resid-
ual value exceeds a prespecified threshold. The SelfExp, InExp, and PathExp
measures are based on this scaled residual.

The expected value of a given cell is a function of the higher-level group-by’s
of the given cell. For example, given a cube with the three dimensions A, B,
and C, the expected value for a cell at the ith position in A, the jth position
in B, and the kth position in C is a function of γ, γ A

i , γ B
j , γ C

k , γ AB
ij , γ AC

ik ,

and γ BC
jk , which are coefficients of the statistical model used. The coefficients

reflect how different the values at more detailed levels are, based on generalized
impressions formed by looking at higher-level aggregations. In this way, the
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exception quality of a cell value is based on the exceptions of the values below
it. Thus, when seeing an exception, it is natural for the user to further explore
the exception by drilling down.

“How can the data cube be efficiently constructed for discovery-driven explo-
ration?” This computation consists of three phases. The first step involves the
computation of the aggregate values defining the cube, such as sum or count,
over which exceptions will be found. The second phase consists of model fitting,
in which the coefficients mentioned above are determined and used to compute
the standardized residuals. This phase can be overlapped with the first phase
because the computations involved are similar. The third phase computes the
SelfExp, InExp, and PathExp values, based on the standardized residuals. This
phase is computationally similar to phase 1. Therefore, the computation of data
cubes for discovery-driven exploration can be done efficiently.

5.5 Summary

• Data cube computation and exploration play an essential role in
data warehousing and are important for flexible data mining in multidi-
mensional space.

• A data cube consists of a lattice of cuboids. Each cuboid corresponds
to a different degree of summarization of the given multidimensional data.
Full materialization refers to the computation of all of the cuboids
in a data cube lattice. Partial materialization refers to the selective
computation of a subset of the cuboid cells in the lattice. Iceberg cubes
and shell fragments are examples of partial materialization. An iceberg
cube is a data cube that stores only those cube cells whose aggregate
value (e.g., count) is above some minimum support threshold. For shell
fragments of a data cube, only some cuboids involving a small number of
dimensions are computed, and queries on additional combinations of the
dimensions can be computed on the fly.

• There are several efficient data cube computation methods. In this
chapter, we discussed four cube computation methods in detail: (1) Mul-
tiWay array aggregation for materializing full data cubes in sparse-array-
based, bottom-up, shared computation; (2) BUC for computing iceberg
cubes by exploring ordering and sorting for efficient top-down computa-
tion; (3) Star-Cubing for computing iceberg cubes by integrating top-
down and bottom-up computation using a star-tree structure; and (4)
shell-fragment cubing, which supports high-dimensional OLAP by pre-
computing only the partitioned cube shell fragments.

• Multidimensional data mining in cube space is the integration of
knowledge discovery with multidimensional data cubes. It facilitates sys-
tematic and focussed knowledge discovery in large structured and semi-
structured datasets. It will continue to endow analysts with tremendous
flexibility and power at multidimensional and multigranularity exploratory
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analysis. This is a vast open area for researchers to build powerful and
sophisticated data mining mechanisms.

• Techniques for processing advanced queries have been proposed that take
advantage of cube technology. These include sampling cubes for multi-
dimensional analysis on sampling data; and ranking cubes for efficient
top-k (ranking) query processing in large relational datasets.

• This chapter highlighted three approaches to multidimensional data anal-
ysis with data cubes. Prediction cubes compute prediction models in
multidimensional cube space. They help users identify interesting subsets
of data at varying degrees of granularity for effective prediction. Multi-
feature cubes compute complex queries involving multiple dependent ag-
gregates at multiple granularities. Exception-based discovery-driven
exploration of cube space displays visual cues to indicate discovered data
exceptions at all levels of aggregation, thereby guiding the user in the data
analysis process.

5.6 Exercises

1. Assume a base cuboid of 10 dimensions contains only three base cells:
(1) (a1, d2, d3, d4, . . . , d9, d10), (2) (d1, b2, d3, d4, . . . , d9, d10), and (3)
(d1, d2, c3, d4, . . . , d9, d10), where a1 6= d1, b2 6= d2, and c3 6= d3. The
measure of the cube is count.

(a) How many nonempty cuboids will a full data cube contain?

(b) How many nonempty aggregate (i.e., nonbase) cells will a full cube
contain?

(c) How many nonempty aggregate cells will an iceberg cube contain if
the condition of the iceberg cube is “count ≥ 2”?

