

### CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Oili, Computer Science, Univ. Illinois at Urbana-Champaign, 2018

## Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts



- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

#### Pattern Discovery: Basic Concepts

What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

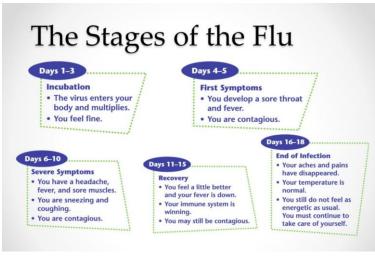
Compressed Representation: Closed Patterns and Max-Patterns

#### What are Patterns?

- What are patterns?
  - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
  - Patterns represent intrinsic and important properties of datasets



Frequent item set



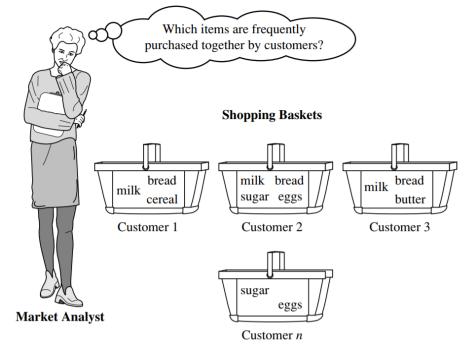
Frequent sequences



Frequent structures

#### What Is Pattern Discovery?

- Pattern discovery: Uncovering patterns from massive data sets
- It can answer questions such as:
  - What products were often purchased together?
  - What are the subsequent purchases after buying an iPad?



#### Pattern Discovery: Why Is It Important?

- □ Finding inherent regularities in a data set:
  - spatiotemporal, multimedia, time-series, and stream data
- □ Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Mining sequential, structural (e.g., sub-graph) patterns
  - Classification: Discriminative pattern-based analysis
  - Cluster analysis: Pattern-based subspace clustering
- Broad applications
  - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

#### **Basic Concepts: Transactional Database**

- Transactional Database (TDB)
  - Each transaction is associated with an identifier, called a TID.

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |

#### Basic Concepts: k-Itemsets and Their Supports

Itemset: A set of one or more items

$$I = \{I_1, I_2, \cdots, I_m\}$$

$$X = \{x_1, ..., x_k\}$$

- Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count)
  - sup{X} = occurrences of an itemset X
    - $\Box$  Ex. sup{Beer} = 3
    - $\Box$  Ex. sup{Diaper} = 4
    - $\Box$  Ex. sup{Beer, Diaper} = 3
    - Ex. sup{Beer, Eggs} = 1

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |

- □ (relative) support
  - $s\{X\}$  = The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
  - $\Box$  Ex. s{Beer} = 3/5 = 60%
  - $\Box$  Ex. s{Diaper} = 4/5 = 80%
  - $\Box$  Ex. s{Beer, Eggs} = 1/5 = 20%

### **Basic Concepts: Frequent Itemsets (Patterns)**

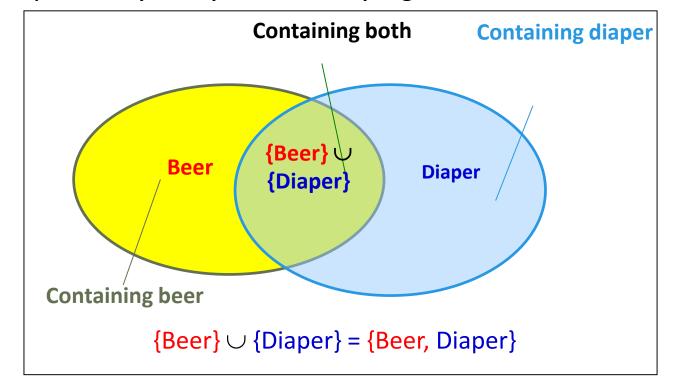
- An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
- Let  $\sigma = 50\%$  ( $\sigma$ : minsup threshold) For the given 5-transaction dataset
  - All the frequent 1-itemsets:
    - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
    - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
  - All the frequent 2-itemsets:
    - □ {Beer, Diaper}: 3/5 (60%)
  - All the frequent 3-itemsets?
    - None

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

#### From Frequent Itemsets to Association Rules

- Comparing with itemsets, association rules can be more telling
  - Ex. Diaper → Beer
    - Buying diapers may likely lead to buying beers



Note:  $X \cup Y$ : the union of two itemsets

The set contains both X and Y

#### **Association Rules**

- How do we compute the strength of an association rule  $X \rightarrow Y$  (Both X and Y are itemsets)?
- We first compute the following two metrics, s and c.
  - $\square$  Support of  $X \cup Y$ 
    - $\Box$  Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
  - $\Box$  Confidence of  $X \rightarrow Y$ 
    - The conditional probability that a transaction containing X also contains Y

$$c = \sup(X \rightarrow Y) / \sup(X)$$

- $\Box$  Ex.  $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{2} = 0.75$
- ☐ In pattern analysis, we are often interested in those rules that dominates the database, and these two metrics ensure the popularity and correlation of X and Y.

