
Contents

6 Mining Frequent Patterns, Associations, and Correlations: Ba-
sic Concepts and Methods 3
6.1 Basic Concepts . 4

6.1.1 Market Basket Analysis: A Motivating Example 4
6.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules 6

6.2 Frequent Itemset Mining Methods 8
6.2.1 The Apriori Algorithm: Finding Frequent Itemsets by

Confined Candidate Generation 9
6.2.2 Generating Association Rules from Frequent Itemsets . . 13
6.2.3 Improving the Efficiency of Apriori 14
6.2.4 A Pattern-Growth Approach for Mining Frequent Itemsets 17
6.2.5 Mining Frequent Itemsets Using Vertical Data Format . . 19
6.2.6 Mining Closed and Max Patterns 22

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods . 25
6.3.1 Strong Rules Are Not Necessarily Interesting 25
6.3.2 From Association Analysis to Correlation Analysis 26
6.3.3 A Comparison of Pattern Evaluation Measures 28

6.4 Summary . 32
6.5 Exercises . 33
6.6 Bibliographic Notes . 37

1

2 CONTENTS

Chapter 6

Mining Frequent Patterns,

Associations, and

Correlations: Basic

Concepts and Methods

Imagine that you are a sales manager in AllElectronics , and you are talking to a customer
who recently bought a PC and a digital camera from the store. What should
you recommend to her next? Information about which products are frequently
purchased by your customers following their purchases of a PC and a digital
camera in sequence would be very helpful in making your recommendation.
Frequent patterns and association rules are the knowledge that you want to
mine in such a scenario.

Frequent patterns are patterns (such as itemsets, subsequences, or sub-
structures) that appear in a data set frequently. For example, a set of items,
such as milk and bread, that appear frequently together in a transaction data
set is a frequent itemset. A subsequence, such as buying first a PC, then a digital
camera, and then a memory card, if it occurs frequently in a shopping history
database, is a (frequent) sequential pattern. A substructure can refer to differ-
ent structural forms, such as subgraphs, subtrees, or sublattices, which may be
combined with itemsets or subsequences. If a substructure occurs frequently, it
is called a (frequent) structured pattern. Finding such frequent patterns plays
an essential role in mining associations, correlations, and many other interesting
relationships among data. Moreover, it helps in data classification, clustering,
and other data mining tasks. Thus, frequent pattern mining has become an
important data mining task and a focused theme in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, as-
sociations, and correlations (Section 6.1) and study how they can be mined
efficiently (Section 6.2). We also discuss how to judge whether the patterns

3

4CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

found are interesting (Section 6.3). In Chapter 7, we extend our discussion to
advanced methods of frequent pattern mining, which mine more complex forms
of frequent patterns and consider user preferences or constraints to speed up
the mining process.

6.1 Basic Concepts

Frequent pattern mining searches for recurring relationships in a given data
set. This section introduces the basic concepts of frequent pattern mining for
the discovery of interesting associations and correlations between itemsets in
transactional and relational databases. We begin in Section 6.1.1 by presenting
an example of market basket analysis, the earliest form of frequent pattern
mining for association rules. The basic concepts of mining frequent patterns
and associations are given in Section 6.1.2.

6.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correla-
tions among items in large transactional or relational data sets. With massive
amounts of data continuously being collected and stored, many industries are
becoming interested in mining such patterns from their databases. The dis-
covery of interesting correlation relationships among huge amounts of business
transaction records can help in many business decision-making processes, such
as catalog design, cross-marketing, and customer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis.
This process analyzes customer buying habits by finding associations between
the different items that customers place in their “shopping baskets” (Figure
6.1). The discovery of such associations can help retailers develop marketing
strategies by gaining insight into which items are frequently purchased together
by customers. For instance, if customers are buying milk, how likely are they to
also buy bread (and what kind of bread) on the same trip to the supermarket?

Which items are frequently

purchased together by my customers?

milk
cereal

bread milk bread

butter

milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

Figure 6.1: Market basket analysis.

6.1. BASIC CONCEPTS 5

Such information can lead to increased sales by helping retailers do selective
marketing and plan their shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 6.1 Market basket analysis. Suppose, as manager of an AllElectronics branch,
you would like to learn more about the buying habits of your customers. Specif-
ically, you wonder, “Which groups or sets of items are customers likely to pur-
chase on a given trip to the store?” To answer your question, market basket
analysis may be performed on the retail data of customer transactions at your
store. You can then use the results to plan marketing or advertising strategies,
or in the design of a new catalog. For instance, market basket analysis may help
you design different store layouts. In one strategy, items that are frequently pur-
chased together can be placed in proximity in order to further encourage the
sale of such items together. If customers who purchase computers also tend
to buy antivirus software at the same time, then placing the hardware display
close to the software display may help increase the sales of both items. In an
alternative strategy, placing hardware and software at opposite ends of the store
may entice customers who purchase such items to pick up other items along the
way. For instance, after deciding on an expensive computer, a customer may
observe security systems for sale while heading toward the software display to
purchase antivirus software and may decide to purchase a home security system
as well. Market basket analysis can also help retailers plan which items to put
on sale at reduced prices. If customers tend to purchase computers and printers
together, then having a sale on printers may encourage the sale of printers as
well as computers.

If we think of the universe as the set of items available at the store, then each
item has a Boolean variable representing the presence or absence of that item.
Each basket can then be represented by a Boolean vector of values assigned
to these variables. The Boolean vectors can be analyzed for buying patterns
that reflect items that are frequently associated or purchased together. These
patterns can be represented in the form of association rules. For example, the
information that customers who purchase computers also tend to buy antivirus
software at the same time is represented in the association rule below:

computer ⇒ antivirus software [support = 2%, confidence = 60%] (6.1)

Rule support and confidence are two measures of rule interestingness.
They respectively reflect the usefulness and certainty of discovered rules. A
support of 2% for Association Rule (6.1) means that 2% of all the transactions
under analysis show that computer and antivirus software are purchased to-
gether. A confidence of 60% means that 60% of the customers who purchased a
computer also bought the software. Typically, association rules are considered
interesting if they satisfy both a minimum support threshold and a mini-
mum confidence threshold. Such thresholds can be set by users or domain
experts. Additional analysis can be performed to discover interesting statistical
correlations between associated items.

6CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

6.1.2 Frequent Itemsets, Closed Itemsets, and Association

Rules

Let I = {I1, I2, . . . , Im} be a set of items. Let D, the task-relevant data, be
a set of database transactions where each transaction T is a nonempty set of
items such that T ⊆ I. Each transaction is associated with an identifier, called
TID. Let A be a set of items. A transaction T is said to contain A if A ⊆ T .
An association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I,
A 6= ∅, B 6= ∅, and A ∩ B = φ. The rule A ⇒ B holds in the transaction set
D with support s, where s is the percentage of transactions in D that contain
A ∪ B (i.e., the union of sets A and B, or say, both A and B). This is taken
to be the probability, P (A ∪ B).1 The rule A ⇒ B has confidence c in the
transaction set D, where c is the percentage of transactions in D containing A
that also contain B. This is taken to be the conditional probability, P (B|A).
That is,

support(A⇒B) = P (A ∪ B) (6.2)

confidence(A⇒B) = P (B|A). (6.3)

Rules that satisfy both a minimum support threshold (min sup) and a minimum
confidence threshold (min conf) are called strong. By convention, we write
support and confidence values so as to occur between 0% and 100%, rather
than 0 to 1.0.

A set of items is referred to as an itemset.2 An itemset that contains k items
is a k-itemset. The set {computer, antivirus software} is a 2-itemset. The oc-
currence frequency of an itemset is the number of transactions that contain
the itemset. This is also known, simply, as the frequency, support count, or
count of the itemset. Note that the itemset support defined in Equation (6.2)
is sometimes referred to as relative support, whereas the occurrence frequency
is called the absolute support. If the relative support of an itemset I satisfies
a prespecified minimum support threshold (i.e., the absolute support of I
satisfies the corresponding minimum support count threshold), then I is
a frequent itemset.3 The set of frequent k-itemsets is commonly denoted by
Lk.4

1Notice that the notation P (A ∪ B) indicates the probability that a transaction contains
the union of set A and set B (i.e., it contains every item in A and in B). This should not be
confused with P (A or B), which indicates the probability that a transaction contains either
A or B.

2In the data mining research literature, “itemset” is more commonly used than “item set.”
3In early work, itemsets satisfying minimum support were referred to as large. This term,

however, is somewhat confusing as it has connotations to the number of items in an itemset
rather than the frequency of occurrence of the set. Hence, we use the more recent term
frequent.

4Although the term frequent is preferred over large, for historical reasons frequent k-
itemsets are still denoted as Lk.

6.1. BASIC CONCEPTS 7

From Equation (6.3), we have

confidence(A⇒B) = P (B|A) =
support(A ∪ B)

support(A)
=

support count(A ∪ B)

support count(A)
.

(6.4)
Equation (6.4) shows that the confidence of rule A⇒B can be easily derived
from the support counts of A and A ∪ B. That is, once the support counts of
A, B, and A ∪ B are found, it is straightforward to derive the corresponding
association rules A⇒B and B⇒A and check whether they are strong. Thus the
problem of mining association rules can be reduced to that of mining frequent
itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will
occur at least as frequently as a predetermined minimum support count,
min sup.

2. Generate strong association rules from the frequent itemsets:
By definition, these rules must satisfy minimum support and minimum
confidence.

Additional interestingness measures can be applied for the discovery of corre-
lation relationships between associated items, as will be discussed in Section 6.3.
Because the second step is much less costly than the first, the overall perfor-
mance of mining association rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the
fact that such mining often generates a huge number of itemsets satisfying the
minimum support (min sup) threshold, especially when min sup is set low. This
is because if an itemset is frequent, each of its subsets is frequent as well. A long
itemset will contain a combinatorial number of shorter, frequent sub-itemsets.
For example, a frequent itemset of length 100, such as {a1, a2, . . . , a100}, con-
tains

(

100
1

)

= 100 frequent 1-itemsets: {a1}, {a2}, . . . , {a100},
(

100
2

)

frequent
2-itemsets: {a1, a2}, {a1, a3}, . . . , {a99, a100}, and so on. The total number of
frequent itemsets that it contains is thus,

(

100

1

)

+

(

100

2

)

+ · · · +

(

100

100

)

= 2100 − 1 ≈ 1.27 × 1030. (6.5)

This is too huge a number of itemsets for any computer to compute or store.
To overcome this difficulty, we introduce the concepts of closed frequent itemset
and maximal frequent itemset.

