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Data Cube: A Lattice of Cuboids

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

time, item, location, supplierc



Data Cube: A Lattice of Cuboids

all O Base vs. aggregate cells
ad Ancestor vs. descendant cells

d Parent vs. child cells

time,i N o Toss N, 0-D (agg) (*,%,%%) ™
R oiic o pplie 1-D (agg) (*, milk, *, *
2-D (agg) << (*, milk, Urbana, *)
e location supplier 2-D (agg) (*, milk, Chicago, *)\
3-D (agg) (9/15, milk, Urbana, *) ﬁ

time, item, location, supplier 4-D (base) (9/15, milk, Urbana, Dairy_land)




Cube Materialization: Full Cube vs. Iceberg Cube

Q Full cube vs. iceberg cube

compute cube sales iceberg as
SELECT month, city, customer_group, COUNT(*)
FROM salesinfo

CUBE BY month, city, customer_group
HAVING count(*) >= min support
Q iceberg

condition

d Compute only the cells whose measure satisfies the iceberg
condition

d Only a small portion of cells may be “above the water” in a
sparse cube

a Ex.: Show only those cells whose count is no less than 100



Why Iceberg Cube?

Q Advantages of computing iceberg cubes

2 No need to save nor show those cells whose value is below the threshold
(iceberg condition)

0 Efficient methods may even avoid computing the un-needed, intermediate cells
2 Avoid explosive growth
Q Example: A cube with 100 dimensions
O Suppose it contains only 2 base cells: {(a,, a,, a3, --.., a199), (a1, 35, b3, .., D1oo)}
 How many aggregate cells if “having count >=1"?
Q Answer: (2191 —=2) -4 (Why?!)
 What about the iceberg cells, (i,e., with condition: “having count >= 2")?

d Answer: 4 (Why?!)



Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

O Let cube P have only 2 base cells: {(a;, a,, a5 ..., a;5):10, (a;, @,, b, . . ., bygg):10}
How many cells will the iceberg cube contain if “having count(*) > 10”?
3 Answer: 2191 — 4 (still too big!)
Q Close cube:

O Acellcis closed if there exists no cell d, such that d is a descendant of ¢, and d has
the same measure value as ¢

d Ex. The same cube P has only 3 closed cells:
a {(a, a, *, ..., ¥): 20, (a;, @5, @3- .., a190): 10, (a4, @,, b, . . ., byg): 10}
0 Aclosed cube is a cube consisting of only closed cells
d Cube Shell: The cuboids involving only a small # of dimensions, e.g., 2

0 Idea: Only compute cube shells, other dimension combinations can be computed on

the fl !
o Q: For (A}, A,, ... Ajg), how many combinations to compute?



Chapter 5: Data Cube Technology

/ocaticV r——> data cell
Q Data Cube Computation: Basic Concepts A O

§ product

Q Data Cube Computation Methods
A Multidimensional Data Analysis in Cube Space

time

ad Summary



Roadmap for Efficient Computation

Q General computation heuristics !

AQ Computing full/iceberg cubes: 3 methodologies

J Bottom-Up:
O Multi-Way array aggregation [
d  Top-down:
a BuUCH
ad High-dimensional OLAP:
2 A Shell-Fragment Approach [
ad Computing alternative kinds of cubes:
2 Partial cube, closed cube, approximate cube,

(Agarwal et al.”96)

(Zhao, Deshpande & Naughton,
SIGMOD’97)

(Beyer & Ramarkrishnan,
SIGMOD’99)

(Li, et al. VLDB’04)
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Efficient Data Cube Computation: General Heuristics

Q Sorting, hashing, and grouping operations are applied to the dimension attributes
in order to reorder and cluster related tuples

0 Share-sorts
- Share-partitions

Q Aggregates may be computed from previously computed
aggregates, rather than from the base fact table

date, countn

N
. : : rod, date, countr
Smallest-child: computing a cuboid from the smallest, P Y

previously computed cuboid S. Agarwal, R. Agrawal, P. M.