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |

#### Mining Frequent Itemsets and Association Rules

- Association rule mining
  - Given two thresholds: minsup, minconf
  - $\Box$  Find all of the rules,  $X \rightarrow Y$  (s, c)
    - $\square$  such that,  $s \ge minsup$  and  $c \ge minconf$
- Let minsup = 50%
  - Freq. 1-itemsets: Beer: 3, Nuts: 3,Diaper: 4, Eggs: 3
  - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- Let minconf = 50%
  - $\Box$  Beer  $\rightarrow$  Diaper (60%, 100%)
  - $\Box$  Diaper  $\rightarrow$  Beer (60%, 75%)

(Q: Are these all rules?)

| I | Hu | itellis bougiit                  |
|---|----|----------------------------------|
|   | 1  | Beer, Nuts, Diaper               |
|   | 2  | Beer, Coffee, Diaper             |
|   | 3  | Beer, Diaper, Eggs               |
| Ì | 4  | Nuts, Eggs, Milk                 |
| I | 5  | Nuts, Coffee, Diaper, Eggs, Milk |

Itams hought

#### Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

#### Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- $\square$  How many frequent itemsets does the following TDB<sub>1</sub> contain (minsup = 1)?
  - $\Box$  TDB<sub>1:</sub> T<sub>1</sub>: {a<sub>1</sub>, ..., a<sub>50</sub>}; T<sub>2</sub>: {a<sub>1</sub>, ..., a<sub>100</sub>}
  - Let's have a try

```
1-itemsets: \{a_1\}: 2, \{a_2\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1, 2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1 ..., ..., \{a_{99}, a_{100}\}: 1, ..., ..., ..., ..., ...
```

100-itemset: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>100</sub>}: 1

■ The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

A too huge set for any one to compute or store!

#### **Expressing Patterns in Compressed Form**

- How to reduce the redundancy of the list of all the frequent itemsets?
  - If  $\{a_1, ..., a_{99}\}$  and  $\{a_1, ..., a_{100}\}$  have the same support in the database, then we don't need to list both of them
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y ⊃ X, *with the same support* as X
  - $\square$  Ex. TDB<sub>1</sub>: T<sub>1</sub>: {a<sub>1</sub>, ..., a<sub>50</sub>}; T<sub>2</sub>: {a<sub>1</sub>, ..., a<sub>100</sub>}
  - Suppose minsup = 1. How many closed patterns does TDB<sub>1</sub> contain?
    - Two:  $P_1$ : "{ $a_1$ , ...,  $a_{50}$ }: 2";  $P_2$ : "{ $a_1$ , ...,  $a_{100}$ }: 1"

#### **Expressing Patterns in Compressed Form: Closed Patterns**

- Closed pattern is a lossless compression of frequent patterns
  - Reduces the # of patterns but does not lose the support information!
  - Given  $P_1$ : "{ $a_1$ , ...,  $a_{50}$ }: 2";  $P_2$ : "{ $a_1$ , ...,  $a_{100}$ }: 1"
  - You will still be able to say: " $\{a_2, ..., a_{40}\}$ : 2", " $\{a_5, a_{51}\}$ : 1"

#### **Expressing Patterns in Compressed Form: Max-Patterns**

- □ Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
  - Do not care the real support of the sub-patterns of a max-pattern
  - Let Transaction DB TDB<sub>1</sub>:  $T_1$ : {a<sub>1</sub>, ..., a<sub>50</sub>};  $T_2$ : {a<sub>1</sub>, ..., a<sub>100</sub>}
  - Suppose minsup = 1. How many max-patterns does TDB<sub>1</sub> contain?
    - One: P: "{a<sub>1</sub>, ..., a<sub>100</sub>}: 1"

#### **Expressing Patterns in Compressed Form: Max-Patterns**

- Max-pattern is a lossy compression!
  - We only know a subset of the max-pattern P,  $\{a_1, ..., a_{40}\}$ , is frequent
  - But we do not know the real support of  $\{a_1, ..., a_{40}\}$ , ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

# Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods



- Pattern Evaluation
- Summary

#### **Efficient Pattern Mining Methods**

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

#### The Downward Closure Property of Frequent Patterns

- Observation: From TDB<sub>1:</sub>  $T_1$ : { $a_1$ , ...,  $a_{50}$ };  $T_2$ : { $a_1$ , ...,  $a_{100}$ }
  - We get a frequent itemset:  $\{a_1, ..., a_{50}\}$
  - □ Also, its subsets are all frequent:  $\{a_1\}$ ,  $\{a_2\}$ , ...,  $\{a_{50}\}$ ,  $\{a_1, a_2\}$ , ...,  $\{a_1, ..., a_{49}\}$ , ...
  - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
  - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
  - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
  - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
  - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

#### **Apriori Pruning and Scalable Mining Methods**

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
  - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
  - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
  - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

#### **Apriori: A Candidate Generation & Test Approach**

- Outline of Apriori (level-wise, candidate generation and test)
  - Initially, scan DB once to get frequent 1-itemset
  - Repeat
    - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
    - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
    - Set k := k +1
  - Until no frequent or candidate set can be generated
  - Return all the frequent itemsets derived