An itemset X is closed in a data set D if there exists no proper super-
itemset5 Y such that Y has the same support count as X in D. An itemset X
is a closed frequent itemset in set D if X is both closed and frequent in D.

5Y is a proper super-itemset of X if X is a proper sub-itemset of Y , that is, if X ⊂ Y . In
other words, every item of X is contained in Y but there is at least one item of Y that is not
in X.

8CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

An itemset X is a maximal frequent itemset (or max-itemset) in a data
set D if X is frequent, and there exists no super-itemset Y such that X ⊂ Y
and Y is frequent in D.

Let C be the set of closed frequent itemsets for a data set D satisfying a
minimum support threshold, min sup. Let M be the set of maximal frequent
itemsets for D satisfying min sup. Suppose that we have the support count
of each itemset in C and M. Notice that C and its count information can be
used to derive the whole set of frequent itemsets. Thus we say that C contains
complete information regarding its corresponding frequent itemsets. On the
other hand, M registers only the support of the maximal itemsets. It usually
does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with the following example.

Example 6.2 Closed and maximal frequent itemsets. Suppose that a transaction
database has only two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let
the minimum support count threshold be min sup = 1. We find two closed
frequent itemsets and their support counts, that is, C = {{a1, a2, . . . , a100} : 1;
{a1, a2, . . . , a50} : 2}. There is only one maximal frequent itemset: M =
{{a1, a2, . . . , a100} : 1}. Notice that we cannot include {a1, a2, . . . , a50} as a
maximal frequent itemset because it has a frequent super-set, {a1, a2, . . . , a100}.
Compare this to the above, where we determined that there are 2100−1 frequent
itemsets, which is too huge a set to be enumerated!

The set of closed frequent itemsets contains complete information regarding
the frequent itemsets. For example, from C, we can derive, say, (1) {a2, a45 : 2}
since {a2, a45} is a sub-itemset of the itemset {a1, a2, . . . , a50 : 2}; and (2)
{a8, a55 : 1} since {a8, a55} is not a sub-itemset of the previous itemset but of
the itemset {a1, a2, . . . , a100 : 1}. However, from the maximal frequent itemset,
we can only assert that both itemsets ({a2, a45} and {a8, a55}) are frequent, but
we cannot assert their actual support counts.

6.2 Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent
patterns, such as those discussed for market basket analysis in Section 6.1.1. We
begin by presenting Apriori, the basic algorithm for finding frequent itemsets
(Section 6.2.1). In Section 6.2.2, we look at how to generate strong associ-
ation rules from frequent itemsets. Section 6.2.3 describes several variations
to the Apriori algorithm for improved efficiency and scalability. Section 6.2.4
presents pattern-growth methods for mining frequent itemsets that confine the
subsequent search space to only the datasets containing the current frequent
itemsets. Section 6.2.5 presents methods for mining frequent itemsets that take
advantage of vertical data format.

6.2. FREQUENT ITEMSET MINING METHODS 9

6.2.1 The Apriori Algorithm: Finding Frequent Itemsets

by Confined Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for
mining frequent itemsets for Boolean association rules. The name of the algorithm
is based on the fact that the algorithm uses prior knowledge of frequent itemset
properties, as we shall see below. Apriori employs an iterative approach known as
a level-wise search, where k-itemsets are used to explore (k + 1)-itemsets. First,
the set of frequent 1-itemsets is found by scanning the database to accumulate the
count for each item, and collecting those items that satisfy minimum support. The
resulting set is denoted by L1. Next, L1 is used to find L2, the set of frequent 2-
itemsets, which is used to find L3, and so on, until no more frequent k-itemsets can
be found. The finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets,
an important property called the Apriori property, presented below, is used
to reduce the search space. We will first describe this property, and then show
an example illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also
be frequent.

The Apriori property is based on the following observation. By definition, if
an itemset I does not satisfy the minimum support threshold, min sup, then I
is not frequent; that is, P (I) < min sup. If an item A is added to the itemset
I, then the resulting itemset (i.e., I ∪ A) cannot occur more frequently than I.
Therefore, I ∪ A is not frequent either; that is, P (I ∪ A) < min sup.

This property belongs to a special category of properties called antimono-
tonicity in the sense that if a set cannot pass a test, all of its supersets will
fail the same test as well. It is called antimonotonicity because the property is
monotonic in the context of failing a test.6

“How is the Apriori property used in the algorithm?” To understand this,
let us look at how Lk−1 is used to find Lk for k ≥ 2. A two-step process is
followed, consisting of join and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated
by joining Lk−1 with itself. This set of candidates is denoted Ck. Let l1
and l2 be itemsets in Lk−1. The notation li[j] refers to the jth item in li
(e.g., l1[k − 2] refers to the second to the last item in l1). For efficient im-
plementation, Apriori assumes that items within a transaction or itemset
are sorted in lexicographic order. For the (k − 1)-itemset, li, this means
that the items are sorted such that li[1] < li[2] < . . . < li[k− 1]. The join,
Lk−1 ⋊⋉ Lk−1, is performed, where members of Lk−1 are joinable if their
first (k − 2) items are in common. That is, members l1 and l2 of Lk−1

are joined if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) ∧ . . . ∧ (l1[k − 2] = l2[k − 2])
∧(l1[k − 1] < l2[k − 1]). The condition l1[k − 1] < l2[k − 1] simply ensures

6The Apriori property has many applications. For example, it can also be used to prune
search during data cube computation (Chapter 5).

10CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Table 6.1: Transactional data for an
AllElectronics branch.
TID List of item IDs

T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

that no duplicates are generated. The resulting itemset formed by joining
l1 and l2 is {l1[1], l1[2], . . . , l1[k − 2], l1[k − 1], l2[k − 1]}.

2. The prune step: Ck is a superset of Lk, that is, its members may or may
not be frequent, but all of the frequent k-itemsets are included in Ck. A
scan of the database to determine the count of each candidate in Ck would
result in the determination of Lk (i.e., all candidates having a count no less
than the minimum support count are frequent by definition, and therefore
belong to Lk). Ck, however, can be huge, and so this could involve heavy
computation. To reduce the size ofCk, theApriori property is usedas follows.
Any (k − 1)-itemset that is not frequent cannot be a subset of a frequent k-
itemset. Hence, if any (k − 1)-subset of a candidate k-itemset is not in Lk−1,
then the candidate cannot be frequent either and so can be removed fromCk.
This subset testing can be done quickly by maintaining a hash tree of all
frequent itemsets.

Example 6.3 Apriori. Let’s look at a concrete example, based on the AllElectronics trans-
action database, D, of Table 6.1. There are nine transactions in this database,
that is, |D| = 9. We use Figure 6.2 to illustrate the Apriori algorithm for finding
frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of
candidate 1-itemsets, C1. The algorithm simply scans all of the transac-
tions in order to count the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup =
2. (Here, we are referring to absolute support because we are using a
support count. The corresponding relative support is 2/9 = 22%). The
set of frequent 1-itemsets, L1, can then be determined. It consists of the
candidate 1-itemsets satisfying minimum support. In our example, all of
the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join

6.2. FREQUENT ITEMSET MINING METHODS 11

Figure 6.2: Generation of candidate itemsets and frequent itemsets, where the
minimum support count is 2.

L1 ⋊⋉ L1 to generate a candidate set of 2-itemsets, C2.
7 C2 consists of

(

|L1|
2

)

2-itemsets. Note that no candidates are removed from C2 during
the prune step because each subset of the candidates is also frequent.

4. Next, the transactions in D are scanned and the support count of each
candidate itemset in C2 is accumulated, as shown in the middle table of
the second row in Figure 6.2.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those
candidate 2-itemsets in C2 having minimum support.

6. The generation of the set of candidate 3-itemsets, C3, is detailed in Figure
6.3. From the join step, we first get C3 = L2 ⋊⋉ L2 = {{I1, I2, I3}, {I1, I2,
I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apri-
ori property that all subsets of a frequent itemset must also be frequent, we
can determine that the four latter candidates are impossible to be frequent.
We therefore remove them from C3, thereby saving the effort of unneces-
sarily obtaining their counts during the subsequent scan of D to determine

7L1 ⋊⋉ L1 is equivalent to L1 ×L1, since the definition of Lk ⋊⋉ Lk requires the two joining
itemsets to share k − 1 = 0 items.

12CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

(a) Join: C3 = L2 ⋊⋉ L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}} ⋊⋉

{{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.

(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must
also be frequent. Do any of the candidates have a subset that is not frequent?

• The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item
subsets of {I1, I2, I3} are members of L2. Therefore, keep {I1, I2, I3} in C3.

• The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item
subsets of {I1, I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.

• The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I1, I3, I5} from C3.

• The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I3, I4} from C3.

• The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I3, I5} from C3.

• The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3.

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

Figure 6.3: Generation and pruning of candidate 3-itemsets, C3, from L2 using
the Apriori property.

L3. Note that when given a candidate k-itemset, we only need to check if
its (k − 1)-subsets are frequent since the Apriori algorithm uses a level-wise
search strategy. The resulting pruned version of C3 is shown in the first table
of the bottom row of Figure 6.2.

7. The transactions in D are scanned in order to determine L3, consisting of
those candidate 3-itemsets in C3 having minimum support (Figure 6.2).

8. The algorithm uses L3 ⋊⋉ L3 to generate a candidate set of 4-itemsets, C4.
Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is
pruned because its subset {I2, I3, I5} is not frequent. Thus, C4 = φ, and
the algorithm terminates, having found all of the frequent itemsets.

Figure 6.4 shows pseudo-code for the Apriori algorithm and its related pro-
cedures. Step 1 of Apriori finds the frequent 1-itemsets, L1. In steps 2 to
10, Lk−1 is used to generate candidates Ck in order to find Lk for k ≥ 2.
The apriori gen procedure generates the candidates and then uses the Apriori
property to eliminate those having a subset that is not frequent (step 3). This
procedure is described below. Once all of the candidates have been generated,
the database is scanned (step 4). For each transaction, a subset function is
used to find all subsets of the transaction that are candidates (step 5), and
the count for each of these candidates is accumulated (steps 6 and 7). Finally,
all of those candidates satisfying minimum support (step 9) form the set of
frequent itemsets, L (step 11). A procedure can then be called to generate
association rules from the frequent itemsets. Such a procedure is described in
Section 6.2.2.

6.2. FREQUENT ITEMSET MINING METHODS 13

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on
candidate generation.