. i . Deshpande, A. Gupta, J. F.
0 Cache-results: caching results of a cuboid from which other Ve, B, Rermels ina, 6

cuboids are computed to reduce disk I/Os Sarawagi. On the computation

. . ) ) of multidimensional aggregates.
O Amortize-scans: computing as many as possible cuboids at the , pg'gs

same time to amortize disk reads
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Multi-Way Array Aggregation (MOLAP)

Q Full cube computation
Q Bottom-up
Q Array-based
2 Limited RAM -> Array chunking

y N
f 11

d Each time load one chunk into memory
d How to compute aggregates efficiently?
a Simultaneous aggregation on multiple dimensions

 Re-use intermediate aggregate values



Multi-Way Array Aggregation (MOLAP)

Q Partition arrays into chunks (a small subcube which fits in memory).
ad Compressed sparse array addressing: (chunk_id, offset)
Q Compute aggregates in “multiway” by visiting cube cells in the order which

2  Minimizes the # of times to visit each cell

2 Reduces memory access and storage cost

C Cs | 61— 7 7
C2y 257 7
Cy 97 4 7
Co /i
Example:
A: 4000, B: 400, C: 40 b, 9
. B
Chunk: b c 6 7
1000 x 100 x 10 !
b, | 1 2 3
dg dp dy



Cube Computation: Multi-Way Array Aggregation (MOLAP)

O How to minimizes the memory requirement and reduced | gxample:

|/Os? A: 4000, B: 400, C: 40
: Chunk:
Suppose we scan usingorder: 1-2-3-4-5-6-... 1000 x 100 x 10
// i ¢ o7 v v aQ While we scan through 1..4
//// C, .2 . 2945 ”/../ “/--/ “/--/ P 0 One chunk of BC plane is fully
% Co Iz computed
AT b 13 |
// 3 ' _// AR a  AB, AC plane can also be partially
//// b, 9 A computed (multi-way)
// b, 5 5 7 3 a All fully computed chunks can be
moved outside main memory
by | 1 2 3 4 ,
Q Partially computed chunks must be
BC 4 74 4 % J d in the mai
// // // // // store .lnt e main memc?ry
p — — — ZAC What is the best traversing order

13 to do multi-way aggregation?



Cube Computation: Multi-Way Array Aggregation (MOLAP)

Q Reducing memory and |/O Example:

A: 4000, B: 400, C: 40
Chunk:
1000 x 100 x 10

o Suppose we scan using order: 1-5-9-13-2-6-...

// . Cy /oL 7 7 7 O  Onerow of BC plane is fully
2 4y 7 /4 /4
//// i C, A= —* — P computed
% ° A 0 One chunk of AC plane is fully
AN b | 13 %
// 3 _// AR computed
4 // b, 9 | 3  All chunksin AB plane are
/ 1 .
L/ // b, c 5 . q partially computed
/ . , ; . a All fully computed chunks can be
BC/ D, moved outside main memory
a a a a
/0/ /}’ // // // Q Partially computed chunks must be

/ / / stored in the main memor
e — 7 ZAC Y

14



Cube Computation: Multi-Way Array Aggregation (MOLAP)

O Reducing memory and I/O Example:
O  Suppose we scan using order: One chunk of ChunAk‘. 4000, B: 400, €: 40
AB pl :
13-29-45-61-9—25— .. blane 1000 x 100 x 10
// Cs BT — — O memory:
AN oS , O 40x 400 (BC) + 40 x 1000 (AC) +
// y Gl g - _ i 100 x 1000 (AB) = 156,000 units
A 1| by | 13 | 14 o
A | % AB Y Keep the smallest plane in main
/// b, 9 | memory, fetch and compute only
v // b, 5 5 7 8 L4 one chunk at a time for the largest
4 lane
)/ b, | 1 2 3 4 P
BC - n n Q The planes should be sorted and
: o/ A %z & 7 . o
Entire BC / 4 /. 7z computed according to their size in
| y * /__ One column :
plane / 4 AC ascending order

of AC plane
15



Cube Computation: Multi-Way Array Aggregation (MOLAP)

Q Reducing memory and I/O

O Keep the smallest plane in main memory, fetch and compute only one chunk
at a time for the largest plane

0 The planes should be sorted and computed according to their size in
ascending order

O Suppose A>B>C>...

for ain A:
for b in B:
forcin C:;

Same methodology for computing 2-D and 1-D planes

16



Cube Computation: Multi-Way Array Aggregation (MOLAP)

d Comments on the method
Input? What format?
Output?

