

CS 412 Intro. to Data Mining

Chapter 3. Data Preprocessing

Qi Li Computer Science, Univ. Illinois at Urbana-Champaign, 2018

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

- Data Cleaning
- Data Integration
- Data Reduction and Transformation
- Dimensionality Reduction

Summary

Why Preprocess Data?

- Raw data not ready to analyze
- Issues of data quality
- Conclusions drawn may be questionable or unreliable

Measures for data quality

- Accuracy: is the data correct or wrong, accurate or not?
- Completeness: is there missing data?
- Consistency: are there conflicts in the data?
- □ Timeliness: is data old or recently updated?
- Believability: can you trust that the data is correct?
- □ Interpretability: how easily can the data be understood?

Major Data Preprocessing Tasks

Data cleaning

Handle missing data, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

- Integration of multiple databases, data cubes, or files
- Often involves resolving conflicts between data sources

Data reduction and transformation

- Speeds up analysis when data is too big
- E.g., can reduce rows (data points) or columns (attributes) of matrices

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., faulty instruments, human or computer error, and transmission error
 - <u>Incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation* = "" (missing data)
 - □ <u>Noisy</u>: containing noise, errors, or outliers
 - □ e.g., *Salary* = "−10" (an error)

Data Cleaning, continued

- Inconsistent: containing discrepancies in codes or names, e.g.,
 - □ Age = "42", Birthday = "03/07/2010"
 - Different data formats, e.g., rating "1, 2, 3" is now "A, B, C"
 - Discrepancy between duplicate records
- Intentional: (e.g., disguised missing data)
 - Defaults: Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - **Equipment malfunction**
 - Inconsistent with other recorded data and thus deleted
 - Data were not entered due to misunderstanding
 - Certain data may not be considered important at the time of entry
 - Did not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- □ Ignore the tuple
 - Often not desirable, can cause data set to shrink dramatically
- □ Fill in the missing value manually
 - **Tedious + infeasible?**
- □ Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - □ the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Handling Missing Data: Example

- Want to predict likely value for missing data
- Example: Student missing data for final course grade
 - □ This student is male, age 33, 4.0 GPA
 - □ Find similar people in the data and see what their value for final grade is
 - □ Fill missing spot with most likely final grade based on the other data

Noisy Data

Noise: random error or variance in a measured variable

- □ Incorrect attribute values may be due to various reasons
 - Faulty data collection instruments, Data entry problems, Data transmission problems, Technology limitation, Inconsistency in naming convention, ...

Other data problems

- Outliers
- Duplicate records
- Incomplete data
- Inconsistent data

How to Handle Noisy Data?

Want to detect and (possibly) remove outliers

Binning

- Sort data and partition into bins
- Can smooth by bin means, bin median, bin boundaries, etc.

Regression

Smooth by fitting the data into regression functions

Clustering

- Group data so that that points in the same cluster are more similar to each other than to those in other clusters
- Semi-supervised: Combined computer and human inspection
 - Detect suspicious values and have humans check

Data Cleaning as a Process

- Tools and guidelines exist to help with data cleaning
- Not a one-pass task
 - Often requires multiple rounds of identifying problems and resolving them

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Cleaning

Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Integration

- Data integration What is it?
 - Combining data from multiple sources into a coherent store

Schema integration:

- \Box e.g., A.cust-id \equiv B.cust-#
- Integrate metadata from different sources

Entity identification:

Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton

Data Integration – Why?

- Why data integration?
 - Clarifies data inconsistencies/Noise
 - **Example:** Age and Date of Birth.
 - Database 1 (Google): 02/26/1908; Age 38,
 - Database 2(Wikipedia): 02/26/1980; Age 38
 - Data from Database 2 clarifies the error in Year of Birth
 - □ Fills in Important Attributes for Analysis
 - Merging from more than 1 dataset provides more important information.
 - Speeds up Data Mining
 - One Master Schema can be mined rather than each of the 10 one-by-one

Data Integration- Challenges

- What problems will you face?
 - **C** Schema differences
 - Column is called "PersonAge" from Customer Table
 - Column is called "CustomerAge" from Person Table
 - Data Value Representation Conflicts
 - Database 1 -> "William Clinton"
 - Database 2 -> "Bill Clinton"
 - Bad Data
 - □ Typo; Wrong recording
 - Different Scales/Units for Data Type (£, \$, or €)