Input:

• D, a database of transactions;

• min sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find frequent 1-itemsets(D);
(2) for (k = 2; Lk−1 6= φ; k++) {
(3) Ck = apriori gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck, t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct

(7) c.count++;
(8) }
(9) Lk = {c ∈ Ck|c.count ≥ min sup}
(10) }
(11) return L = ∪kLk;

procedure apriori gen(Lk−1:frequent (k − 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1

(2) for each itemset l2 ∈ Lk−1

(3) if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])
∧... ∧ (l1[k − 2] = l2[k − 2]) ∧ (l1[k − 1] < l2[k − 1]) then {

(4) c = l1 ⋊⋉ l2; // join step: generate candidates
(5) if has infrequent subset(c, Lk−1) then

(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck;
(8) }
(9) return Ck;

procedure has infrequent subset(c: candidate k-itemset;
Lk−1: frequent (k − 1)-itemsets); // use prior knowledge

(1) for each (k − 1)-subset s of c

(2) if s 6∈ Lk−1 then

(3) return TRUE;
(4) return FALSE;

Figure 6.4: The Apriori algorithm for discovering frequent itemsets for mining
Boolean association rules.

The apriori gen procedure performs two kinds of actions, namely, join and
prune, as described above. In the join component, Lk−1 is joined with Lk−1

to generate potential candidates (steps 1 to 4). The prune component (steps
5 to 7) employs the Apriori property to remove candidates that have a subset
that is not frequent. The test for infrequent subsets is shown in procedure
has infrequent subset.

6.2.2 Generating Association Rules from Frequent Item-

sets

Once the frequent itemsets from transactions in a database D have been found,
it is straightforward to generate strong association rules from them (where
strong association rules satisfy both minimum support and minimum confi-
dence). This can be done using Equation (6.4) for confidence, which we show

14CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

again here for completeness:

confidence(A ⇒ B) = P (B|A) =
support count(A ∪ B)

support count(A)
.

The conditional probability is expressed in terms of itemset support count,
where support count(A∪B) is the number of transactions containing the item-
sets A ∪B, and support count(A) is the number of transactions containing the
itemset A. Based on this equation, association rules can be generated as follows:

• For each frequent itemset l, generate all nonempty subsets of l.

• For every nonempty subset s of l, output the rule “s ⇒ (l − s)” if
support count(l)
support count(s) ≥ min conf, where min conf is the minimum confidence

threshold.

Because the rules are generated from frequent itemsets, each one automati-
cally satisfies minimum support. Frequent itemsets can be stored ahead of time
in hash tables along with their counts so that they can be accessed quickly.

Example 6.4 Generating association rules. Let’s try an example based on the transac-
tional data for AllElectronics shown in Table 6.1. The data contain frequent
itemset X = {I1, I2, I5}. What are the association rules that can be generated
from X? The nonempty subsets of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2},
and {I5}. The resulting association rules are as shown below, each listed with
its confidence:

{I1, I2} ⇒ I5, confidence = 2/4 = 50%
{I1, I5} ⇒ I2, confidence = 2/2 = 100%
{I2, I5} ⇒ I1, confidence = 2/2 = 100%
I1 ⇒ {I2, I5}, confidence = 2/6 = 33%
I2 ⇒ {I1, I5}, confidence = 2/7 = 29%
I5 ⇒ {I1, I2}, confidence = 2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third,
and last rules above are output, because these are the only ones generated that
are strong. Note that, unlike conventional classification rules, association rules
can contain more than one conjunct in the right-hand side of the rule.

6.2.3 Improving the Efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many
variations of the Apriori algorithm have been proposed that focus on improving
the efficiency of the original algorithm. Several of these variations are summa-
rized as follows:

Hash-based technique (hashing itemsets into corresponding buckets): A
hash-based technique can be used to reduce the size of the candidate k-
itemsets, Ck, for k > 1. For example, when scanning each transaction in

6.2. FREQUENT ITEMSET MINING METHODS 15

bucket address

bucket count

bucket contents

Create hash table H2

using hash function

h(x, y) 5 ((order of x) 310

1 (order of y)) mod 7

0

2

{I1, I4}

{I3, I5}

1

2

{I1, I5}

{I1, I5}

2

4

{I2, I3}

{I2, I3}

{I2, I3}

{I2, I3}

3

2

{I2, I4}

{I2, I4}

4

2

{I2, I5}

{I2, I5}

5

4

{I1, I2}

{I1, I2}

{I1, I2}

{I1, I2}

6

4

{I1, I3}

{I1, I3}

{I1, I3}

{I1, I3}

H2

Figure 6.5: Hash table, H2, for candidate 2-itemsets: This hash table was
generated by scanning the transactions of Table 6.1 while determining L1. If
the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and
4 cannot be frequent and so they should not be included in C2.

the database to generate the frequent 1-itemsets, L1, we can generate all of
the 2-itemsets for each transaction, hash (i.e., map) them into the different
buckets of a hash table structure, and increase the corresponding bucket
counts (Figure 6.5). A 2-itemset whose corresponding bucket count in the
hash table is below the support threshold cannot be frequent and thus
should be removed from the candidate set. Such a hash-based technique
may substantially reduce the number of the candidate k-itemsets examined
(especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in
future iterations): A transaction that does not contain any frequent k-
itemsets cannot contain any frequent (k + 1)-itemsets. Therefore, such a
transaction can be marked or removed from further consideration because
subsequent scans of the database for j-itemsets, where j > k, will not
need to consider such a transaction.

Partitioning (partitioning the data to find candidate itemsets): A partition-
ing technique can be used that requires just two database scans to mine
the frequent itemsets (Figure 6.6). It consists of two phases. In Phase I,
the algorithm divides the transactions of D into n nonoverlapping parti-
tions. If the minimum relative support threshold for transactions in D is
min sup, then the minimum support count for a partition is min sup ×
the number of transactions in that partition. For each partition, all the
local frequent itemsets, i.e., the itemsets frequent within the partition, are
found.

A local frequent itemset may or may not be frequent with respect to
the entire database, D. However, any itemset that is potentially frequent
with respect to D must occur as a frequent itemset in at least one of the
partitions8. Therefore, all local frequent itemsets are candidate itemsets
with respect to D. The collection of frequent itemsets from all partitions
forms the global candidate itemsets with respect to D. In Phase II, a sec-
ond scan of D is conducted in which the actual support of each candidate

8The proof of this property is left as an exercise (see Exercise 6.3(d)).

16CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Transactions

in D

Frequent

itemsets

in D

Divide D

into n

partitions

Find the

frequent

itemsets

local to each

partition

(1 scan)

Combine

all local

frequent

itemsets

to form

candidate

itemset

Find global

frequent

itemsets

among

candidates

(1 scan)

Phase I Phase II

Figure 6.6: Mining by partitioning the data.

is assessed in order to determine the global frequent itemsets. Partition
size and the number of partitions are set so that each partition can fit into
main memory and therefore be read only once in each phase.

Sampling (mining on a subset of the given data): The basic idea of the sampling
approach is to pick a random sample S of the given data D, and then search
for frequent itemsets in S instead of D. In this way, we trade off some degree
of accuracy against efficiency. The sample size of S is such that the search
for frequent itemsets in S can be done in main memory, and so only one scan
of the transactions in S is required overall. Because we are searching for fre-
quent itemsets in S rather than in D, it is possible that we will miss some of
the global frequent itemsets. To reduce this possibility, we use a lower sup-
port threshold than minimum support to find the frequent itemsets local to
S (denoted LS). The rest of the database is then used to compute the ac-
tual frequencies of each itemset in LS. A mechanism is used to determine
whether all of the global frequent itemsets are included in LS. If LS actually
contains all of the frequent itemsets in D, then only one scan ofD is required.
Otherwise, a second pass can be done in order to find the frequent itemsets
that were missed in the first pass. The sampling approach is especially ben-
eficial when efficiency is of utmost importance, such as in computationally
intensive applications that must be run frequently.

Dynamic itemset counting (adding candidate itemsets at different points
during a scan): A dynamic itemset counting technique was proposed in
which the database is partitioned into blocks marked by start points. In
this variation, new candidate itemsets can be added at any start point,
unlike in Apriori, which determines new candidate itemsets only imme-
diately before each complete database scan. The technique uses the
count-so-far as the lower bound of the actual count. If the count-so-far
passes the minimum support, the itemset is added into the frequent item-
set collection and can be used to generate longer candidates. This leads
to fewer database scans than Apriori for finding all the frequent itemsets.

Other variations are discussed in the next chapter.

6.2. FREQUENT ITEMSET MINING METHODS 17

6.2.4 A Pattern-Growth Approach for Mining Frequent

Itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method
significantly reduces the size of candidate sets, leading to good performance
gain. However, it can suffer from two nontrivial costs:

• It may still need to generate a huge number of candidate sets. For example,
if there are 104 frequent 1-itemsets, the Apriori algorithm will need to
generate more than 107 candidate 2-itemsets.

• It may need to repeatedly scan the whole database and check a large set of
candidates by pattern matching. It is costly to go over each transaction in
the database to determine the support of the candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets
without such a costly candidate generation process?” An interesting method
in this attempt is called frequent-pattern growth, or simply FP-growth,
which adopts a divide-and-conquer strategy as follows. First, it compresses the
database representing frequent items into a frequent-pattern tree, or FP-
tree, which retains the itemset association information. It then divides the
compressed database into a set of conditional databases (a special kind of pro-
jected database), each associated with one frequent item or “pattern fragment,”
and mines each such database separately. This approach may substantially re-
duce the sizes of datasets to be searched along with pattern growth. You’ll see
how it works with the following example.