Pro: Efficient for computing the full cube for a small number of dimensions

o O 0O O

Con: If there are a large number of dimensions, “top-down” computation and
iceberg cube computation methods (e.g., BUC) should be used

17



Cube Computation: Computing in Reverse Order

all

Q Iceberg cube computation /N
Q BUC (Beyer & Ramakrishnan, SIGMOD’99) m \\

BUC: acronym of Bottom-Up (cube) Computation Z\ \ \
(Note: It is “top-down” in our view since we put
Apex cuboid on the top!) \ABCD
d Divides dimensions into partitions and facilitates A/HN‘
iceberg pruning

2 If a partition does not satisfy min_sup, its m \A\A

9AD 11BC 13BD 15 CD

descendants can be pruned Z\‘ \ \

a If minsup =1 b compute full CUBE! 4ABC_ 6ABD  BACD 12 BCD

Q No simultaneous aggregation \

5 ABCD
18



BUC: Partitioning and Aggregating

Q Usually, entire data set cannot fit in main memor d\, 7
Q Sort distinct values o |n o |\
 partition into blocks that fit 2 “/

d Aggregation when sorting

aQ Continue processing b

d lceberg cube

d If count of (a1, b1, *, *, *) < min_support

d No needtosortonC
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MultiWay V$ BUC

Input format Multi-dimensional array Relational database
Good for Full cube lceberg cube

Key idea Simultaneously Aggregation  Partition and sort
Calculation Lai

/N.
/R\\

9AD 11BC 13BD 15 CD

P SN

4 ABC 6 ABD 8 ACD 12 BCD

I

5 ABCD

direction




High-Dimensional OLAP?—The Curse of Dimensionality

1600

Full Data Cube ——— —

Q High-D OLAP: Needed in many applications 1400 foobere Cnetiont cobe = )

O Bio-data analysis: thousands of genes 1200

1000

Statistical surveys: hundreds of variables

BOO

ad None of the previous cubing method can handl% 600

L

high dimensionality! 00 ]
0 Iceberg cube and compressed cubes: only ] . / | | |
delay the inevitable explosion 7 i ionalrS 1 12
d  Full materialization: still significant overhead A curse of dimensionality: A database of
in accessing results on disk 600k tuples. Each dimension has
Q A shell-fragment approach: X. Li, J. Han, and H. cardinality of 100 and zipf of 2.

Gonzalez, High-Dimensional OLAP: A Minimal
Cubing Approach, VLDB'04

21
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Fast High-D OLAP with Minimal Cubing

Q Observation: OLAP occurs only on a small subset of dimensions at a time

d Semi-Online Computational Model

d
d

d

d

d

4
4

Partition the set of dimensions into shell fragments
Compute data cubes for each shell fragment while retaining inverted indices or
value-list indices

Given the pre-computed fragment cubes, dynamically compute cube cells of
the high-dimensional data cube online

Major idea: Tradeoff between the amount of pre-computation and the speed of
online computation
Reducing computing high-dimensional cube into precomputing a set of lower
dimensional cubes
Online re-construction of original high-dimensional space

Lossless reduction



Use Frag-$hells for Online OLAP Query Computation

-----------------
Dimensions |
‘A‘B‘C‘DEFGHI JIK|L|M|N
N N e

A (B |[C |[D|E |F

N J
'
’DEF Cube

N /L

J \
~

|

|

|

|

: D Cuboid

l EF Cuboid

: DE Cuboid

: Cell Tuple-ID List
l d1 el {1,3,8,9}
|

l d1 e2 {2,4,6,7}
: {5, 10}

|

|

|

|




Computing a 5-D Cube with 2-Shell Fragments

Q Example: Let the cube aggregation function be tribute | 11D List 1 List

count Value Size
TID | A B C D E al 123 3

1 |al |bl |c1 |d1 |el @ |45 2>
2 al b2 cl d2 el bl 145 3
3 |al |b2 |c1 |dl |e2 b2 23 2
() |2\ [b1 | [d1 [e2 cl 12345 |5
5/ @2/ [b1 |1 [d1 |e3 d1 1345 |4
d2 2 1
QO Divide the 5-D table into 2 shell fragments:ﬁ el 12 2
2 (A, B,C)and (D, E) A\ e2 34 2
1