#### The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k
                       // return F_k generated at each level
```

#### The Apriori Algorithm—An Example

Database TDB

**Items** 

A, C, D

B, C, E

A, B, C, E

B, E

minsup = 2

1<sup>st</sup> scan

| Itemset | sup |
|---------|-----|
| {A}     | 2   |
| {B}     | 3   |
| {C}     | 3   |
| {D}     | 1   |
| {E}     | 3   |

| Itemset | sup |
|---------|-----|
| {A}     | 2   |
| {B}     | 3   |
| {C}     | 3   |
| {E}     | 3   |

 $F_2$ 

Tid

10

20

30

40

| Itemset | sup |
|---------|-----|
| {A, C}  | 2   |
| {B, C}  | 2   |
| {B, E}  | 3   |
| {C, E}  | 2   |

 $C_2$ 

| Itemset | sup |
|---------|-----|
| {A, B}  | 1   |
| {A, C}  | 2   |
| {A, E}  | 1   |
| {B, C}  | 2   |
| {B, E}  | 3   |
| {C, E}  | 2   |

**Itemset** {A, B} {A, C} {A, E} {B, C} {B, E} {C, E}

**Itemset** {B, C, E}

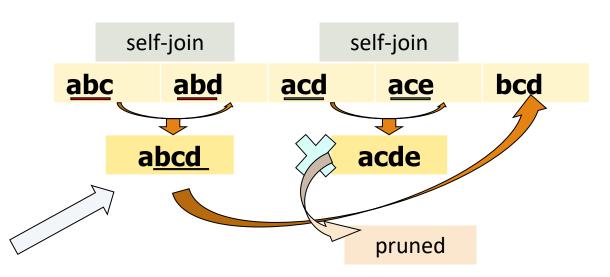
3<sup>rd</sup> scan

| Itemset   | sup |
|-----------|-----|
| {B, C, E} | 2   |

2<sup>nd</sup> scan

#### **Apriori: Implementation Tricks**

- How to generate candidates?
  - $\square$  Step 1: self-joining  $F_k$
  - Step 2: pruning
- Example of candidate-generation
  - $\Box$   $F_3$  = {abc, abd, acd, ace, bcd}
  - $\square$  Self-joining:  $F_3 * F_3$ 
    - abcd from abc and abd
    - acde from acd and ace
  - Pruning:
    - $\Box$  acde is removed because ade is not in  $F_3$

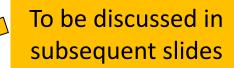


#### Candidate Generation (Pseudo-Code)

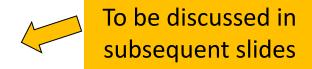
```
Suppose the items in F_{k-1} are listed in an order
                                                                        self-join
                                                       self-join
// Step 1: Joining
                                                  abc
                                                         abd
                                                                   acd
                                                                                   bcd
                                                                           ace
   for each p in F_{k-1}
                                                       abcd
       for each q in F_{k-1}
              if p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1} 
                      c = \mathbf{join}(p, q)
// Step 2: pruning
                      if has_infrequent_subset(c, F_{k-1})
                             continue // prune
                      else add c to C_k
```

#### **Apriori: Improvements and Alternatives**

- Reduce passes of transaction database scans
  - Partitioning (e.g., Savasere, et al., 1995)



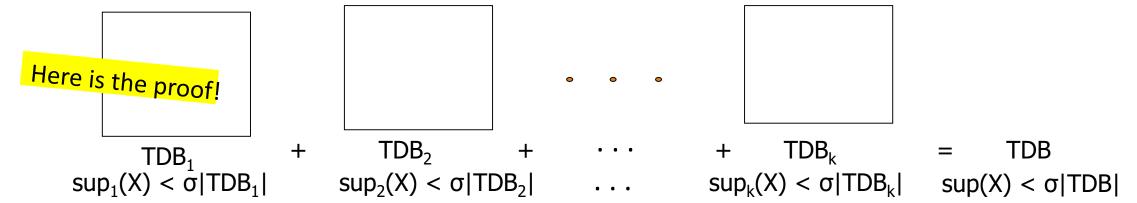
- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
  - Hashing (e.g., DHP: Park, et al., 1995)



- Pruning by support lower bounding (e.g., Bayardo 1998)
- □ Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
  - Tree projection (Agarwal, et al., 2001)
  - □ H-miner (Pei, et al., 2001)
  - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

#### Partitioning: Scan Database Only Twice

□ Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB



#### Partitioning: Scan Database Only Twice

- Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, *VLDB'95*)
  - Scan 1: Partition database so that each partition can fit in main memory (why?)
    - Mine local frequent patterns in this partition
  - Scan 2: Consolidate global frequent patterns
    - ☐ Find global frequent itemset candidates (those frequent in at least one partition)
    - ☐ Find the true frequency of those candidates, by scanning TDB; one more time

#### Direct Hashing and Pruning (DHP)

- □ DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- $\square$  Hashing: Different itemsets may have the same hash value: v = hash(itemset)
- □ 1<sup>st</sup> scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
- $\Box$  Observation: A k-itemset cannot be frequent if its corresponding hashing bucket

count is below the *minsup* threshold

Example: At the 1<sup>st</sup> scan of TDB, count 1-itemset, and

■ Hash 2-itemsets in the transaction to its bucket

{ab, ad, ce}

□ {bd, be, de}

...

| Itemsets     | Count |
|--------------|-------|
| {ab, ad, ce} | 35    |
| {bd, be, de} | 298   |
|              |       |
| {yz, qs, wt} | 58    |

**Hash Table** 

- At the end of the first scan,