Example 6.5 FP-growth (finding frequent itemsets without candidate generation).
We re-examine the mining of transaction database, D, of Table 6.1 in Exam-
ple 6.3 using the frequent-pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set
of frequent items (1-itemsets) and their support counts (frequencies). Let the
minimum support count be 2. The set of frequent items is sorted in the order
of descending support count. This resulting set or list is denoted by L. Thus,
we have L ={{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree,
labeled with “null.” Scan databaseD a second time. The items in each transaction
are processed in L order (i.e., sorted according to descending support count), and a
branchiscreatedforeachtransaction. Forexample, thescanofthefirsttransaction,
“T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads to the
construction of the first branch of the tree with three nodes, 〈I2: 1〉, 〈I1:1〉, and 〈I5:
1〉,where I2 is linkedasa child to the root, I1 is linkedto I2, andI5 is linkedto I1. The
secondtransaction,T200, containstheitemsI2andI4 inLorder,whichwouldresult
in a branchwhere I2 is linked to the root and I4 is linked to I2. However, this branch
would share a common prefix, I2, with the existing path for T100. Therefore, we
instead incrementthecountoftheI2nodeby1, andcreateanewnode, 〈I4: 1〉,which
is linked as a child to 〈I2: 2〉. In general, when considering the branch to be added

18CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

I2

I1

I3

I4

I5

7

6

6

2

2

I1:2

I3:2
I4:1

I3:2

I4:1

I5:1

I5:1

I1:4

I2:7

null{}

I3:2

Node-linkItem ID

Support

count

Figure 6.7: An FP-tree registers compressed, frequent pattern information.

for a transaction, the count of each node along a common prefix is incremented by
1, and nodes for the items following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item
points to its occurrences in the tree via a chain of node-links. The tree obtained
after scanning all of the transactions is shown in Figure 6.7 with the associated
node-links. In this way, the problem of mining frequent patterns in databases
is transformed to that of mining the FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern
(as an initial suffix pattern), construct its conditional pattern base (a
“sub-database,” which consists of the set of prefix paths in the FP-tree co-
occurring with the suffix pattern), then construct its (conditional) FP-tree, and
perform mining recursively on such a tree. The pattern growth is achieved by
the concatenation of the suffix pattern with the frequent patterns generated
from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 6.2 and detailed as follows.
We first consider I5, which is the last item in L, rather than the first. The
reason for starting at the end of the list will become apparent as we explain the
FP-tree mining process. I5 occurs in two branches of the FP-tree of Figure 6.7.
(The occurrences of I5 can easily be found by following its chain of node-links.)
The paths formed by these branches are 〈I2, I1, I5: 1〉 and 〈I2, I1, I3, I5: 1〉.
Therefore, considering I5 as a suffix, its corresponding two prefix paths are 〈I2,
I1: 1〉 and 〈I2, I1, I3: 1〉, which form its conditional pattern base. Using this
conditional pattern base as a transaction database, we build an I5-conditional
FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included
because its support count of 1 is less than the minimum support count. The
single path generates all the combinations of frequent patterns: {I2, I5: 2}, {I1,
I5: 2}, {I2, I1, I5: 2}.

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1},
{I2: 1}}, which generates a single-node conditional FP-tree, 〈I2: 2〉, and derives
one frequent pattern, {I2, I4: 2}.

6.2. FREQUENT ITEMSET MINING METHODS 19

Table 6.2: Mining the FP-tree by creating conditional (sub-)pattern bases.
Item Conditional Pattern

Base
Conditional FP-
tree

Frequent Patterns Generated

I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5:
2}

I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}
I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1:

2〉
{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3:
2}

I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

I2

I1

4

4

I2:4

I1:2

I1:2

Node-linkItem ID

Support

count null{}

Figure 6.8: The conditional FP-tree associated with the conditional node I3.

Similar to the above analysis, I3’s conditional pattern base is {{I2, I1: 2},
{I2: 2}, {I1: 2}}. Its conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and
〈I1: 2〉, as shown in Figure 6.8, which generates the set of patterns {{I2, I3:
4}, {I1, I3: 4}, {I2, I1, I3: 2}}. Finally, I1’s conditional pattern base is {{I2:
4}}, whose FP-tree contains only one node, 〈I2: 4〉, which generates one frequent
pattern, {I2, I1: 4}. This mining process is summarized in Figure 6.9.

The FP-growth method transforms the problem of finding long frequent
patterns to searching for shorter ones in much smaller conditional databases
recursively and then concatenating the suffix. It uses the least frequent items as
a suffix, offering good selectivity. The method substantially reduces the search
costs.

When the database is large, it is sometimes unrealistic to construct a main
memory-based FP-tree. An interesting alternative is to first partition the database
into a set of projected databases, and then construct an FP-tree and mine it
in each projected database. Such a process can be recursively applied to any
projected database if its FP-tree still cannot fit in main memory.

A study on the performance of the FP-growth method shows that it is ef-
ficient and scalable for mining both long and short frequent patterns, and is
about an order of magnitude faster than the Apriori algorithm.

6.2.5 Mining Frequent Itemsets Using Vertical Data For-

mat

Both the Apriori and FP-growth methods mine frequent patterns from a set
of transactions in TID-itemset format (that is, {TID : itemset}), where TID
is a transaction-id and itemset is the set of items bought in transaction TID.

20CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment
growth.

Input:

• D, a transaction database;

• min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F , the set of frequent items, and
their support counts. Sort F in support count descending order as L, the list of
frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans

in D do the following.

Select and sort the frequent items in Trans according to the order of L. Let the
sorted frequent item list in Trans be [p|P], where p is the first element and P is
the remaining list. Call insert tree([p|P], T), which is performed as follows. If T

has a child N such that N.item-name = p.item-name, then increment N ’s count
by 1; else create a new node N , and let its count be 1, its parent link be linked
to T , and its node-link to the nodes with the same item-name via the node-link
structure. If P is nonempty, call insert tree(P , N) recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as
follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then

(2) for each combination (denoted as β) of the nodes in the path P

(3) generate pattern β ∪ α with support count = minimum support count of nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪ α with support count = ai.support count;
(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ ;
(7) if Treeβ 6= ∅ then

(8) call FP growth(Treeβ , β); }

Figure 6.9: The FP-growth algorithm for discovering frequent itemsets without
candidate generation.

6.2. FREQUENT ITEMSET MINING METHODS 21

Table 6.3: The vertical data format of the transaction
data set D of Table 6.1.
itemset TID set

I1 {T100, T400, T500, T700, T800, T900}
I2 {T100, T200, T300, T400, T600, T800, T900}
I3 {T300, T500, T600, T700, T800, T900}
I4 {T200, T400}
I5 {T100, T800}

This data format is known as the horizontal data format. Alternatively,
data can also be presented in item-TID set format (that is, {item : TID set}),
where item is an item name, and TID set is the set of transaction identifiers
containing the item. This format is known as the vertical data format.

In this section, we look at how frequent itemsets can also be mined efficiently
using vertical data format, which is the essence of the ECLAT (Equivalence
CLASS Transformation) algorithm.

Example 6.6 Mining frequent itemsets using vertical data format. Consider the hor-
izontal data format of the transaction database, D, of Table 6.1 in Example 6.3.
This can be transformed into the vertical data format shown in Table 6.3 by
scanning the data set once.

Mining can be performed on this data set by intersecting the TID sets of every
pair of frequent single items. Theminimumsupportcount is 2. Becauseevery single
itemis frequentinTable6.3, thereare10intersectionsperformedintotal,whichlead
to 8 nonempty 2-itemsets as shown in Table 6.4. Notice that because the itemsets
{I1, I4} and {I3, I5} each contain only one transaction, they do not belong to the
set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset
only if every one of its 2-itemset subsets is frequent. The candidate generation
process here will generate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By
intersecting the TID sets of any two corresponding 2-itemsets of these candidate

Table 6.4: The 2-itemsets in vertical
data format.
itemset TID set

{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

22CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

3-itemsets, it derives Table 6.5, where there are only two frequent 3-itemsets:
{I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring
the vertical data format. First, we transform the horizontally formatted data
to the vertical format by scanning the data set once. The support count of an
itemset is simply the length of the TID set of the itemset. Starting with k = 1,
the frequent k-itemsets can be used to construct the candidate (k + 1)-itemsets
based on the Apriori property. The computation is done by intersection of the
TID sets of the frequent k-itemsets to compute the TID sets of the correspond-
ing (k + 1)-itemsets. This process repeats, with k incremented by 1 each time,
until no frequent itemsets or no candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candi-
date (k + 1)-itemset from frequent k-itemsets, another merit of this method is
that there is no need to scan the database to find the support of (k+1) itemsets
(for k ≥ 1). This is because the TID set of each k-itemset carries the complete
information required for counting such support. However, the TID sets can be
quite long, taking substantial memory space as well as computation time for
intersecting the long sets.

To further reduce the cost of registering long TID sets, as well as the subse-
quent costs of intersections, we can use a technique called diffset, which keeps
track of only the differences of the TID sets of a (k + 1)-itemset and a corre-
sponding k-itemset. For instance, in Example 6.6 we have {I1} = {T100, T400,
T500, T700, T800, T900} and {I1, I2} = {T100, T400, T800, T900}. The diffset
between the two is diffset({I1, I2}, {I1}) = {T500, T700}. Thus, rather than
recording the four TIDs that make up the intersection of {I1} and {I2}, we can
instead use diffset to record just two TIDs indicating the difference between {I1}
and {I1, I2}. Experiments show that in certain situations, such as when the
data set contains many dense and long patterns, this technique can substantially
reduce the total cost of vertical format mining of frequent itemsets.

6.2.6 Mining Closed and Max Patterns

In Section 6.1.2 we saw how frequent itemset mining may generate a huge num-
ber of frequent itemsets, especially when the min sup threshold is set low or
when there exist long patterns in the data set. Example 6.2 showed that closed

Table 6.5: The 3-itemsets in ver-
tical data format.
itemset TID set

{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}

6.2. FREQUENT ITEMSET MINING METHODS 23

frequent itemsets9 can substantially reduce the number of patterns generated
in frequent itemset mining while preserving the complete information regarding
the set of frequent itemsets. That is, from the set of closed frequent itemsets,
we can easily derive the set of frequent itemsets and their support. Thus in
practice, it is more desirable to mine the set of closed frequent itemsets rather
than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A näıve approach would be to
first mine the complete set of frequent itemsets and then remove every frequent
itemset that is a proper subset of, and carries the same support as, an existing
frequent itemset. However, this is quite costly. As shown in Example 6.2, this
method would have to first derive 2100 − 1 frequent itemsets in order to obtain
a length-100 frequent itemset, all before it could begin to eliminate redundant
itemsets. This is prohibitively expensive. In fact, there exist only a very small
number of closed frequent itemsets in the data set of Example 6.2.

A recommended methodology is to search for closed frequent itemsets di-
rectly during the mining process. This requires us to prune the search space
as soon as we can identify the case of closed itemsets during mining. Pruning
strategies include the following:

Item merging: If every transaction containing a frequent itemset X also
contains an itemset Y but not any proper superset of Y , then X∪Y forms
a frequent closed itemset and there is no need to search for any itemset
containing X but no Y .

For example, in Table 6.2 of Example 6.5, the projected conditional database
for prefix itemset {I5:2} is {{I2, I1},{I2, I1, I3}}, from which we can see
that each of its transactions contains itemset {I2, I1} but no proper super-
set of {I2, I1}. Itemset {I2, I1} can be merged with {I5} to form the closed
itemset, {I5, I2, I1: 2}, and we do not need to mine for closed itemsets that
contain I5 but not {I2, I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already
found frequent closed itemset Y and support count(X) = support count(Y),
then X and all of X’s descendants in the set enumeration tree cannot be
frequent closed itemsets and thus can be pruned.