(d) A cell, c, is a closed cell if there exists no cell, d , such that d is a
specialization of cell c (i.e., d is obtained by replacing a ∗ in c by a
non-∗ value) and d has the same measure value as c. A closed cube
is a data cube consisting of only closed cells. How many closed cells
are in the full cube?

2. There are several typical cube computationmethods, such asMultiway array
computation (MultiWay) [ZDN97], BUC (bottom-up computation) [BR99],
and Star-Cubing [XHLW03].

Briefly describe these three methods (i.e., use one or two lines to outline
the key points), and compare their feasibility and performance under the
following conditions:

(a) Computing a dense full cube of low dimensionality (e.g., less than 8
dimensions)

(b) Computing an iceberg cube of around 10 dimensions with a highly
skewed data distribution
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(c) Computing a sparse iceberg cube of high dimensionality (e.g., over
100 dimensions)

3. Suppose a data cube, C, has D dimensions, and the base cuboid contains
k distinct tuples.

(a) Present a formula to calculate the minimum number of cells that the
cube, C, may contain.

(b) Present a formula to calculate the maximum number of cells that C
may contain.

(c) Answer parts (a) and (b) above as if the count in each cube cell must
be no less than a threshold, v.

(d) Answer parts (a) and (b) above as if only closed cells are considered
(with the minimum count threshold, v).

4. Suppose that a base cuboid has three dimensions, A, B, C, with the fol-
lowing number of cells: |A| = 1, 000, 000, |B| = 100, and |C| = 1000.
Suppose that each dimension is evenly partitioned into 10 portions for
chunking.

(a) Assuming each dimension has only one level, draw the complete lat-
tice of the cube.

(b) If each cube cell stores one measure with 4 bytes, what is the total size
of the computed cube if the cube is dense?

(c) State the order for computing the chunks in the cube that requires
the least amount of space, and compute the total amount of main
memory space required for computing the 2-D planes.

5. Often, the aggregate count value of many cells in a large data cuboid is
zero, resulting in a huge, yet sparse, multidimensional matrix.

(a) Design an implementation method that can elegantly overcome this
sparse matrix problem. Note that you need to explain your data
structures in detail and discuss the space needed, as well as how to
retrieve data from your structures.

(b) Modify your design in (a) to handle incremental data updates. Give
the reasoning behind your new design.

6. When computing a cube of high dimensionality, we encounter the inherent
curse of dimensionality problem: there exists a huge number of subsets of
combinations of dimensions.

(a) Suppose that there are only two base cells, {(a1, a2, a3, . . . , a100),
(a1, a2, b3, . . . , b100)}, in a 100-dimensional base cuboid. Compute
the number of nonempty aggregate cells. Comment on the storage
space and time required to compute these cells.
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(b) Suppose we are to compute an iceberg cube from the above. If the
minimum support count in the iceberg condition is two, how many
aggregate cells will there be in the iceberg cube? Show the cells.

(c) Introducing iceberg cubes will lessen the burden of computing trivial
aggregate cells in a data cube. However, even with iceberg cubes, we
could still end up having to compute a large number of trivial unin-
teresting cells (i.e., with small counts). Suppose that a database has
20 tuples that map to (or cover) the two following base cells in a 100-
dimensional base cuboid, each with a cell count of 10: {(a1, a2, a3, . . . , a100) :
10, (a1, a2, b3, . . . , b100) : 10}.

i. Let the minimum support be 10. How many distinct aggregate
cells will there be like the following: {(a1, a2, a3, a4, . . . , a99, ∗) :
10, . . . , (a1, a2, ∗, a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3, ∗, . . . , ∗
, ∗) : 10}?

ii. If we ignore all the aggregate cells that can be obtained by re-
placing some constants with ∗’s while keeping the same measure
value, how many distinct cells are left? What are the cells?

7. Propose an algorithm that computes closed iceberg cubes efficiently.

8. Suppose that we would like to compute an iceberg cube for the dimensions,
A, B, C, D, where we wish to materialize all cells that satisfy a minimum
support count of at least v, and where cardinality(A) <cardinality(B)
<cardinality(C) <cardinality(D). Show the BUC processing tree (which
shows the order in which the BUC algorithm explores the lattice of a data
cube, starting from all) for the construction of the above iceberg cube.

9. Discuss how you might extend the Star-Cubing algorithm to compute
iceberg cubes where the iceberg condition tests for an avg that is no bigger
than some value, v.

10. A flight data warehouse for a travel agent consists of six dimensions: trav-
eler, departure (city), departure time, arrival, arrival time, and flight; and
two measures: count, and avg fare, where avg fare stores the concrete fare
at the lowest level but average fare at other levels.