a Build traditional invert index or RID list (1-D) e3 5
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Shell Fragment Cubes: Ideas

ad Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

Q Compute all cuboids for data cubes ABC and DE while

retaining the inverted indices
0 Ex. shell fragment cube ABC contains 7 cuboids:

d A, B, C; AB, AC, BC; ABC

Q This completes the offline computation

Q ID_Measure Table

d If measures other than
count are present, store in
ID_measure table separate
from the shell fragments

Shell-fragment AB

tid | count | sum
1 |5 70
2 |3 10
3 8 20
4 |5 40
5 2 30

Y

Cell

Attribute
Value

TID List

List
Size

al

SEED)

w

a2

45

bl

b2

23

cl

12345

dl

1345

d2

2

el

12

e2

34

e3

5

R ININ[FR]PITOUOIN]IWIN

Intersection TID List

albl d23n14% 1

alb2 123n23

a2 bl
a2 b2

23

45n145 45

45n 23

¢

List Size

1
2
2
0
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Shell Fragment Cubes: Size and Design

O Given a database of T tuples, D dimensions, and F
shell fragment size, the fragment cubes’ space

requirement is: O (T [g_‘ (2F B 1)>

d  For F<5, the growth is sub-linear
A Shell fragments do not have to be disjoint

ad Fragment groupings can be arbitrary to allow for
maximum online performance

d  Known common combinations (e.g.,<city, state>)
should be grouped together

ad Shell fragment sizes can be adjusted for optimal
balance between offline and online computation

Attribute
Value

TID List

List
Size

al 123 3

a2 45 2

bl 145 3

b2 23 2

c1 12345 5

d1 1345 4

d2 2 1

el 12 2

e2 34 2

e3 5 1
Cell Intersection TID List List Size
albl 123n145 1 1
alb2 123n23 23 2
a2bl 45n145 45 2
a2b2 45n 23 d 0



Online Query Computation with Shell-Fragments

aQ Aquery has the general form: <a,, a,, ..., a,;: M>

O Each a, has 3 possible values (e.g., <3, ?, ?, *, 1: count> returns a 2-D data cube)
O Instantiated value
0 Aggregate * function

3 Inquire ? Function

27



Online Query Computation with Shell-Fragments

d Method: Given the materialized fragment cubes, process a query as follows
Divide the query into fragments, same as the shell-fragment
Fetch the corresponding TID list for each fragment from the fragment cube

Intersect the TID lists from each fragment to construct instantiated base table

O O 0O O

Compute the data cube using the base table with any cubing algorithm

A B C D E Intersect -> base cuboid:

- Y A Y A ' / (cy, €,): {4}
Query: ﬁ s I (c,, e3): {5}
<a,, by, ?, *, ?): count()?> J—
» (32; b1)5 {4, 5} {(e1:

{11 2})1 (ez: {31 4})1 (e3: {5})}
(c;):{1, 2, 3, 4,5}

28
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Data Mining in Cube $pace

Q Data cube greatly increases the analysis bandwidth
Q Four ways to interact OLAP-styled analysis and data mining
 Using cube space to define data space for mining

 Using OLAP gqueries to generate features and targets for mining, e.g., multi-feature
cube

2 Using data-mining models as building blocks in a multi-step mining process, e.g.,
prediction cube

0 Using data-cube computation techniques to speed up repeated model construction

0 Cube-space data mining may require building a model for each candidate data
space

d Sharing computation across model-construction for different candidates may lead
to efficient mining