Similar to Example 6.2, suppose a transaction database has only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, and the minimum support
count is min sup = 2. The projection on the first item, a1, derives the
frequent itemset, {a1, a2, . . . , a50 : 2}, based on the itemset merging opti-
mization. Because support({a2}) = support ({a1, a2, . . . , a50}) = 2, and
{a2} is a proper subset of {a1, a2, . . . , a50}, there is no need to examine a2

and its projected database. Similar pruning can be done for a3, . . . , a50 as
well. Thus the mining of closed frequent itemsets in this data set termi-
nates after mining a1’s projected database.

9Remember that X is a closed frequent itemset in a data set S if there exists no proper
super-itemset Y such that Y has the same support count as X in S, and X satisfies minimum
support.

24CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Item skipping: In the depth-first mining of closed itemsets, at each level,
there will be a prefix itemset X associated with a header table and a pro-
jected database. If a local frequent item p has the same support in several
header tables at different levels, we can safely prune p from the header
tables at higher levels.

Consider, for example, the transaction database above having only two
transactions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, where min sup = 2.
Because a2 in a1’s projected database has the same support as a2 in the
global header table, a2 can be pruned from the global header table. Similar
pruning can be done for a3, . . . , a50. There is no need to mine anything
more after mining a1’s projected database.

Besides pruning the search space in the closed itemset mining process, an-
other important optimization is to perform efficient checking of a newly derived
frequent itemset to see whether it is closed, because the mining process cannot
ensure that every generated frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds
of closure checking: (1) superset checking, which checks if this new frequent
itemset is a superset of some already found closed itemsets with the same sup-
port, and (2) subset checking, which checks whether the newly found itemset is
a subset of an already found closed itemset with the same support.

If we adopt the item merging pruning method under a divide-and-conquer
framework, then the superset checking is actually built-in and there is no need to
explicitly perform superset checking. This is because if a frequent itemset X∪Y
is found later than itemset X , and carries the same support as X , it must be in
X ’s projected database and must have been generated during itemset merging.

To assist in subset checking, a compressed pattern-tree can be constructed
to maintain the set of closed itemsets mined so far. The pattern-tree is similar
in structure to the FP-tree except that all of the closed itemsets found are stored
explicitly in the corresponding tree branches. For efficient subset checking, we
can use the following property: If the current itemset Sc can be subsumed by
another already found closed itemset Sa, then (1) Sc and Sa have the same
support, (2) the length of Sc is smaller than that of Sa, and (3) all of the items
in Sc are contained in Sa. Based on this property, a two-level hash index
structure can be built for fast accessing of the pattern-tree: The first level uses
the identifier of the last item in Sc as a hash key (since this identifier must be
within the branch of Sc), and the second level uses the support of Sc as a hash
key (since Sc and Sa have the same support). This will substantially speed up
the subset checking process.

The above discussion illustrates methods for efficient mining of closed fre-
quent itemsets. “Can we extend these methods for efficient mining of maximal
frequent itemsets?” Because maximal frequent itemsets share many similarities
with closed frequent itemsets, many of the optimization techniques developed
here can be extended to mining maximal frequent itemsets. However, we leave
this method as an exercise for interested readers.

6.3. WHICH PATTERNS ARE INTERESTING?—PATTERN EVALUATION METHODS25

6.3 Which Patterns Are Interesting?—Pattern

Evaluation Methods

Most association rule mining algorithms employ a support-confidence framework.
Although minimum support and confidence thresholds help weed out or exclude
the exploration of a good number of uninteresting rules, many of the rules gen-
erated are still not interesting to the users. Unfortunately, this is especially true
when mining at low support thresholds or mining for long patterns. This has been
a major bottleneck for successful application of association rule mining.

In this section, we first look at how even strong association rules can be
uninteresting and misleading (Section 6.3.1). We then discuss how the support-
confidence framework can be supplemented with additional interestingness mea-
sures based on correlation analysis (Section 6.3.2). Section 6.3.3 presents addi-
tional pattern evaluation measures. It then provides an overall comparison of
all of the measures discussed here. By the end, you will learn which pattern
evaluation measures are most effective for the discovery of only interesting rules.

6.3.1 Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or ob-
jectively. Ultimately, only the user can judge if a given rule is interesting, and
this judgment, being subjective, may differ from one user to another. However,
objective interestingness measures, based on the statistics “behind” the data,
can be used as one step toward the goal of weeding out uninteresting rules from
presentation to the user.

“How can we tell which strong association rules are really interesting?” Let’s
examine the following example.

Example 6.7 A misleading “strong” association rule. Suppose we are interested in
analyzing transactions at AllElectronics with respect to the purchase of com-
puter games and videos. Let game refer to the transactions containing computer
games, and video refer to those containing videos. Of the 10,000 transactions
analyzed, the data show that 6,000 of the customer transactions included com-
puter games, while 7,500 included videos, and 4,000 included both computer
games and videos. Suppose that a data mining program for discovering asso-
ciation rules is run on the data, using a minimum support of, say, 30% and a
minimum confidence of 60%. The following association rule is discovered:

buys(X , “computer games”)⇒buys(X , “videos”) [support = 40%, confidence = 66%]
(6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its

support value of
4,000
10,000 = 40% and confidence value of

4,000
6,000 = 66% satisfy the

minimum support and minimum confidence thresholds, respectively. However,
Rule (6.6) is misleading because the probability of purchasing videos is 75%,
which is even larger than 66%. In fact, computer games and videos are nega-
tively associated because the purchase of one of these items actually decreases

26CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

the likelihood of purchasing the other. Without fully understanding this phe-
nomenon, we could easily make unwise business decisions based on Rule (6.6).

The above example also illustrates that the confidence of a rule A ⇒ B
can be deceiving. It does not measure the real strength (or lack of strength) of
the correlation and implication between A and B. Hence, alternatives to the
support-confidence framework can be useful in mining interesting data relation-
ships.

6.3.2 From Association Analysis to Correlation Analysis

As we have seen above, the support and confidence measures are insufficient at
filtering out uninteresting association rules. To tackle this weakness, a corre-
lation measure can be used to augment the support-confidence framework for
association rules. This leads to correlation rules of the form

A ⇒ B [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence
but also by the correlation between itemsets A and B. There are many different
correlation measures from which to choose. In this section, we study several
correlation measures to determine which would be good for mining large data
sets.

Lift is a simple correlation measure that is given as follows. The occurrence
of itemset A is independent of the occurrence of itemset B if P (A ∪ B) =
P (A)P (B); otherwise, itemsets A and B are dependent and correlated as
events. This definition can easily be extended to more than two itemsets. The
lift between the occurrence of A and B can be measured by computing

lift(A, B) =
P (A ∪ B)

P (A)P (B)
. (6.8)

If the resulting value of Equation (6.8) is less than 1, then the occurrence of A is
negatively correlated with the occurrence of B, meaning that the occurrence of
one likely leads to the absence of the other one. If the resulting value is greater
than 1, then A and B are positively correlated, meaning that the occurrence of
one implies the occurrence of the other. If the resulting value is equal to 1, then
A and B are independent and there is no correlation between them.

Equation (6.8) is equivalent to P (B|A)/P (B), or conf(A ⇒ B)/sup(B),
which is also referred as the lift of the association (or correlation) rule A ⇒ B.
In other words, it assesses the degree to which the occurrence of one “lifts” the
occurrence of the other. For example, if A corresponds to the sale of computer
games and B corresponds to the sale of videos, then given the current market
conditions, the sale of games is said to increase or “lift” the likelihood of the
sale of videos by a factor of the value returned by Equation (6.8).

Let’s go back to the computer game and video data of Example 6.7.

6.3. WHICH PATTERNS ARE INTERESTING?—PATTERN EVALUATION METHODS27

Table 6.6: A 2 × 2 contingency table summarizing
the transactions with respect to game and video
purchases.

game game Σrow

video 4,000 3,500 7,500

video 2,000 500 2,500
Σcol 6,000 4,000 10,000

Table 6.7: The above contingency table, now shown with the
expected values.

game game Σrow

video 4,000 (4,500) 3,500 (3,000) 7,500

video 2,000 (1,500) 500 (1,000) 2,500
Σcol 6,000 4,000 10,000

Example 6.8 Correlation analysis using lift. To help filter out misleading “strong” as-
sociations of the form A ⇒ B from the data of Example 6.7, we need to study
how the two itemsets, A and B, are correlated. Let game refer to the transac-
tions of Example 6.7 that do not contain computer games, and video refer to
those that do not contain videos. The transactions can be summarized in a con-
tingency table, as shown in Table 6.6. From the table, we can see that the prob-
ability of purchasing a computer game is P ({game}) = 0.60, the probability
of purchasing a video is P ({video}) = 0.75, and the probability of purchasing
both is P ({game, video}) = 0.40. By Equation (6.8), the lift of Rule (6.6) is
P ({game, video})/(P ({game})×P ({video})) = 0.40/(0.60× 0.75) = 0.89. Be-
cause this value is less than 1, there is a negative correlation between the oc-
currence of {game} and {video}. The numerator is the likelihood of a customer
purchasing both, while the denominator is what the likelihood would have been
if the two purchases were completely independent. Such a negative correlation
cannot be identified by a support-confidence framework.

The second correlation measure that we study is the χ2 measure, which was
introduced in Chapter 3 (Equation 3.1). To compute the χ2 value, we take the
squared difference between the observed and expected value for a slot (A and
B pair) in the contingency table, divided by the expected value. This amount
is summed for all slots of the contingency table. Let’s perform a χ2 analysis of
the above example.

Example 6.9 Correlation analysis using χ2. To compute the correlation using χ2 analysis
for nominal data, we need the observed value and expected value (displayed in
parenthesis) for each slot of the contingency table, as shown in Table 6.7. From

28CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

the table, we can compute the χ2 value as follows:

χ2 = Σ
(observed - expected)2

expected
=

(4,000 − 4,500)2

4,500
+

(3,500 − 3,000)2

3,000
+

(2,000 − 1,500)2

1,500
+

(500 − 1,000)2

1,000
= 555.6.

Because the χ2 value is greater than one, and the observed value of the slot
(game, video) = 4,000, which is less than the expected value 4,500, buying game
and buying video are negatively correlated. This is consistent with the conclusion
derived from the analysis of the lift measure in Example 6.9.