Data Integration - Handling Noise

- Detecting data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: no reason, different representations, different scales, e.g., metric vs. British units
- Resolving conflict information
 - □ Take the mean/median/mode/max/min
 - **Take the most recent**
 - Truth finding (Advanced): consider the source quality
- Data cleaning should happen <u>again</u> after data integration

Data Integration - Handling Redundancy

- Redundant data often occurs when multiple databases are integrated
 - Object identification / Entity Matching: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- □ What's the problem?
 - $\square \quad Y = 2X \quad \rightarrow Y = X_1 + X_2 \quad Y = 3X_1 X_2 \quad Y = -1291X_1 + 1293X_2$
 - □ Y equal to 2X in one DB, Y equal to sum of > 1 variable in another.
- Redundant attributes may be detected by correlation analysis and covariance analysis

	Yaho	oo! Finance	Day's Range: 93	.80-95.71	Nasdaq	
				Last Sale		\$ 95.14
Green Mounta	ain Coffee Roasters	s, (NasdaqGS: GMCR)		Change Net / %		1.69 🛕 1.81%
After Hours: 95.13	-0.01 (-0.02%) 4:07PM EDI	r		Best Bid / Ask		\$ 95.03 / \$ 95.94
				<u>1y Target Est:</u>		\$ 95.00
Last Trade:	95.14	Day's Range:	93.80 - 95.71	Today's High / Low		\$ 95.71 / \$ 93.80
Frade Time:	4:00PM EDT	52wk Range:	25.38 - 95.71	Share Volume		2,384,175
		Volume:	2 394 075	50 Day Avg. Daily Vo	lume	2,751,062
Change:	1 .69 (1.81%)	volume.	2,364,075	Previous Close		\$ 93.45
Prev Close:	93.45	Avg Vol (3m):	2,512,070	52 Wk High / Low		\$ 93.72 / \$ 25.38
)non:	04.01	Market Can: 13 51P		Shares Outstanding		152,785,000
open.	54.01	market oap.	13.310	Market Value of Liste	ed Security	\$ 14,535,964,900
Bid:	95.03 x 100	P/E (ttm):	119.82	P/E Ratio		120.43
lsk:	95.94 x 100	EPS (tty	0.79	Forward P/F		63.57
u Taraat Eat		25 22 25 74	N/A (N/A)	Ear er Share		\$ 0.79
ly rarget Est.	52wk Ran	ge: 25.38-95.71	N/A (N/A)	mualized Dividend	!	N/A
				Ex Dividend Date		N/A
				Dividend Payment D	ate	N/A
		52 Wk:	25.38-93.72	Current Yield		N/A
				Beta		0.82
				NASDAQ Official Op	en Price:	\$ 94.01
				Date of NASDAQ Off	icial Open Price:	Jul. 7, 2011
				NASDAQ Official Clo	se Price:	\$ 95.14
				Date of NASDAQ Off	icial Close Price:	Jul. 7, 2011

Pure error

6%

Stock	Semantics	Source	Accuracy	Coverage
	ambiguity	Google Finance	.94	.82
3% 11	Instance ambiguity	Yahoo! Finance	.93	.81
%		NASDAQ	.92	.84
46	Out-of-date	MSN Money	.91	.89
%		Bloomberg	.83	.81
34	Unit error	I		
70				

Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. Truth finding on the Deep Web: Is the problem solved? In *VLDB*, 2013.

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Reduction

Data reduction (<u>https://en.wikipedia.org/wiki/Data_reduction</u>):

- The transformation of data into a simplified or more meaningful form.
- □ Why data reduction?
 - Data is too big, which causes analysis to be a pain.
 - Example: Large Gigabytes of Data: Forced to chunk/analyze
 1 chunk at a time, which is time consuming.