  - $\Box$  if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

#### **Exploring Vertical Data Format: ECLAT**

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- ☐ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format:  $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
  - $\sqcup$  t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
  - $\Box$   $t(X) \subset t(Y)$ : transaction having X always has Y (e.g.,  $t(ac) \subset t(ce)$ )
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
  - Only keep track of differences of tids
  - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

#### A transaction DB in Horizontal Data Format

| Tid | Itemset    |
|-----|------------|
| 10  | a, c, d, e |
| 20  | a, b, e    |
| 30  | b, c, e    |

#### The transaction DB in Vertical Data Format

| Item | TidList    |
|------|------------|
| а    | 10, 20     |
| b    | 20, 30     |
| С    | 10, 30     |
| d    | 10         |
| е    | 10, 20, 30 |

#### Why Mining Frequent Patterns by Pattern Growth?

- □ Apriori: A *breadth-first search* mining algorithm
  - ☐ First find the complete set of frequent k-itemsets
  - Then derive frequent (k+1)-itemset candidates
  - Scan DB again to find true frequent (k+1)-itemsets

#### Why Mining Frequent Patterns by Pattern Growth?

- Motivation for a different mining methodology
  - Can we develop a depth-first search mining algorithm?
  - $\Box$  For a frequent itemset ρ, can subsequent search be confined to only those transactions that containing ρ?
- Such thinking leads to a frequent pattern growth approach:
  - □ FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

#### Prerequisite: Find frequent 1-itemset

| TID | Items in the Transaction     |
|-----|------------------------------|
| 100 | $\{f, a, c, d, g, i, m, p\}$ |
| 200 | $\{a, b, c, f, l, m, o\}$    |
| 300 | $\{b, f, h, j, o, w\}$       |
| 400 | $\{b, c, k, s, p\}$          |
| 500 | $\{a, f, c, e, l, p, m, n\}$ |

1. Scan DB once, find single item frequent pattern:

Let min\_support = 3

Sort frequent items in frequency descending order, f-list = f-c-a-b-m-p

#### Example: Construct FP-tree from a Transaction DB

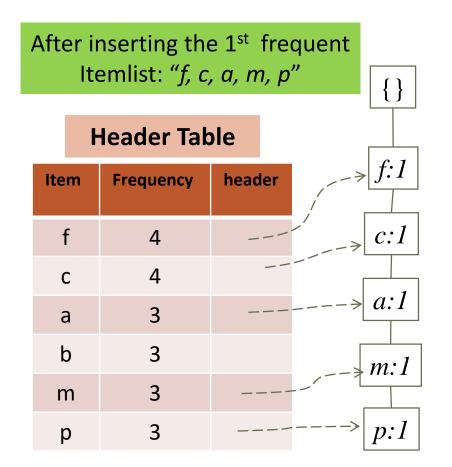
| TID | Items in the Transaction     | Ordered, frequent itemlist |
|-----|------------------------------|----------------------------|
| 100 | $\{f, a, c, d, g, i, m, p\}$ | f, c, a, m, p              |
| 200 | $\{a, b, c, f, l, m, o\}$    | f, c, a, b, m              |
| 300 | $\{b, f, h, j, o, w\}$       | f, $b$                     |
| 400 | $\{b, c, k, s, p\}$          | c, b, p                    |
| 500 | $\{a, f, c, e, l, p, m, n\}$ | f, c, a, m, p              |

3. Scan DB again, find the ordered frequent itemlist for each transaction

#### **Example: Construct FP-tree from a Transaction DB**

| TID | Items in the Transaction     | Ordered, frequent itemlist |
|-----|------------------------------|----------------------------|
| 100 | $\{f, a, c, d, g, i, m, p\}$ | f, c, a, m, p              |
| 200 | $\{a, b, c, f, l, m, o\}$    | f, c, a, b, m              |
| 300 | $\{b, f, h, j, o, w\}$       | f, b                       |
| 400 | $\{b, c, k, s, p\}$          | c, b, p                    |
| 500 | $\{a, f, c, e, l, p, m, n\}$ | f, c, a, m, p              |

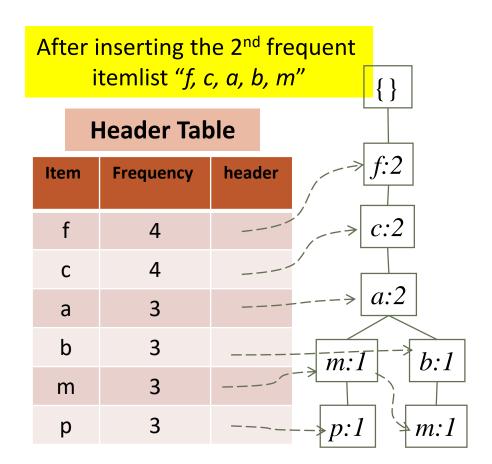
4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared sub-branches merged, counts accumulated



## **Example: Construct FP-tree from a Transaction DB**

| TID | Items in the Transaction     | Ordered, frequent itemlist |
|-----|------------------------------|----------------------------|
| 100 | $\{f, a, c, d, g, i, m, p\}$ | f, c, a, m, p              |
| 200 | $\{a, b, c, f, l, m, o\}$    | f, c, a, b, m              |
| 300 | $\{b, f, h, j, o, w\}$       | f, b                       |
| 400 | $\{b, c, k, s, p\}$          | c, b, p                    |
| 500 | $\{a, f, c, e, l, p, m, n\}$ | f, c, a, m, p              |

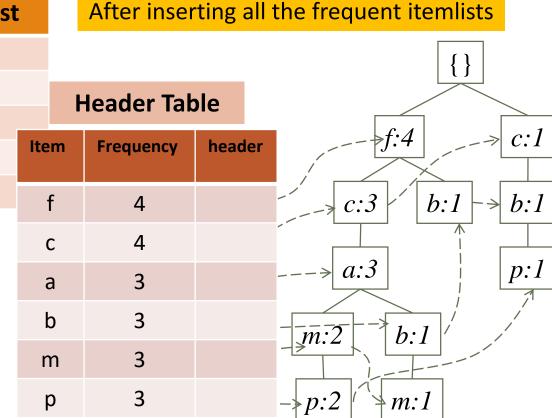
4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared subbranches merged, counts accumulated



## **Example: Construct FP-tree from a Transaction DB**

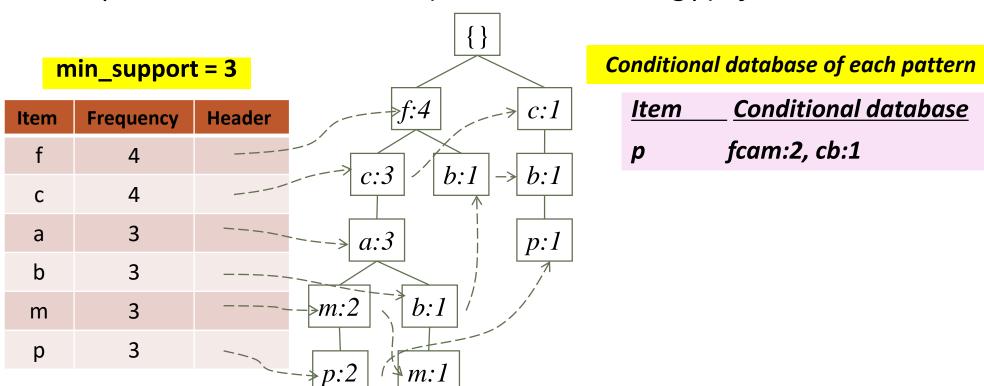
| TID | Items in the Transaction     | Ordered, frequent itemlist |
|-----|------------------------------|----------------------------|