6.3.3 A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support-confidence
framework to evaluate frequent patterns, other measures, such as lift and χ2,
often discloses more intrinsic pattern relationships. How effective are these
measures? Should we also consider other alternatives?

Researchers have studied many pattern evaluation measures even before the
start of in-depth research on scalable methods for mining frequent patterns.
Recently, several other pattern evaluation measures have attracted interest. In
this section, we present four such measures: all confidence, max confidence,
Kulczynski, and cosine. We’ll then compare their effectiveness with respect to
one another and with respect to the lift and χ2 measures.

Given two itemsets A and B, the all confidence measure of A and B is
defined as

all conf(A, B) =
sup(A ∪ B)

max{sup(A), sup(B)}
= min{P (A|B), P (B|A)}, (6.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B.
Thus all conf(A, B) is also the minimum confidence of the two association rules
related to A and B, namely, “A⇒B” and “B⇒A”.

Given two itemsets A and B, the max confidence measure of A and B is
defined as

max conf(A, B) = max{P (A|B), P (B|A)}. (6.10)

The max conf measure is the maximum confidence of the two association rules,
“A⇒B” and “B⇒A”.

Given two itemsets A and B, the Kulczynski measure of A and B (abbre-
viated as Kulc) is defined as

Kulc(A, B) =
1

2
(P (A|B) + P (B|A)). (6.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be
viewed as an average of two confidence measures. That is, it is the average of

6.3. WHICH PATTERNS ARE INTERESTING?—PATTERN EVALUATION METHODS29

two conditional probabilities: the probability of itemset B given itemset A, and
the probability of itemset A given itemset B.

Finally, given two itemsets A and B, the cosine measure of A and B is
defined as

cosine(A, B) =
P (A ∪ B)

√

P (A) × P (B)
=

sup(A ∪ B)
√

sup(A) × sup(B)
=

√

P (A|B) × P (B|A).

(6.12)
The cosine measure can be viewed as a harmonized lift measure: the two formu-
lae are similar except that for cosine, the square root is taken on the product of
the probabilities of A and B. This is an important difference, however, because
by taking the square root, the cosine value is only influenced by the supports of
A, B, and A ∪ B, and not by the total number of transactions.

Each of the four measures defined above has the following property: Its value
is only influenced by the supports of A, B, and A ∪ B, or more exactly, by the
conditional probabilities of P (A|B) and P (B|A), but not by the total number
of transactions. Another common property is that each measure ranges from
0 to 1, and the higher the value, the closer the relationship between A and B.

Now, together with lift and χ2, we have introduced in total six pattern
evaluation measures. You may wonder, “Which is the best in assessing the
discovered patten relationships?” To answer this question, we examine their
performance on some typical data sets.

Table 6.8: A 2× 2 contingency table for
two items.

milk milk Σrow

coffee mc mc c

coffee mc mc c

Σcol m m Σ

Example 6.10 Comparison of six pattern evaluation measures on typical data sets.
The relationships between the purchases of two items, milk and coffee, can be
examined by summarizing their purchase history in Table 6.8, a 2 × 2 contin-
gency table, where an entry such as mc represents the number of transactions
containing both milk and coffee.

Table 6.9 shows a set of transactional data sets with their corresponding con-
tingency tables and the associated values for each of the six evaluation measures.
Let’s first examine the first four data sets, D1 through D4. From the table, we
see that m and c are positively associated in D1 and D2, negatively associated
in D3, and neutral in D4. For D1 and D2, m and c are positively associated
because mc (10,000) is considerably greater than mc (1,000) and mc (1,000). In-
tuitively, for people who bought milk (m = 10, 000+1, 000 = 11, 000), it is very
likely that they also bought coffee (mc/m = 10/11 = 91%), and vice versa. The
results of the four newly introduced measures show that m and c are strongly

30CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Table 6.9: Comparison of six pattern evaluation measures using contingency tables for a variety
of data sets.
Data Set mc mc mc mc χ2 lift all conf. max conf. Kulc. cosine
D1 10,000 1,000 1,000 100,000 90557 9.26 0.91 0.91 0.91 0.91
D2 10,000 1,000 1,000 100 0 1 0.91 0.91 0.91 0.91
D3 100 1,000 1,000 100,000 670 8.44 0.09 0.09 0.09 0.09
D4 1,000 1,000 1,000 100,000 24740 25.75 0.5 0.5 0.5 0.5
D5 1,000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29
D6 1,000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

positively associated in both data sets by producing a measure value of 0.91.
However, lift and χ2 generate dramatically different measure values for D1 and
D2 due to their sensitivity to mc. In fact, in many real-world scenarios mc is
usually huge and unstable. For example, in a market basket database, the total
number of transactions could fluctuate on a daily basis and overwhelmingly ex-
ceed the number of transactions containing any particular itemset. Therefore, a
good interestingness measure should not be affected by transactions that do not
contain the itemsets of interest; otherwise, it would generate unstable results as
illustrated in D1 and D2.

Similarly, in D3, the four new measures correctly show that m and c are
strongly negatively associated because the ratio of m to c equals the ratio of
mc to m, that is 100/1100 = 9.1%. However, lift and χ2 both contradict this in
an incorrect way: their values for D2 are between those for D1 and D3.

For data set D4, both lift and χ2 indicate a highly positive association
between m and c, whereas the others indicate a “neutral” association because
the ratio of mc to mc equals the ratio of mc to mc, which is 1. This means that
if a customer buys coffee (or milk), the probability that she will also purchase
milk (or coffee) is exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relation-
ships in the above transactional data sets?” To answer this, we have to consider
the null-transactions. A null-transaction is a transaction that does not con-
tain any of the itemsets being examined. In our example, mc represents the
number of null-transactions. Lift and χ2 have difficulty distinguishing interest-
ing pattern association relationships because they are both strongly influenced
by mc. Typically, the number of null-transactions can outweigh the number
of individual purchases, because many people may buy neither milk nor coffee.
On the other hand, the other four measures are good indicators of interesting
pattern associations because their definitions remove the influence of mc (that
is, they are not influenced by the number of null-transactions).

The above discussion shows that it is highly desirable to have a measure
whose value is independent of the number of null-transactions. A measure is
null-invariant if its value is free from the influence of null-transactions. Null-
invariance is an important property for measuring association patterns in large
transaction databases. Among the six discussed measures in this section, only
lift and χ2 are not null-invariant measures.

“Among the all confidence, max confidence, Kulczynski, and cosine mea-
sures, which is best at indicating interesting pattern relationships?”

6.3. WHICH PATTERNS ARE INTERESTING?—PATTERN EVALUATION METHODS31

To answer this question, we introduce the imbalance ratio (IR), which
assesses the imbalance of two itemsets A and B in rule implications. It is
defined as

IR(A, B) =
|sup(A) − sup(B)|

sup(A) + sup(B) − sup(A ∪ B)
, (6.13)

where the numerator is the absolute value of the difference between the support
of the itemsets A and B, and the denominator is the number of transactions
containing A or B. If the two directional implications between A and B are the
same, IR(A, B) will be zero. Otherwise, the larger the difference between the
two is, the larger the imbalance ratio is. This ratio is independent of the number
of null-transactions and independent of the total number of transactions.

Let’s continue examining the remaining datasets of Example 6.10.

Example 6.11 Comparing null-invariant measures in pattern evaluation. Although
the four measures introduced in this section are null-invariant, they may present
dramatically different values on some subtly different datasets. Let’s examine
data sets D5 and D6 in Table 6.9, where the two events m and c have unbalanced
conditional probabilities. That is, the ratio of mc to c is greater than 0.9.
This means that knowing that c occurs should strongly suggest that m occurs
also. The ratio of mc to m is less than 0.1. indicating that m implies that c
is quite unlikely to occur. The all confidence and cosine measures view both
cases as negatively associated and the Kulc measure views both as neutral. The
max confidence measure claims strong positive associations for these cases. The
measures give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase
of milk and coffee?” Due to the “balanced” skewness of the data, it is difficult to
argue whether the two data sets have positive or negative association. From one
point of view, only mc/(mc + mc) = 1, 000/(1, 000 + 10, 000) = 9.09% of milk-
related transactions contain coffee in D5 and this percentage is 1, 000/(1, 000+
100, 000) = 0.99% in D6, both indicating a negative association. On the other
hand, 90.9% of transactions in D5 (that is, mc/(mc+mc) = 1, 000/(1, 000+100))
and 9% in D6 (that is, 1, 000/(1, 000 + 10)) containing coffee contain milk as
well, which indicates a positive association between milk and coffee. These
draw very different conclusions. For such “balanced” skewness, it could be
fair to treat it as neutral, as Kulc does, and in the meantime indicate its
skewness using the imbalance ratio (IR). According to Equation (6.13), for D4

we have IR(m, c) = 0, a perfectly balanced case; for D5, IR(m, c) = 0.89, a
rather imbalanced case; whereas for D6, IR(m, c) = 0.99, a very skewed case.
Therefore, the two measures, Kulc and IR, work together, presenting a clear
picture for all three datasets, D4 through D6.

In summary, the use of only support and confidence measures to mine associ-
ations may generate a large number of rules, many of which can be uninteresting
to users. Instead, we can augment the support-confidence framework with
a pattern interestingness measure, which helps focus the mining towards rules
with strong pattern relationships. The added measure substantially reduces

32CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

the number of rules generated and leads to the discovery of more meaning-
ful rules. Besides those introduced in this section, many other interestingness
measures have been studied in the literature. Unfortunately, most of them do
not have the null-invariance property. Because large data sets typically have
many null-transactions, it is important to consider the null-invariance prop-
erty when selecting appropriate interestingness measures for pattern evaluation.
Among the four null-invariant measures studied here, namely all confidence,
max confidence, Kulc, and cosine, we recommend using Kulc in conjunction
with the imbalance ratio.

6.4 Summary

• The discovery of frequent patterns, association, and correlation relation-
ships among huge amounts of data is useful in selective marketing, decision
analysis, and business management. A popular area of application is mar-
ket basket analysis, which studies the buying habits of customers by
searching for sets of items that are frequently purchased together (or in
sequence).

• Association rule mining consists of first finding frequent itemsets
(set of items, such as A and B, satisfying a minimum support threshold, or
percentage of the task-relevant tuples), from which strong association rules
in the form of A ⇒ B are generated. These rules also satisfy a minimum
confidence threshold (a prespecified probability of satisfying B under the
condition that A is satisfied). Associations can be further analyzed to
uncover correlation rules, which convey statistical correlations between
itemsets A and B.