Complex Aggregation at Multiple Granularities:
Multi-Feature Cubes

d Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple
dependent aggregates at multiple granularities

a Ex. Grouping by all subsets of {item, region, month}, find the maximum price in 2010
for each group, and the total sales among all maximum price tuples

select item, region, month, max(price), sum(R.sales)
from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

d Continuing the last example, among the max price tuples, find the min and max
shelf live, and find the fraction of the total sales due to tuple that have min shelf life
within the set of all max price tuples

31
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Discovery-Driven Exploration of Data Cubes

Q Discovery-driven exploration of huge cube space (Sarawagi, et al.”98)
O Effective navigation of large OLAP data cubes

O pre-compute measures indicating exceptions, guide user in the data analysis, at
all levels of aggregation

0 Exception: significantly different from the value anticipated, based on a statistical
model

0 Visual cues such as background color are used to reflect the degree of exception
of each cell

A Kinds of exceptions
0 SelfExp: surprise of cell relative to other cells at same level of aggregation
2 InExp: surprise beneath the cell
0 PathExp: surprise beneath cell for each drill-down path
O Computation of exception indicator can be overlapped with cube construction
0 Exceptions can be stored, indexed and retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes

itern
cesion all
Surm of sales oot
Jan Feb | MTac Apc hTaw Jun Jul Ao Sep Ot | ™Mow | Dec
Taotal 1% -1%= O 1% 3% -1 -9 -1 2 o] 3T
Awvg sales month
itern Jan | Feb Blac MApr bIay Jun Jul Aug Sep et MNow Drec
Sony bfw prinvec = Lo -BYn el S 1495 —4 O T 13 | 15w [ 11
Sony color printec i e O 3o Qe A 10 -13%% | O% & R -G% & R
HP b/w printer L 1% pelom e B O -12% | 9% 3 e 3] o
HP color printer i Lera O e 18 O -1%= - -2 15 -5 1%
TERT home computer 1% 2 — 1 —1o 395 3% 102 | A% 15 —4 05 -1%=
IBEM laptop computer OF O 1o 3o A PR 109 | 29 O - 3%
Toshiba home compurer AT -5 15 1% -1%= 1%= 5o -39 -5 -1% -1%
Toshiba laptop computer 1% O o O -2 -2 -5 3o PR -1== O
Logitech mouse 3% 2% —1e [ Lo & Rer 5% -l1%s | 2% 15 —4 05 O
Ergo-way mouse O O Lo R0 1% -2 -2 -5 O -5 B
itern IBMT home computer
Avo =ales month
cegion Jan| Feb ©hTac Aprc MIay Jun Jul Aug Sep Ot Mow Dec
™MNocth -1%%= -3 -1% L) Lo AT Ao =T 1% O -3 -3
South -1%= 1% -9 G Fe - 1% 8 o -3 A 1% F
Ea=t -1%= -2 prLr -3 1% 1 ¥ -2 119 -3 - A% -1%=
West A O - 1% -3 5o 1% - 189 | B¥e 5o - R 1%
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Data Cube Technology: Summary

Q Data Cube Computation: Preliminary Concepts

Q Data Cube Computation Methods

O MultiWay Array Aggregation
0 BUC

2 High-Dimensional OLAP with Shell-Fragments
Q Multidimensional Data Analysis in Cube Space
Multi-feature Cubes

0 Discovery-Driven Exploration of Data Cubes
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Data Cube Technology: Summary

Q Data Cube Computation: Preliminary Concepts
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Q Multidimensional Data Analysis in Cube Space
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Text Cube

~. 1
~upe

127.0.0.1:8000

How to use EventCube?

Home Datasets

NEWS

News Data of 2010 Domestic News
From NYT, WPB and APW

Created: Wed Jan 25 01:17:35 CST
2017

@iSummarize » QSearch» <5 Analyze »

Alibaba

Ali Baba DataSet

Created: Wed Sep 23 10:08:11 CDT
2015

@iSummarize » QSearch» <5 Analyze »

Profile

Settings

ASRSFINAL Log out

NASA Aviation Safety Reporting
System Dataset

Created: Tue Feb 19 13:57:38 CST
2013

Summarize » QSearch» <= Analyze »
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