| 100 | $\{f, a, c, d, g, i, m, p\}$ | f, c, a, m, p              |
| 200 | $\{a, b, c, f, l, m, o\}$    | f, c, a, b, m              |
| 300 | $\{b, f, h, j, o, w\}$       | <i>f</i> , <i>b</i>        |
| 400 | $\{b, c, k, s, p\}$          | c, b, p                    |
| 500 | $\{a, f, c, e, l, p, m, n\}$ | f, c, a, m, p              |

4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared subbranches merged, counts accumulated



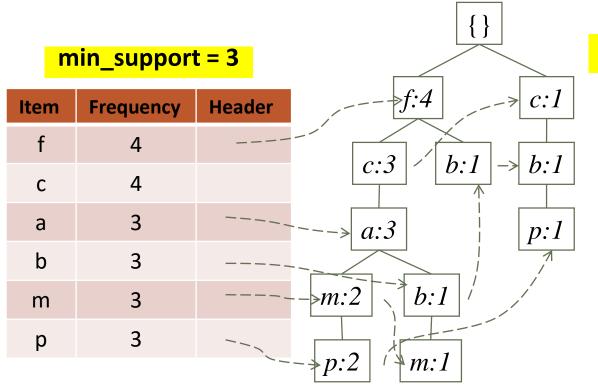
# Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
  - We start to calculate the conditional database from bottom to top (from the least frequent item)
  - $\square$  Conditional database: the database under the condition that p exists
    - p's conditional database (Patterns containing p): fcam:2, cb:1



# Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- p's conditional database (Patterns containing p): fcam:2, cb:1
- After calculating p's conditional database, we calculate m's conditional database

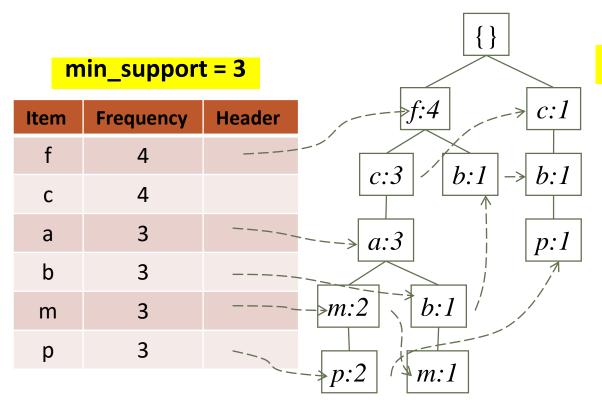


#### Conditional database of each pattern

| <u>Item</u> | <u>Conditional database</u> |
|-------------|-----------------------------|
| m           | fca:2, fcab:1               |
| p           | fcam:2, cb:1                |

# Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- □ Repeat and calculate the conditional database of b, a, and c
- Since f is the most frequent item, we don't need to compute its conditional dataset



#### Conditional database of each pattern

| <u>Item</u> | Conditional database |
|-------------|----------------------|
| С           | f:3                  |
| a           | fc:3                 |
| b           | fca:1, f:1, c:1      |
| m           | fca:2, fcab:1        |
| p           | fcam:2, cb:1         |

#### Mine Each Conditional Database Recursively

min\_support = 3

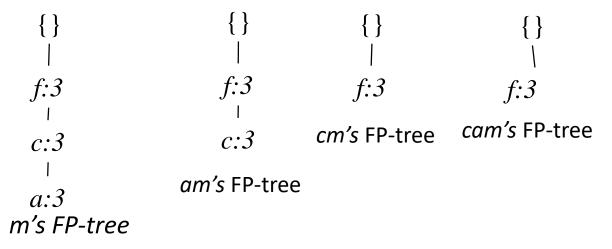
**Conditional Data Bases** 

#### item cond. data base

- c f:3
- a fc:3
- b fca:1, f:1, c:1
- m fca:2, fcab:1
- p fcam:2, cb:1

- For each conditional database
- Mine single-item patterns
- Construct its FP-tree & mine it

e.g., mining m's FP-tree

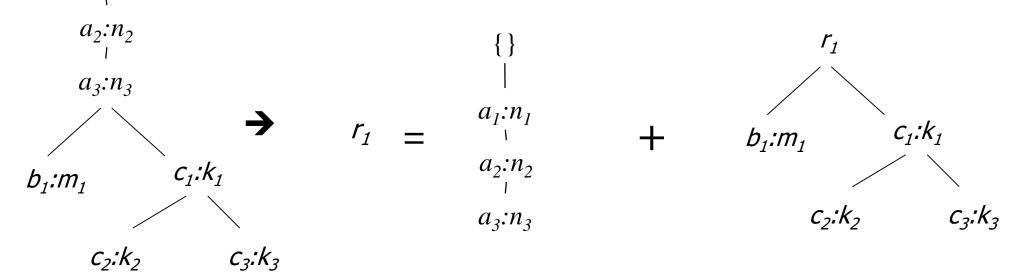


Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3

### A Special Case: Single Prefix Path in FP-tree

- □ Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- $a_1:n_1$  Concatenation of the mining results of the two parts



#### FPGrowth: Mining Frequent Patterns by Pattern Growth

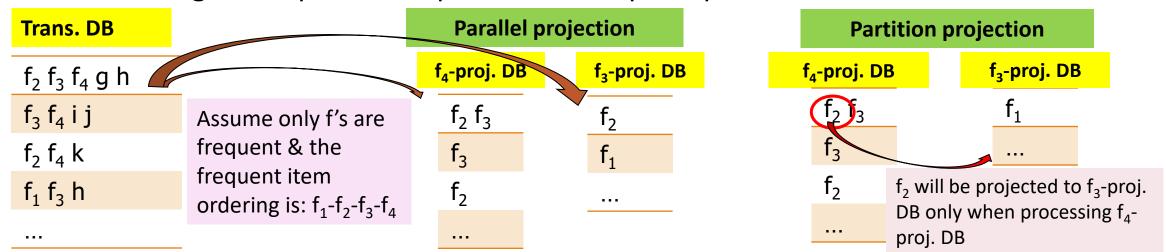
- Essence of frequent pattern growth (FPGrowth) methodology
  - Find frequent single items and partition the database based on each such single item pattern
  - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
  - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed

#### FPGrowth: Mining Frequent Patterns by Pattern Growth

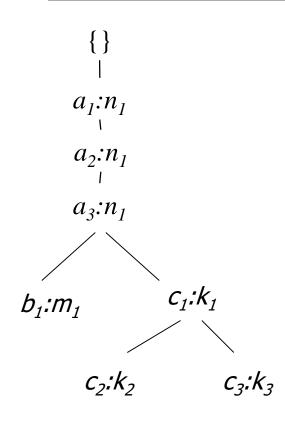
- Mining becomes
  - Recursively construct and mine (conditional) FP-trees
  - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

### Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
  - "Project" the database based on frequent single items
  - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
  - Parallel projection: Project the DB on each frequent item
    - Space costly, all partitions can be processed in parallel
  - Partition projection: Partition the DB in order
    - Passing the unprocessed parts to subsequent partitions



## **CLOSET+: Mining Closed Itemsets by Pattern-Growth**



- Efficient, *direct* mining of closed itemsets
- Intuition:
  - If an FP-tree contains a single branch as shown left
  - "a<sub>1</sub>,a<sub>2</sub>, a<sub>3</sub>" should be merged
- Itemset merging: If Y appears in every occurrence of X, then Y is merged with X
  - $\Box$  d-proj. db: {acef, acf}  $\rightarrow$  acfd-proj. db: {e}
- ☐ Final closed itemset: acfd:2
- There are many other tricks developed
  - □ For details, see J. Wang, et al,, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03

| TID | Items |  |  |
|-----|-------|--|--|
| 1   | acdef |  |  |
| 2   | abe   |  |  |
| 3   | cefg  |  |  |
| 4   | acdf  |  |  |

Let minsupport = 2

a:3, c:3, d:2, e:3, f:3

F-List: a-c-e-f-d

# Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods
- Pattern Evaluation



Summary

#### **Pattern Evaluation**

- ☐ Limitation of the Support-Confidence Framework