(a) Suppose the cube is fully materialized. Starting with the base cuboid
[traveller, departure, departure time, arrival, arrival time, flight ], what
specific OLAP operations (e.g., roll-up flight to airline) should one
perform in order to list the average fare per month for each busi-
ness traveler who flies American Airlines (AA) from L.A. in the year
2009?

(b) Suppose we want to compute a data cube where the condition is
that the minimum number of records is 10 and the average fare is
over $500. Outline an efficient cube computation method (based on
common sense about flight data distribution).
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11. (Implementation project) There are four typical data cube computa-
tion methods: MultiWay [ZDN97], BUC [BR99], H-cubing [HPDW01],
and Star-Cubing [XHLW03].

(a) Implement any one of these cube computation algorithms and de-
scribe your implementation, experimentation, and performance. Find
another student who has implemented a different algorithm on the
same platform (e.g., C++ on Linux) and compare your algorithm
performance with his/hers.

Input:

i. An n-dimensional base cuboid table (for n < 20), which is essen-
tially a relational table with n attributes

ii. An iceberg condition: count (C) ≥ k where k is a positive integer
as a parameter

Output:

i. The set of computed cuboids that satisfy the iceberg condition,
in the order of your output generation

ii. Summary of the set of cuboids in the form of “cuboid ID : the
number of nonempty cells”, sorted in alphabetical order of cuboids,
e.g., A:155, AB : 120, ABC : 22, ABCD : 4, ABCE : 6, ABD : 36,
where the number after “:” represents the number of nonempty
cells. (This is used to quickly check the correctness of your re-
sults.)

(b) Based on your implementation, discuss the following:

i. What challenging computation problems are encountered as the
number of dimensions grows large?

ii. How can iceberg cubing solve the problems of part (a) for some
data sets (and characterize such data sets)?

iii. Give one simple example to show that sometimes iceberg cubes
cannot provide a good solution.

(c) Instead of computing a data cube of high dimensionality, we may
choose to materialize the cuboids that have only a small number
of dimension combinations. For example, for a 30-dimensional data
cube, we may only compute the 5-dimensional cuboids for every pos-
sible 5-dimensional combination. The resulting cuboids form a shell
cube. Discuss how easy or hard it is to modify your cube computation
algorithm to facilitate such computation.

12. The sampling cube was proposed for multidimensional analysis of sampling
data (e.g., survey data). In many real applications, sampling data can
be of high dimensionality, e.g., it is not unusual to have more than 50
dimensions in a survey dataset.

(a) How can we construct an efficient and scalable high-dimensional sam-
pling cube in large sampling datasets?
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(b) Design an efficient incremental update algorithm for such a high-
dimensional sampling cube, and

(c) Discuss how to support quality drill-down although some low-level
cells may contain empty or too few data for reliable analysis.

13. The ranking cube was proposed for efficient computation of top-k (rank-
ing) queries in relational databases. Recently, researchers have proposed
another kind of queries, called skyline queries. A skyline query returns
all the objects pi such that pi is not dominated by any other object pj ,
where dominance is defined as follows. Let the value of pi on dimension
d be v(pi, d). We say pi is dominated by pj if and only if for each prefer-
ence dimension d, v(pj , d) ≤ v(pi, d), and there is at least one d where the
equality does not hold.

(a) Can you design a ranking cube so that skyline queries can be pro-
cessed efficiently?

(b) Skyline is sometimes too strict to be desirable to some users. One may
generalize the concept of skyline into generalized skyline as below:
Given a d-dimensional database and a query q, the generalized skyline
is the set of the following objects: (1) the skyline objects, and (2) the
non-skyline objects that are ǫ-neighbors of a skyline object, where r
is an ǫ-neighbor of an object p if the distance between p and r is no
more than ǫ. Can you design a ranking cube to process generalized
skyline queries efficiently?

14. The ranking cube was designed to support top-k (ranking) queries in rela-
tional database systems. However, ranking queries are also posed to data
warehouses, where ranking is on multidimensional aggregates instead of
on measures of base facts. For example, consider a product manager who
is analyzing a sales database that stores the nationwide sales history, or-
ganized by location and time. In order to make investment decisions, the
manager may pose the following queries: “What are the top-10 (state,
year) cells having the largest total product sales?” and he may further
drill-down and ask “What are the top-10 (city, month) cells?” Suppose
the system can perform such partial materialization to derive two types of
materialized cuboids: a guiding cuboid and a supporting cuboid, where the
former contains a number of guiding cells that provide concise, high-level
data statistics to guide the ranking query processing, whereas the latter
provides inverted indices for efficient online aggregation.