Data Reduction – Row and Column

- Smart Data Reduction
- Attribute Elimination (Column Reduction)
 - □ Throw away useless attributes, **not** random ones.
 - **Example:** Predict if patient will get Disease A
 - Throw out "hasASibling" attribute, and keep "siblingHasDiseaseA" attribute.
- Entity Elimination (Row Reduction)
 - Example: Find citizens income. Do you need everyone's income to do this analysis? No
 - Smart Reduction

Data Reduction: Parametric

Parametric Method (https://en.wikipedia.org/wiki/Parametric_model)

- Applying an *assumed model* onto data in order to simplify and add meaning.
- Example: If you want to analyze data related to a spopulation's height and weight.
- Assumption: Linear Regression Model
 - **Estimate the parameters to model the data:**
 - y=mx+b
 - The equation replaces and simplifies the data

Height vs. Weight

Terminology: Regression

- Dependent variable (also called response variable)
 - Plotted on "Y" Axis
- Independent variables (also known as explanatory variables or predictors)
 - Plotted on "X" axis. The variable that is manipulated.
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by the *least squares method*, but other criteria have also been used

Used for prediction

 (including forecasting of time-series data),
 inference, hypothesis
 testing, and modeling of causal relationships

Parametric Regression Types

Linear regression:

- \Box Y = wX + b is one form of linear regression
- Find w and b to minimize the least squared of the errors
- Data modeled to fit a straight line
- Nonlinear regression:
 - The function you want to fit is nonlinear
 - The data are fitted by a method of successive approximations. Example: Y = exp(wx + b)
- Linear and Nonlinear
 - Both are parametric methods and both need to have an assumption

Multiple Regression and Log-Linear Models

Detritivore Species Richness

- $\square \quad \underline{\text{Multiple regression}}: Y = b_0 + b_1 X_1 + b_2 X_2$
 - More than one dependent variable.
 - Example: House Price is dependent on location <u>and</u> size <u>and</u> the number of bedrooms.
 - **Given Still a linear combination / model.**
- Log-linear model:
- Another very popular category of regression
- Will talk about this in future lectures.

Data Reduction: Non-Parametric

Non-Parametric Method

- Do not assume what kind of model is best.
- Major families: histograms, clustering, sampling, etc.
- Good for when you don't know much about the data.
- □ Algorithms: k-nearest neighbors, decision tree,...

Non-Parametric: Histogram

- This is a typical Non-ParametricMethod
 - i.e: it doesn't assume how the data is distributed.
- Divide data into buckets.
- Several ways to do binning:
 - Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equal-depth)

Clustering

Can be parametric (e.g. GMM) or non-parametric (e.g. hierarchical clustering)

- Based on the model chosen
- □ Key idea: put the data into different groups.
- How: data within a group should be close to one another, and data from different groups to be more different.
- If the goal is met, then when you do sampling it is easier to choose what would be the representative items to represent the distribution of the data.

Data Reduction: Sampling

- Sampling: obtaining a small sample *s* to represent the whole data set *N*
- □ Key principles:
 - Choose a **representative** subset and of the data
 - Choose an appropriate size of the sample
- **Example:** Presidential election
 - Predicting which candidate will win the final election
 - Can not pick 1000s, you need more
 - Can not only sample people from NY. You need multiple regions

Data Reduction: Random Sampling

Random sampling

- Pick sample population at random.
- Example: Go to the street, asking people, "Do you like Starbucks coffee?"
- Random Sampling Types
 - Without replacement
 - Once an object is selected, it is removed from the population
 - With replacement
 - A selected object is not removed from the population

Random Sampling (Continued...)

Stratified Random Sampling

- Used if you have a basic understanding of the data.
- Example: Presidential Election
 - I don't need to spend time in NY already know what will happen in that state.
 - Only spend time in the "Swing" States.
- Need the same percentage of the original data
 - Example: Male and Female in CS department.
 - Know that there are more males than females. Want to keep same percentage. The sample should have the same ratio.

37

Data Reduction: Aggregation/Summation/Data Cube

- Data aggregation is any process in which information is gathered and expressed in a summary form.
- Also known as Summation or a Data Cube.
- Example: Handling transactional data from Walmarts
 - You get records for every customer's visit, and all the details of those transactions.
 - If want to find out what type of beer is more popular in the market, then you <u>don't</u> need to go to each individual's transaction one-by-one.
 - A summarization is good enough.
 - NOTE: Future lectures go into aggregation in very much more detail.