- $\square$  Interestingness Measures: Lift and  $\chi^2$

Null-Invariant Measures

Comparison of Interestingness Measures

#### How to Judge if a Rule/Pattern Is Interesting?

- □ Pattern-mining will generate a large set of patterns/rules
  - Not all the generated patterns/rules are interesting
- ☐ Interestingness measures: Objective vs. subjective
  - Objective interestingness measures
    - Support, confidence, correlation, ...
  - Subjective interestingness measures:
    - □ Different users may judge interestingness differently
    - ☐ Let a user specify
      - Query-based: Relevant to a user's particular request
    - ☐ Judge against one's knowledge-base
      - □ unexpected, freshness, timeliness

## Limitation of the Support-Confidence Framework

- $\square$  Are s and c interesting in association rules: "A  $\Rightarrow$  B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

|                | play-basketball | not play-basketball | sum (row) |                       |
|----------------|-----------------|---------------------|-----------|-----------------------|
| eat-cereal     | 400             | 350                 | 750 2-    | Way Conti             |
| not eat-cereal | 200             | 50                  | 250       | way contingency table |
| sum(col.)      | 600             | 400                 | 1000      | 1016                  |

- Association rule mining may generate the following:
  - $\square$  play-basketball  $\Rightarrow$  eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
  - $\neg$  play-basketball  $\Rightarrow$  eat-cereal [35%, 87.5%] (high s & c)

### Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C) may tell how B and C are correlated
  - □ Lift(B, C) = 1: B and C are independent
  - □ > 1: positively correlated
  - □ < 1: negatively correlated</p>

For our example, 
$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$
$$lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

- ☐ Thus, B and C are negatively correlated since lift(B, C) < 1;
  - B and  $\neg$ C are positively correlated since lift(B,  $\neg$ C) > 1

#### Lift is more telling than s & c

|                 | В   | ¬В  | $\Sigma_{row}$ |
|-----------------|-----|-----|----------------|
| С               | 400 | 350 | 750            |
| ¬C              | 200 | 50  | 250            |
| $\Sigma_{col.}$ | 600 | 400 | 1000           |

# Interestingness Measure: $\chi^2$

 $\square$  Another measure to test correlated events:  $\chi^2$ 

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

For the table on the right,

$$C^{2} = \frac{(400 - 450)^{2}}{450} + \frac{(350 - 300)^{2}}{300} + \frac{(200 - 150)^{2}}{150} + \frac{(50 - 100)^{2}}{100} = 55.56$$

|                | В   |          | ¬B        | $\Sigma_{row}$ |
|----------------|-----|----------|-----------|----------------|
| C              | 740 | 00 (450) | 350 (300) | 750            |
| ¬С             | 20  | ر (150)  | 50 (100)  | 250            |
| $\Sigma_{col}$ |     | 600      | 400       | 1000           |
|                |     |          |           |                |

Expected value

Observed value

- Lookup  $\chi^2$  distribution table => B, C are correlated
- χ²-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- $\Box$  Thus,  $\chi^2$  is also more telling than the support-confidence framework

## Lift and $\chi^2$ : Are They Always Good Measures?

Null transactions: Transactions that contain neither B nor C



- Let's examine the new dataset D
  - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
  - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- $\square$   $\chi^2$  = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

| C 100 1000                        | 1100     |
|-----------------------------------|----------|
|                                   | 1 2 2 3  |
| ¬C 1000 10000                     | 0 101000 |
| $\Sigma_{\text{col.}}$ 1100 10100 | 0 102100 |

null transactions

#### Contingency table with expected values added

|                        | В             | ¬В     | $\Sigma_{row}$ |
|------------------------|---------------|--------|----------------|
| С                      | 100 (11.85)   | 1000   | 1100           |
| Γ                      | 1000 (988.15) | 100000 | 101000         |
| $\Sigma_{\text{col.}}$ | 1100          | 101000 | 102100         |