(a) Can you derive an efficient method for computing such aggregate
ranking cubes?

(b) Can you extend your framework to handle more advanced measures?
One such example could be as follows. Consider an organization do-
nation database, where donators are grouped by “age”, “income”,
and other attributes. Interesting questions include: “Which age and
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income groups have made the top-k average amount of donation (per-
donor)?” and “Which income group of donators has the largest stan-
dard deviation in the donation amount?”

15. Prediction cube is a good example of multidimensional data mining in
cube space.

(a) Propose an efficient algorithm that computes prediction cubes in a
given multidimensional database; and

(b) For what kind of classification models can your algorithm be applied.
Explain.

16. Multifeature cubes allow us to construct interesting data cubes based on
rather sophisticated query conditions. Can you construct the following
multifeature cube by translating the following user requests into queries
using the form introduced in this textbook?

(a) Construct smart shopper cube where a shopper is smart if at least
10% of the goods she buys in each shopping are on sale; and

(b) Construct a datacube for best deal products where the best deal
products are those products whose price is the lowest for this product
in the month.

17. Discovery-driven cube exploration is a desirable way to mark interesting
points among a large number of cells in a data cube. Individual users may
have different views on whether a point should be considered interesting
enough to be marked. Suppose one would like to mark those objects
whose absolute value of Z score is over 2 in every row and column in a
d-dimensional plane.

(a) Can you derive an efficient computation method to identify such
points during the data cube computation?

(b) Suppose a partially materialized cube has (d − 1)-dimensional and
(d + 1)-dimensional cuboids materialized but not the d-dimensional
one. Can you derive an efficient method to mark those (d − 1)-
dimensional cells whose d-dimensional children contain such marked
point(s)?

5.7 Bibliographic Notes

Efficient computation of multidimensional aggregates in data cubes has been
studied by many researchers. Gray, Chaudhuri, Bosworth, et al. [GCB+97]
proposed cube-by as a relational aggregation operator generalizing group-by,
crosstabs, and subtotals, and categorized data cube measures into three cat-
egories: distributive, algebraic and holistic. Harinarayan, Rajaraman, and
Ullman [HRU96] proposed a greedy algorithm for the partial materialization
of cuboids in the computation of a data cube. Sarawagi and Stonebraker
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[SS94] developed a chunk-based computation technique for the efficient orga-
nization of large multidimensional arrays. Agarwal, Agrawal, Deshpande, et
al. [AAD+96] proposed several guidelines for efficient computation of multidi-
mensional aggregates for ROLAP servers. The chunk-based MultiWay array
aggregation method for data cube computation in MOLAP was proposed in
Zhao, Deshpande, and Naughton [ZDN97]. Ross and Srivastava [RS97] de-
veloped a method for computing sparse data cubes. Iceberg queries are first
described in Fang, Shivakumar, Garcia-Molina, et al. [FSGM+98]. BUC, a
scalable method that computes iceberg cubes from the apex cuboid, down-
wards, was introduced by Beyer and Ramakrishnan [BR99]. Han, Pei, Dong,
Wang [HPDW01] introduced an H-cubing method for computing iceberg cubes
with complex measures using an H-tree structure. The Star-Cubing method
for computing iceberg cubes with a dynamic star-tree structure was introduced
by Xin, Han, Li, and Wah [XHLW03]. MMCubing, an efficient iceberg cube
computation method that factorizes the lattice space was developed by Shao,
Han, and Xin [SHX04]. The shell-fragment-based cubing approach for efficient
high-dimensional OLAP was proposed by Li, Han, and Gonzalez [LHG04].

Aside from computing iceberg cubes, another way to reduce data cube com-
putation is to materialize condensed, dwarf, or quotient cubes, which are vari-
ants of closed cubes. Wang, Feng, Lu, and Yu proposed computing a reduced
data cube, called a condensed cube [WLFY02]. Sismanis, Deligiannakis, Rous-
sopoulos, and Kotids proposed computing a compressed data cube, called a
dwarf cube. Lakeshmanan, Pei, and Han proposed a quotient cube structure
to summarize the semantics of a data cube [LPH02], which has been further
extended to a qc-tree structure by Lakshmanan, Pei, and Zhao [LPZ03]. An
aggregation-based approach, called C-cubing (i.e., Closed-Cubing), has been de-
veloped by Xin, Han, Shao, and Liu [XHSL06], which performs efficient closed
cube computation by taking advantage of a new algebraic measure closedness.