• Many efficient and scalable algorithms have been developed for frequent
itemset mining, from which association and correlation rules can be de-
rived. These algorithms can be classified into three categories: (1) Apriori-
like algorithms, (2) frequent-pattern growth-based algorithms, such as FP-
growth, and (3) algorithms that use the vertical data format.

• The Apriori algorithm is a seminal algorithm for mining frequent itemsets
for Boolean association rules. It explores the level-wise mining Apriori prop-
erty that all nonempty subsets of a frequent itemset must also be frequent. At
the kth iteration (for k ≥ 2), it forms frequent k-itemset candidates based
on the frequent (k − 1)-itemsets, and scans the database once to find the
complete set of frequent k-itemsets, Lk.

Variations involving hashing and transaction reduction can be used to
make the procedure more efficient. Other variations include partitioning
the data (mining on each partition and then combining the results) and
sampling the data (mining on a subset of the data). These variations can
reduce the number of data scans required to as little as two or one.

• Frequent pattern growth (FP-growth) is a method of mining frequent
itemsets without candidate generation. It constructs a highly compact data

6.5. EXERCISES 33

structure (anFP-tree) to compress theoriginal transactiondatabase. Rather
than employing the generate-and-test strategy of Apriori-like methods, it
focusesonfrequentpattern(fragment)growth,whichavoidscostlycandidate
generation, resulting in greater efficiency.

• Mining frequent itemsets using vertical data format (ECLAT) is
a method that transforms a given data set of transactions in the horizontal
data format of TID-itemset into the vertical data format of item-TID set.
It mines the transformed data set by TID set intersections based on the
Apriori property and additional optimization techniques, such as diffset.

• Not all strong association rules are interesting. Therefore, the support-
confidence framework should be augmented with a pattern evaluation mea-
sure, which promotes the mining of interesting rules. A measure is null-
invariant if its value is free from the influence of null-transactions,
i.e., the transactions that do not contain any of the itemsets being ex-
amined. Among many pattern evaluation measures, we examined lift,
χ2, all confidence, max confidence, Kulczynski, and cosine, and
showed that only the latter four are null-invariant. We suggest using the
Kulczynski measure, together with the imbalance ratio, to present pattern
relationships among itemsets.

6.5 Exercises

1. Suppose you have the set C of all frequent closed itemsets on a data set
D, as well as the support count for each frequent closed itemset. Describe
an algorithm to determine whether a given itemset X is frequent or not,
and the support of X if it is frequent.

2. An itemset X is called a generator on a data set D if there does not
exist a proper sub-itemset Y ⊂ X such that support(X) = support(Y).
A generator X is a frequent generator if support(X) passes the minimum
support threshold. Let G be the set of all frequent generators on a data
set D.

(a) Can you determine whether an itemset A is frequent and the support
of A, if it is frequent, using only G and the support counts of all
frequent generators? If yes, present your algorithm. Otherwise, what
other information is needed? Can you give an algorithm assuming
the information needed is available?

(b) What is the relationship between closed itemsets and generators?

3. The Apriori algorithm makes use of prior knowledge of subset support
properties.

(a) Prove that all nonempty subsets of a frequent itemset must also be
frequent.

34CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

(b) Prove that the support of any nonempty subset s′ of itemset s must
be at least as great as the support of s.

(c) Given frequent itemset l and subset s of l, prove that the confidence
of the rule “s′ ⇒ (l − s′)” cannot be more than the confidence of
“s ⇒ (l − s)”, where s′ is a subset of s.

(d) A partitioning variation of Apriori subdivides the transactions of a
database D into n nonoverlapping partitions. Prove that any itemset
that is frequent in D must be frequent in at least one partition of D.

4. Let c be a candidate itemset in Ck generated by the Apriori algorithm.
How many length-(k − 1) subsets do we need to check in the prune step?
According to your answer to the above question, can you give an improved
version of procedure has infrequent subset in Figure 6.4?

5. Section 6.2.2 describes a method for generating association rules from
frequent itemsets. Propose a more efficient method. Explain why it is
more efficient than the one proposed there. (Hint: Consider incorporating
the properties of Exercise 6.3(b) and 6.3(c) into your design.)

6. A database has 5 transactions. Let min sup = 60% and min conf = 80%.

TID items bought

T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I ,E}

(a) Find all frequent itemsets using Apriori and FP-growth, respectively.
Compare the efficiency of the two mining processes.

(b) List all of the strong association rules (with support s and confidence
c) matching the following metarule, where X is a variable represent-
ing customers, and itemi denotes variables representing items (e.g.,
“A”, “B”, etc.):

∀x ∈ transaction, buys(X, item1)∧buys(X, item2) ⇒ buys(X, item3) [s, c]

7. (Implementation project) Implement three frequent itemset mining al-
gorithms introduced in this chapter: (1) Apriori [AS94b], (2) FP-growth
[HPY00], and (3) Eclat [Zak00] (mining using vertical data format), us-
ing a programming language that you are familiar with, such as C++ or
Java. Compare the performance of each algorithm with various kinds of
large data sets. Write a report to analyze the situations (such as data size,
data distribution, minimal support threshold setting, and pattern density)
where one algorithm may perform better than the others, and state why.

6.5. EXERCISES 35

8. A database has four transactions. Let min sup = 60% and min conf =
80%.

cust ID TID items bought (in the form of brand-item category)

01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

(a) At the granularity of item category (e.g., itemi could be “Milk”), for
the following rule template,

∀X ∈ transaction, buys(X, item1)∧buys(X, item2) ⇒ buys(X, item3) [s, c]

list the frequent k-itemset for the largest k, and all of the strong
association rules (with their support s and confidence c) containing
the frequent k-itemset for the largest k.

(b) At the granularity of brand-item category (e.g., itemi could be “Sunset-
Milk”), for the following rule template,

∀X ∈ customer, buys(X, item1)∧ buys(X, item2) ⇒ buys(X, item3)

list the frequent k-itemset for the largest k (but do not print any
rules).

9. Suppose that a large store has a transaction database that is distributed
among four locations. Transactions in each component database have the
same format, namely Tj : {i1, . . . , im}, where Tj is a transaction identifier,
and ik (1 ≤ k ≤ m) is the identifier of an item purchased in the transaction.
Propose an efficient algorithm to mine global association rules (without
considering multilevel associations). You may present your algorithm in
the form of an outline. Your algorithm should not require shipping all of
the data to one site and should not cause excessive network communication
overhead.

10. Suppose that frequent itemsets are saved for a large transaction database,
DB. Discuss how to efficiently mine the (global) association rules under
the same minimum support threshold, if a set of new transactions, denoted
as ∆DB, is (incrementally) added in?

11. Most frequent pattern mining algorithms consider only distinct items in a
transaction. However, multiple occurrences of an item in the same shop-
ping basket, such as four cakes and three jugs of milk, can be important in
transaction data analysis. How can one mine frequent itemsets efficiently
considering multiple occurrences of items? Propose modifications to the
well-known algorithms, such as Apriori and FP-growth, to adapt to such
a situation.

36CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

12. (Implementation project) Many techniques have been proposed to
further improve the performance of frequent-itemset mining algorithms.
Taking FP-tree-based frequent pattern-growth algorithms (such as FP-
growth) as an example, implement one of the following optimization tech-
niques. Compare the performance of your new implementation with the
unoptimized version.

(a) The frequent pattern mining method of Section 6.2.4) uses an FP-tree
to generate conditional pattern bases using a bottom-up projection
technique, i.e., project on the prefix path of an item p. However,
one can develop a top-down projection technique, that is, project
on the suffix path of an item p in the generation of a conditional
pattern-base. Design and implement such a top-down FP-tree min-
ing method and compare your performance with the bottom-up pro-
jection method.

(b) Nodes and pointers are used uniformly in an FP-tree in the design of
the FP-growth algorithm. However, such a structure may consume
a lot of space when the data are sparse. One possible alternative
design is to explore array-and pointer- based hybrid implementation,
where a node may store multiple items when it contains no splitting
point to multiple sub-branches. Develop such an implementation and
compare it with the original one.

(c) It is time- and space- consuming to generate numerous conditional
pattern bases during pattern-growth mining. An interesting alterna-
tive is to push right the branches that have been mined for a partic-
ular item p, that is, to push them to the remaining branch(es) of the
FP-tree. This is done so that fewer conditional pattern bases have
to be generated and additional sharing can be explored when mining
the remaining branches of the FP-tree. Design and implement such
a method and conduct a performance study on it.

13. Give a short example to show that items in a strong association rule may
actually be negatively correlated.

14. The following contingency table summarizes supermarket transaction data,
where hot dogs refers to the transactions containing hot dogs, hotdogs
refers to the transactions that do not contain hot dogs, hamburgers refers
to the transactions containing hamburgers, and hamburgers refers to the
transactions that do not contain hamburgers.

hot dogs hotdogs Σrow

hamburgers 2000 500 2500

hamburgers 1000 1500 2500
Σcol 3000 2000 5000

6.6. BIBLIOGRAPHIC NOTES 37

(a) Suppose that the association rule “hot dogs ⇒ hamburgers” is mined.
Given a minimum support threshold of 25% and a minimum confi-
dence threshold of 50%, is this association rule strong?

(b) Based on the given data, is the purchase of hot dogs independent of
the purchase of hamburgers? If not, what kind of correlation rela-
tionship exists between the two?

(c) Compare the use of the all confidence, max confidence, Kulczynski,
and cosine measures with lift and correlation on the given data.

15. (Implementation project) The DBLP dataset (http://www.informatik.uni-
trier.de/∼ley/db/) consists of over one million entries of research papers
published in computer science conferences and journals. Among these en-
tries, there are a good number of authors that have coauthor relationships.

(a) Propose a method that can mine efficiently a set of coauthor rela-
tionships that are closely correlated (e.g., often coauthoring papers
together).

(b) Based on the mining results and the pattern evaluation measures
discussed in this chapter, discuss which measure may convincingly
uncover close collaboration patterns better than others.

(c) Based on the study above, can you develop a method that can roughly
predict advisor and advisee relationships and the approximate period
for such advisory supervision?

6.6 Bibliographic Notes

Association rule mining was first proposed by Agrawal, Imielinski, and Swami
[AIS93]. The Apriori algorithm discussed in Section 6.2.1 for frequent itemset
mining was presented in Agrawal and Srikant [AS94b]. A variation of the algo-
rithm using a similar pruning heuristic was developed independently by Mannila,
Tiovonen, and Verkamo [MTV94]. A joint publication combining these works
later appeared in Agrawal, Mannila, Srikant, Toivonen, and Verkamo [AMS+96].
A method for generating association rules from frequent itemsets is described
in Agrawal and Srikant [AS94a].