#### Interestingness Measures & Null-Invariance

- □ *Null invariance:* Value does not change with the # of null-transactions
- ☐ A few interestingness measures: Some are null invariant

| Measure                 | Definition                                                                       | Range         | Null-Invariant? |
|-------------------------|----------------------------------------------------------------------------------|---------------|-----------------|
| $\chi^2(A,B)$           | $\sum_{i,j} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$                      | $[0, \infty]$ | No              |
| Lift(A, B)              | $\frac{s(A \cup B)}{s(A) \times s(B)}$                                           | $[0, \infty]$ | No              |
| Allconf(A, B)           | $\frac{s(A \cup B)}{max\{s(A), s(B)\}}$                                          | [0, 1]        | Yes             |
| Jaccard(A, B)           | $\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$                                  | [0, 1]        | Yes             |
| Cosine(A, B)            | $\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$                                    | [0, 1]        | Yes             |
| Kulczynski(A, B)        | $\frac{1}{2} \left( \frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$ | [0, 1]        | Yes             |
| $\mathit{MaxConf}(A,B)$ | $max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$                        | [0, 1]        | Yes             |

Let  $p = \frac{s(A \cup B)}{s(A)} = P(B|A)$   $q = \frac{s(A \cup B)}{s(B)} = P(A|B)$ 

p, q are null invariant

Essentially min, max, mean variants of p, q

### **Null Invariance: An Important Property**

- Why is null invariance crucial for the analysis of massive transaction data?
  - Many transactions may contain neither milk nor coffee!

#### milk vs. coffee contingency table

|                | milk       | $\neg milk$     | $\Sigma_{row}$ |
|----------------|------------|-----------------|----------------|
| coffee         | mc         | $\neg mc$       | c              |
| $\neg coffee$  | $m \neg c$ | $\neg m \neg c$ | $\neg c$       |
| $\Sigma_{col}$ | m          | $\neg m$        | $\Sigma$       |

- Lift and  $\chi^2$  are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | $\chi^2$ | Lift  |
|----------|--------|-----------|------------|-----------------|----------|-------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 90557    | 9.26  |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0        | 1     |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 670      | 8.44  |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 24740    | 25.75 |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 8173     | 9.18  |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 965      | 1.97  |

#### Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
  - $\square$   $D_4$ — $D_6$  differentiate the null-invariant measures
  - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

#### 2-variable contingency table

|                | milk       | $\neg milk$     | $\Sigma_{row}$ |
|----------------|------------|-----------------|----------------|
| coffee         | mc         | $\neg mc$       | c              |
| $\neg coffee$  | $m \neg c$ | $\neg m \neg c$ | $\neg c$       |
| $\Sigma_{col}$ | m          | $\neg m$        | Σ              |

All 5 are null-invariant

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | AllConf | Jaccard | Cosine | Kulc | MaxConf |
|----------|--------|-----------|------------|-----------------|---------|---------|--------|------|---------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 0.09    | 0.05    | 0.09   | 0.09 | 0.09    |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 0.5     | 0.33    | 0.5    | 0.5  | 0.5     |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 0.09    | 0.09    | 0.29   | 0.5  | 0.91    |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 0.01    | 0.01    | 0.10   | 0.5  | 0.99    |

## Imbalance Ratio with Kulczynski Measure

- □ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:  $IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$
- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D<sub>4</sub> through D<sub>6</sub>
  - $\square$  D<sub>4</sub> is neutral & balanced; D<sub>5</sub> is neutral but imbalanced