Predictive attitudinal date

Data Compression : Terminology

- Very effective way to reduce the size of your data
- **Types of Compression:**
 - Lossy
 - Original Data is Approximated
 - Lossless
 - Original Data can be recovered
- Next Slide...(Examples)

Lossy vs. lossless compression

Data Compression : Lossless vs Lossy

Lossy

- **Example:** Phone Photo Sample Image
 - □ A small photo, less space, gives basic information.
 - If you think its important, you click <u>download</u> and you get all the data from the web for this image.
 - □ The small photo is lossy compression of the bigger image.
- Lossless
 - **Example:** Zip file.
 - On unzip, you get the original data. No Data is lost, its just in a different format.
 - □ Example: 10k x 10k matrix of 1s and 0s
 - □ Of only 100 are "1", then only store the location of 1s.
 - □ Can easily reconstruct the matrix. No information is lost.

Data Transformation

What is it?

- A function that maps the entire set of values of a given attribute to a new set of replacement values
- Each old value can be identified with one of the new values
- □ When do I normalize?
 - □ If your data already has the same meaning, there there is no need to normalize.
 - **Example:** Two data sets: High Temperature, Low Temperature
 - □ If they have different meanings, then you should normalize to compare them.
 - Example: Age vs Income.
 - □ These are hard to compare because of the range of values in Age is 0-99 , and income maybe is 12k 100k, etc.

Normalization – Min/Max

Maps data into a bounded range of your choice

- Standardizes /Smooths the data value range
- Smoothed ranges can then be easily compared to each other.

□ **Min-max normalization**: to [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new max_{A} - new min_{A}) + new min_{A}$$

□ Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]

□ Then \$73,000 is mapped to

$$\frac{73,600 - 12,000}{98,000 - 12,000}(1.0 - 0) + 0 = 0.716$$

Normalization – Z-Score

Used to compare how each data point in a data set compares to the mean

- Maps data to a standard normal curve
- Answers the questions: Where is the center? / Where are the most values located? / Where are outliers?
- □ If value is < -3 or > 3, then it may be an outlier in the data set
 - □ More analysis can then be done to find out *why* it is an outlier.
- **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

Ex. Let μ = 54,000, σ = 16,000. Then

$$\frac{73,600-54,000}{16,000} = 1.225$$

Normalization – Decimal Scaling

- Very simple technique to scale data points to make them comparable to other data points.
- **□** Each data point is scaled by a factor of 10
- Normalization by decimal scaling

$$v' = \frac{v_n}{10^j}, j = 4$$
 \rightarrow Where j is the smallest integer such that Max(|v'|) <=1

$$A_{dataset} = \{v_1, v_2, v_3\} = \{1000, 2000, 10000\}$$
$$A'_{dataset} = \{0.1, 0.2, 1.0\}$$

Discretization

- One type of transformation to reduce data for most popular data types (many more):
 - Nominal
 - Ordinal
 - Numeric
- Discretization is most useful when reducing **Numeric** attribute types
 - Example: A large data set with many employee salaries (\$)
 - □ Bucket the salaries into ranges/*categories*:
 - < 60k; [60k, 90k]; 90k to 1 Million</p>
 - The size of data is reduced dramatically
 - Often, it is the <u>category</u> that really matters in the analysis anyway, not the individual values.

Data Discretization Methods

- Unsupervised / Top-down Split
 - Binning
 - Histogram analysis
 - Clustering analysis
- Unsupervised / bottom-up merge
 - Clustering analysis
 - **Correlation** (e.g., χ^2) analysis
- Supervised / top-down split
 - Decision-tree analysis

Top-down Split

Take all the data at once, and bin into smaller groups

Bottom-up Merge

- Start with a small group of items, merge each individual with nearest neighbor.
- Then merge the new groups with their nearest neighbor, etc.
- Note: All the methods can be applied recursively

Simple Discretization: Binning

Equal-width Binning

- Bin intervals are the same
- Example: If the final grades in class range from 60 to 100
 - Interval for each grade will be the same (10 points each)
 - □ 100-90 (A), 90-80 (B), 80-70 (C), 70-60(D)
- Equal-depth Binning
 - □ The number of the items in each bin is approximately the same
 - **Example:**
 - □ 240 students, each grade will have 60 students no matter what
 - A possible result is:
 - □ 100-75 is A, 75-72 is B, 72-65 is C, 65-60 is D

Example: Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equal-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries** (Specific rules. What rule is applied below?):
 - Bin 1: 4, **4, 4,** 15
 - Bin 2: 21, **21, 25,** 25
 - Bin 3: 26, **26, 26,** 34

- Challenge:
 - How would you apply equal-width binning in the example?