References for the variations of Apriori described in Section 6.2.3 include
the following. The use of hash tables to improve association mining efficiency
was studied by Park, Chen, and Yu [PCY95a]. The partitioning technique was
proposed by Savasere, Omiecinski, and Navathe [SON95]. The sampling ap-
proach is discussed in Toivonen [Toi96]. A dynamic itemset counting approach
is given in Brin, Motwani, Ullman, and Tsur [BMUT97]. An efficient incremen-
tal updating of mined association rules was proposed by Cheung, Han, Ng, and
Wong [CHNW96]. Parallel and distributed association data mining under the
Apriori framework was studied by Park, Chen, and Yu [PCY95b], Agrawal and

38CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Shafer [AS96], and Cheung, Han, Ng, et al. [CHN+96]. Another parallel associa-
tion mining method, which explores itemset clustering using a vertical database
layout, was proposed in Zaki, Parthasarathy, Ogihara, and Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alter-
natives to the Apriori-based approach. FP-growth, a pattern-growth approach
for mining frequent itemsets without candidate generation, was proposed by
Han, Pei, and Yin [HPY00] (Section 6.2.4). An exploration of hyper-structure
mining of frequent patterns, called H-Mine, was proposed by Pei, Han, Lu, et
al. [PHMA+01]. A method that integrates top-down and bottom-up traversal
of FP-trees in pattern-growth mining, was proposed by Liu, Pan, Wang, and
Han [LPWH02]. An array-based implementation of prefix-tree-structure for ef-
ficient pattern growth mining was proposed by Grahne and Zhu [GZ03]. Eclat,
an approach for mining frequent itemsets by exploring the vertical data format,
was proposed by Zaki [Zak00]. A depth-first generation of frequent itemsets
by a tree projection technique was proposed by Agarwal, Aggarwal, and Prasad
[AAP01]. An integration of association mining with relational database systems
was studied by Sarawagi, Thomas, and Agrawal [?].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide,
Taouil, and Lakhal [?], where an Apriori-based algorithm called A-Close for
such mining was presented. CLOSET, an efficient closed itemset mining algo-
rithm based on the frequent pattern growth method, was proposed by Pei, Han,
and Mao [?]. CHARM by Zaki and Hsiao [?] develops a compact vertical TID
list structure called diffset which only records the difference in the TID list of
a candidate pattern from its prefix pattern. A fast hash-based approach is also
used in CHARM to prune non-closed patterns. CLOSET+ by Wang, Han and
Pei [?] integrates previously proposed effective strategies as well as newly de-
veloped techniques such as hybrid tree-projection and item skipping. AFOPT, a
method that explores a right push operation on FP-trees during the mining pro-
cess, was proposed by Liu, Lu, Lou and Yu [?]. A prefix tree-based algorithm
integrated with array representation, called FPClose, for mining closed item-
sets using pattern-growth approach, was proposed by Grahne and Zhu [GZ03].
Pan, Cong, Tung, et al. [?] proposed CARPENTER, a method for finding
closed patterns in long biological datasets, which integrates the advantages of
vertical data formats and pattern growth methods. Mining max-patterns was
first studied by Bayardo [?], where MaxMiner, an Apriori-based, level-wise,
breadth-first search method was proposed to find max-itemset by performing
superset frequency pruning and subset infrequency pruning for search space re-
duction. Another efficient method MAFIA, proposed by Burdick, Calimlim, and
Gehrke [?], uses vertical bitmap to compress transaction id list, thus improv-
ing the counting efficiency. A FIMI (Frequent Itemset Mining Implementation)
workshop dedicated to the implementation methods of frequent itemset mining
was reported by Goethals and Zaki [?].

The problem of mining interesting rules has been studied by many researchers.
The statistical independence of rules in data mining was studied by Piatetski-
Shapiro [PS91]. The interestingness problem of strong association rules is dis-
cussed in Chen, Han, and Yu [CHY96], Brin, Motwani, and Silverstein [BMS97],

6.6. BIBLIOGRAPHIC NOTES 39

and Aggarwal and Yu [AY99], which cover several interestingness measures in-
cluding lift. An efficient method for generalizing associations to correlations
is given in Brin, Motwani, and Silverstein [BMS97]. Other alternatives to the
support-confidence framework for assessing the interestingness of association
rules are proposed in Brin, Motwani, Ullman, and Tsur [BMUT97] and Ahmed,
El-Makky, and Taha [AEMT00]. A method for mining strong gradient relation-
ships among itemsets was proposed by Imielinski, Khachiyan, and Abdulghani
[IKA02]. Silverstein, Brin, Motwani, and Ullman [SBMU98] studied the prob-
lem of mining causal structures over transaction databases. Some comparative
studies of different interestingness measures were done by Hilderman and Hamil-
ton [HH01]. The notion of null transaction invariance was introduced, together
with a comparative analysis of interestingness measures, by Tan, Kumar and
Srivastava [TKS02]. The use of all confidence as a correlation measure for gen-
erating interesting association rules was studied by Omiecinski [Omi03] and by
Lee, Kim, Cai and Han [LKCH03]. Wu, Chen and Han [WCH10] introduced
the Kulczynski measure for associative patterns and performed a comparative
analysis of a set of measures for pattern evaluation.

40CHAPTER 6. MINING FREQUENT PATTERNS, ASSOCIATIONS, AND CORRELATIONS: BASIC

Bibliography

[AAP01] R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projec-
tion algorithm for generation of frequent itemsets. J. Parallel and
Distributed Computing, 61:350–371, 2001.

[AEMT00] K. M. Ahmed, N. M. El-Makky, and Y. Taha. A note on “beyond
market basket: Generalizing association rules to correlations”.
SIGKDD Explorations, 1:46–48, 2000.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proc. 1993 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’93), pages
207–216, Washington, DC, May 1993.

[AMS+96] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and
T. Bollinger. The Quest data mining system. In Proc. 1996 Int.
Conf. Data Mining and Knowledge Discovery (KDD’96), pages
244–249, Portland, OR, Aug. 1996.

[AS94a] R. Agrawal and R. Srikant. Fast algorithm for mining associa-
tion rules in large databases. In Research Report RJ 9839, IBM
Almaden Research Center, San Jose, CA, June 1994.

[AS94b] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94),
pages 487–499, Santiago, Chile, Sept. 1994.

[AS96] R. Agrawal and J. C. Shafer. Parallel mining of association rules:
Design, implementation, and experience. IEEE Trans. Knowledge
and Data Engineering, 8:962–969, 1996.

[AY99] C. C. Aggarwal and P. S. Yu. A new framework for itemset gener-
ation. In Proc. 1998 ACM Symp. Principles of Database Systems
(PODS’98), pages 18–24, Seattle, WA, June 1999.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market basket:
Generalizing association rules to correlations. In Proc. 1997 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’97), pages
265–276, Tucson, AZ, May 1997.

41

42 BIBLIOGRAPHY

[BMUT97] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic item-
set counting and implication rules for market basket analysis. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’97), pages 255–264, Tucson, AZ, May 1997.

[CHN+96] D. W. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast distributed
algorithm for mining association rules. In Proc. 1996 Int. Conf.
Parallel and Distributed Information Systems, pages 31–44, Miami
Beach, FL, Dec. 1996.

[CHNW96] D. W. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance
of discovered association rules in large databases: An incremental
updating technique. In Proc. 1996 Int. Conf. Data Engineering
(ICDE’96), pages 106–114, New Orleans, LA, Feb. 1996.

[CHY96] M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview
from a database perspective. IEEE Trans. Knowledge and Data
Engineering, 8:866–883, 1996.

[GZ03] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining
frequent itemsets. In Proc. ICDM’03 Int. Workshop on Frequent
Itemset Mining Implementations (FIMI’03), Melbourne, FL, Nov.
2003.

[HH01] R. J. Hilderman and H. J. Hamilton. Knowledge Discovery and
Measures of Interest. Kluwer Academic, 2001.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. 2000 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’00), pages 1–12, Dallas, TX, May
2000.

[IKA02] T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades:
Generalizing association rules. Data Mining and Knowledge Dis-
covery, 6:219–258, 2002.

[LKCH03] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han. CoMine: Effi-
cient mining of correlated patterns. In Proc. 2003 Int. Conf. Data
Mining (ICDM’03), pages 581–584, Melbourne, FL, Nov. 2003.

[LPWH02] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets
by opportunistic projection. In Proc. 2002 ACM SIGKDD Int.
Conf. Knowledge Discovery in Databases (KDD’02), pages 239–
248, Edmonton, Canada, July 2002.

[MTV94] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algo-
rithms for discovering association rules. In Proc. AAAI’94 Work-
shop Knowledge Discovery in Databases (KDD’94), pages 181–192,
Seattle, WA, July 1994.

BIBLIOGRAPHY 43

[Omi03] E. Omiecinski. Alternative interest measures for mining associa-
tions. IEEE Trans. Knowledge and Data Engineering, 15:57–69,
2003.

[PCY95a] J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algo-
rithm for mining association rules. In Proc. 1995 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’95), pages 175–186,
San Jose, CA, May 1995.

[PCY95b] J. S. Park, M. S. Chen, and P. S. Yu. Efficient parallel mining for
association rules. In Proc. 4th Int. Conf. Information and Knowl-
edge Management, pages 31–36, Baltimore, MD, Nov. 1995.

[PHMA+01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proc. 2001 Int. Conf. Data En-
gineering (ICDE’01), pages 215–224, Heidelberg, Germany, April
2001.

[PS91] G. Piatetsky-Shapiro. Notes of AAAI’91 Workshop Knowledge
Discovery in Databases (KDD’91). Anaheim, CA, July 1991.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm
for mining association rules in large databases. In Proc. 1995 Int.
Conf. Very Large Data Bases (VLDB’95), pages 432–443, Zurich,
Switzerland, Sept. 1995.

[TKS02] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right inter-
estingness measure for association patterns. In Proc. 2002 ACM
SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’02),
pages 32–41, Edmonton, Canada, July 2002.

[Toi96] H. Toivonen. Sampling large databases for association rules. In
Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96), pages
134–145, Bombay, India, Sept. 1996.

[WCH10] T. Wu, Y. Chen, and J. Han. Re-examination of interestingness
measures in pattern mining: A unified framework. Data Mining
and Knowledge Discovery, 18, 2010.

[Zak00] M. J. Zaki. Scalable algorithms for association mining. IEEE
Trans. Knowledge and Data Engineering, 12:372–390, 2000.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Paral-
lel algorithm for discovery of association rules. Data Mining and
Knowledge Discovery, 1:343–374, 1997.