  - D<sub>6</sub> is neutral but very imbalanced

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | Jaccard | Cosine | Kulc           | IR   |
|----------|--------|-----------|------------|-----------------|---------|--------|----------------|------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 0.83    | 0.91   | 0.91           | 0    |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0.83    | 0.91   | 0.91           | 0    |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 0.05    | 0.09   | 0.09           | 0    |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 0.33    | 0.5    | $\bigcirc 0.5$ | 0    |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 0.09    | 0.29   | $\bigcirc 0.5$ | 0.89 |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 0.01    | 0.10   | $\bigcirc 0.5$ | 0.99 |

### **Example: Analysis of DBLP Coauthor Relationships**

- □ DBLP: Computer science research publication bibliographic database
  - > 3.8 million entries on authors, paper, venue, year, and other information

| ID | Author $A$           | Author $B$           | $s(A \cup B)$      | s(A) | s(B) | Jaccard   | Cosine    | Kulc       |
|----|----------------------|----------------------|--------------------|------|------|-----------|-----------|------------|
| 1  | Hans-Peter Kriegel   | Martin Ester         | 28                 | 146  | 54   | 0.163(2)  | 0.315(7)  | 0.355(9)   |
| 2  | Michael Carey        | Miron Livny          | 26                 | 104  | 58   | 0.191 (1) | 0.335(4)  | 0.349 (10) |
| 3  | Hans-Peter Kriegel   | Joerg Sander         | 24                 | 146  | 36   | 0.152(3)  | 0.331(5)  | 0.416 (8)  |
| 4  | Christos Faloutsos   | Spiros Papadimitriou | 20                 | 162  | 26   | 0.119(7)  | 0.308(10) | 0.446(7)   |
| 5  | Hans-Peter Kriegel   | Martin Pfeifle       | <b>4</b> 8         | 146  | 18   | 0.123(6)  | 0.351(2)  | 0.562(2)   |
| 6  | Hector Garcia-Molina | Wilburt Labio        | 16                 | 144  | 18   | 0.110(9)  | 0.314(8)  | 0.500(4)   |
| 7  | Divyakant Agrawal    | Wang Hsiung          | 16                 | 120  | 16   | 0.133(5)  | 0.365(1)  | 0.567(1)   |
| 8  | Elke Rundensteiner   | Murali Mani          | 16                 | 104  | 20   | 0.148(4)  | 0.351(3)  | 0.477(6)   |
| 9  | Divyakant Agrawal    | Oliver Po            | $\triangleleft$ 12 | 120  | 12   | 0.100(10) | 0.316 (6) | 0.550(3)   |
| 10 | Gerhard Weikum       | Martin Theobald      | 12                 | 106  | 14   | 0.111 (8) | 0.312 (9) | 0.485 (5)  |

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
  - Use Kulc to find Advisor-advisee, close collaborators

#### What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
  - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers; .....
- □ *Null-invariance* is an important property
- $\Box$  Lift,  $\chi^2$  and cosine are good measures if null transactions are not predominant
  - □ Otherwise, *Kulczynski* + *Imbalance Ratio* should be used to judge the interestingness of a pattern

#### What Measures to Choose for Effective Pattern Evaluation?

- ☐ Exercise: Mining research collaborations from research bibliographic data
  - ☐ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
  - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
  - □ Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

# Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary



## Summary

- Basic Concepts
  - What Is Pattern Discovery? Why Is It Important?
  - Basic Concepts: Frequent Patterns and Association Rules
  - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
  - The Downward Closure Property of Frequent Patterns
  - The Apriori Algorithm
  - Extensions or Improvements of Apriori
  - Mining Frequent Patterns by Exploring Vertical Data Format
  - ☐ FPGrowth: A Frequent Pattern-Growth Approach
  - Mining Closed Patterns
- Pattern Evaluation
  - Interestingness Measures in Pattern Mining
  - Interestingness Measures: Lift and  $χ^2$
  - Null-Invariant Measures
  - Comparison of Interestingness Measures

## Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- □ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- ☐ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

#### Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

## Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010