Discretization Without Supervision: Binning vs. Clustering

Concept Hierarchy Generation

- □ A lot of things in life follow hierarchical structure:
 - Hour, day, week, month, year
- Once you put data in a hierarchy you get a better understanding of the data
- Organization like this is used a lot in data warehouse construction
- **Example:** Reports about Walmart Sales Activity
 - Start reports about local Walmart, then State Walmart, then country Walmart, and then the global Walmart.
 - A manager might want a summarizations on different levels of time too, for reports.

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - □ street < city < state < country
- Specification of a hierarchy for a set of values by explicit data grouping
 - □ {Urbana, Champaign, Chicago} < Illinois
- Specification of only a partial set of attributes
 - E.g., only *street < city*, not others
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - □ E.g., for a set of attributes: {*street, city, state, country*}

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction and Transformation

Dimensionality Reduction

Summary

Dimensionality Reduction

Dimensionality reduction

Obtain principal variables, get rid of the others

□ Why?

- Combinations will grow exponentially
- Data becomes sparse
- Density and distance between points becomes less meaningful
- "Curse of Dimensionality"

(1.0)	0	5.0	0	0	0	0	0
0	3.0	0	0	0	0	11.0	0
0	0	0	0	9.0	0	0	0
0	0	6.0	0	0	0	0	0
0	0	0	7.0	0	0	0	0
2.0	0	0	0	0	10.0	0	0
0	0	0	8.0	0	0	0	0
$\left(\begin{array}{c} 0 \end{array} \right)$	4.0	0	0	0	0	0	12.0

Dimensionality Reduction

Advantages of dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality Reduction Techniques

Dimensionality reduction methodologies

General Selection:

Example: choose TAs for next semester

(..., name, netid, major, midterm_score, final_score, assignment_score, standing, age, birthday, ...)

Feature extraction:

Example: analyze iPhone's **annual** sales in different stores

(store_id, address, city, state, sales_Q1, sales_Q2, sales_Q3, sales_Q4,...)

(store_id, address, city, state, annual_sales,...)

Dimensionality Reduction Techniques

Some typical dimensionality methods

- Principal Component Analysis
- Supervised and nonlinear techniques
 - □ Feature subset selection
 - Feature creation

Principal Component Analysis (PCA)

Basic idea:

- □ Search for k n-dimensional orthogonal vectors that can best be used to represent the data, where $k \leq n$
- The original data can be projected onto smaller space
- Only work on numerical data

original data space

Attribute Subset Selection

Goal

- Minimal set of attributes
- Similar probability distribution

Redundant attributes

E.g., purchase price of a product and the amount of sales tax paid

Irrelevant attributes

Ex. A student's ID is often irrelevant to the task of predicting his/her GPA

Heuristic Search in Attribute Selection

- Strategy: make locally optimal choice in the hope that this will lead to a globally optimal solution
- □ There are 2^d possible attribute combinations of *d* attributes (exponential)
- Typical heuristic attribute selection methods:
- Best single attribute under the attribute independence assumption: choose by significance tests

Forward selection	Backward elimination
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
Initial reduced set: { } => $\{A_1\}$ => $\{A_1, A_4\}$ => Reduced attribute set:	$=> \{A_1, A_3, A_4, A_5, A_6\} \\ => \{A_1, A_4, A_5, A_6\} \\ => \text{Reduced attribute set:} \\ \{A_1, A_4, A_6\} \\$
$\{A_1, A_4, A_6\}$	

Greedy (heuristic) methods for attribute subset selection

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
 - Data discretization

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- **Data cleaning**: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - **Entity identification problem; Remove redundancies; Detect inconsistencies**
- **Data reduction, data transformation and data discretization**
 - Numerosity reduction; Data compression
 - Normalization; Concept hierarchy generation
- Dimensionality reduction
 - Feature selection and feature extraction
 - PCA; attribute subset selection (heuristic search); attribute creation

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. <u>Mining Database Structure</u>; Or, How to Build a Data Quality Browser. SIGMOD'02
- □ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. *IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4*
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
 Knowledge and Data Engineering, 7:623-640, 1995