There are also various studies on the computation of compressed data cubes
by approximation, such as quasi-cubes by Barbara and Sullivan [BS97], wavelet
cubes by Vitter, Wang, and Iyer [VWI98], compressed cubes for query approxi-
mation on continuous dimensions by Shanmugasundaram, Fayyad, and Bradley
[SFB99], using log-linear models to compress data cubes by Barbara and Wu
[BW00], and OLAP over uncertain and imprecise data by Burdick, Deshpande,
Jayram, et al. [BDJ+05].

For works regarding the selection of materialized cuboids for efficient OLAP
query processing, see Chaudhuri and Dayal [CD97], Harinarayan, Rajaraman,
and Ullman [HRU96], and Sristava, Dar, Jagadish, and Levy [SDJL96], Gupta
[Gup97], Baralis, Paraboschi, and Teniente [BPT97], and Shukla, Deshpande,
and Naughton [SDN98]. Methods for cube size estimation can be found in Desh-
pande, Naughton, Ramasamy, et al. [DNR+97], Ross and Srivastava [RS97], and
Beyer and Ramakrishnan [BR99]. Agrawal, Gupta, and Sarawagi [AGS97] pro-
posed operations for modeling multidimensional databases.

Data cube modeling and computation have been extended well beyond re-
lational data. Computation of stream cubes for multidimensional stream data
analysis has been studied by Chen, Dong, Han, et al. [CDH+02]. Efficient com-
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putation of spatial data cubes was examined by Stefanovic, Han, and Koperski
[SHK00], efficient OLAP in spatial data warehouses was studied by Papadias,
Kalnis, Zhang, and Tao [PKZT01], and a map cube for visualizing spatial data
warehouses was proposed by Shekhar, Lu, Tan, et al. [SLT+01]. A multime-
dia data cube was constructed in MultiMediaMiner by Zaiane, Han, Li, et al.
[ZHL+98]. For analysis of multidimensional text databases, TextCube, based
on the vector space model, was proposed by Lin, Ding, Han, et al. [LDH+08],
and TopicCube, based on a topic modeling approach, was proposed by Zhang,
Zhai and Han [ZZH09]. RFID cube and FlowCube for analyzing RFID data
were proposed by Gonzalez, Han, Li, et al. [GHLK06, GHL06]. Sampling cube
was introduced for analyzing sampling data by Li, Han, Yin, et al. [LHY+08].
Ranking cube was proposed by Xin, Han, Cheng, and Li [XHCL06] for efficient
processing of ranking (top-k) queries in databases. This methodology has also
been extended to supporting ranking aggregate queries in partially materialized
data cubes, called ARCube, by Wu, Xin, and Han [WXH08], and for support-
ing promotion query analysis in multi-dimensional space, called PromoCube, by
Wu, Xin, Mei, and Han [WXMH09].

The discovery-driven exploration of OLAP data cubes was proposed by
Sarawagi, Agrawal, and Megiddo [SAM98]. Further studies on integration of
OLAP with data mining capabilities for intelligent exploration of multidimen-
sional OLAP data were done by Sarawagi and Sathe [SS01]. The construction
of multifeature data cubes is described by Ross, Srivastava, and Chatzianto-
niou [RSC98]. Methods for answering queries quickly by on-line aggregation
are described by Hellerstein, Haas, and Wang [HHW97] and Hellerstein, Avnur,
Chou, et al. [HAC+99]. A cube-gradient analysis problem, called cubegrade, was
first proposed by Imielinski, Khachiyan, and Abdulghani [IKA02]. An efficient
method for multidimensional constrained gradient analysis in data cubes was
studied by Dong, Han, Lam, et al. [DHL+01].

Mining cubespace, or integration of knowledge discovery and OLAP cubes,
has been studied by many researchers. The concept of online analytical mining
(OLAM), or OLAP mining, was introduced by Han [Han98]. Chen, Dong,
Han, et al. developed a regression cube for regression-based multidimensional
analysis of time-series data [CDH+02, CDH+06]. Fagin, Guha, R. Kumar et al.
[FGK+05] studied data mining in multi-structured databases. Prediction cubes
that integrate prediction models with data cubes for discovery of data space
to facilitate certain prediction was proposed by B.-C. Chen, L. Chen, Lin, and
Ramakrishnan [CCLR05]. Using data-mining models as building blocks in a
multi-step mining process and using cube space intuitively defines the space
of interest for predicting global aggregates from local regions was studied by
Chen, Ramakrishnan, Shavlik, and Tamma [CRST06]. Ramakrishnan and Chen
[RC07] presented an organized picture on exploratory mining in cube space.
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