
CS 412 Intro. to Data Mining
Chapter 6. Mining Frequent Patterns, Association

and Correlations: Basic Concepts and Methods
Qi Li, Computer Science, Univ. I llinois at Urbana -Champaign, 2018

1

2

Chapter 6: Mining Frequent Patterns, Association and
Correlations: Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation

 Summary

3

Pattern Discovery: Basic Concepts

 What Is Pattern Discovery? Why Is It Important?

 Basic Concepts: Frequent Patterns and Association Rules

 Compressed Representation: Closed Patterns and Max-Patterns

4

What are Patterns?
 What are patterns?

 Patterns: A set of items, subsequences, or substructures that occur
frequently together (or strongly correlated) in a data set

 Patterns represent intrinsic and important properties of datasets

Frequent structuresFrequent item set Frequent sequences

5

What Is Pattern Discovery?

 Pattern discovery: Uncovering patterns from massive data sets

 It can answer questions such as:

 What products were often purchased together?

 What are the subsequent purchases after buying an iPad?

6

Pattern Discovery: Why Is It Important?
 Finding inherent regularities in a data set:

 spatiotemporal, multimedia, time-series, and stream data

 Foundation for many essential data mining tasks

 Association, correlation, and causality analysis

 Mining sequential, structural (e.g., sub-graph) patterns

 Classification: Discriminative pattern-based analysis

 Cluster analysis: Pattern-based subspace clustering

 Broad applications

 Market basket analysis, cross-marketing, catalog design, sale
campaign analysis, Web log analysis, biological sequence
analysis

7

Basic Concepts: Transactional Database

 Transactional Database (TDB)

 Each transaction is associated with an identifier, called a TID.

Tid Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

8

Basic Concepts: k-Itemsets and Their Supports
 Itemset: A set of one or more items

 k-itemset: An itemset containing k items:

X = {x1, …, xk}

 Ex. {Beer, Nuts, Diaper} is a 3-itemset

 (absolute) support (count)

 sup{X} = occurrences of an itemset X

 Ex. sup{Beer} = 3

 Ex. sup{Diaper} = 4

 Ex. sup{Beer, Diaper} = 3

 Ex. sup{Beer, Eggs} = 1

Tid Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

 (relative) support

 s{X} = The fraction of transactions
that contains X (i.e., the probability
that a transaction contains X)

 Ex. s{Beer} = 3/5 = 60%

 Ex. s{Diaper} = 4/5 = 80%

 Ex. s{Beer, Eggs} = 1/5 = 20%

9

Basic Concepts: Frequent Itemsets (Patterns)
 An itemset (or a pattern) X is frequent

if the support of X is no less than a
minsup threshold σ

 Let σ = 50% (σ: minsup threshold)

For the given 5-transaction dataset

 All the frequent 1-itemsets:

 Beer: 3/5 (60%); Nuts: 3/5 (60%)

 Diaper: 4/5 (80%); Eggs: 3/5 (60%)

 All the frequent 2-itemsets:

 {Beer, Diaper}: 3/5 (60%)

 All the frequent 3-itemsets?

 None

Tid Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

 Why do these itemsets (shown on the
left) form the complete set of frequent
k-itemsets (patterns) for any k?

 Observation: We may need an
efficient method to mine a complete
set of frequent patterns

10

From Frequent Itemsets to Association Rules
 Comparing with itemsets, association rules can be more telling

 Ex. Diaper  Beer

 Buying diapers may likely lead to buying beers

Note: X  Y: the union of two itemsets
 The set contains both X and Y

Containing diaperContaining both

Containing beer

Beer Diaper
{Beer} 
{Diaper}

{Beer}  {Diaper} = {Beer, Diaper}

11

Association Rules

Tid Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

 How do we compute the strength of an association
rule X Y (Both X and Y are itemsets)?

 We first compute the following two metrics, s and c.

 Support

 Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)

 Confidence of

 The conditional probability that a transaction
containing X also contains Y

c = sup(X Y) / sup(X)

 Ex. c = sup{Diaper, Beer}/sup{Diaper} = ¾ = 0.75

of X  Y

X  Y



 In pattern analysis, we are often interested in those rules that dominates
the database, and these two metrics ensure the popularity and correlation of X
and Y.

12

Mining Frequent Itemsets and Association Rules

 Association rule mining

 Given two thresholds: minsup, minconf

 Find all of the rules, X  Y (s, c)

 such that, s ≥ minsup and c ≥ minconf

Tid Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk Let minsup = 50%

 Freq. 1-itemsets: Beer: 3, Nuts: 3,
Diaper: 4, Eggs: 3

 Freq. 2-itemsets: {Beer, Diaper}: 3

 Let minconf = 50%

 Beer  Diaper (60%, 100%)

 Diaper  Beer (60%, 75%)

 Observations:

 Mining association rules and
mining frequent patterns are
very close problems

 Scalable methods are needed
for mining large datasets

(Q: Are these all rules?)

13

Challenge: There Are Too Many Frequent Patterns!
 A long pattern contains a combinatorial number of sub-patterns

 How many frequent itemsets does the following TDB1 contain (minsup = 1)?

 TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 Let’s have a try

1-itemsets: {a1}: 2, {a2}: 2, …, {a50}: 2, {a51}: 1, …, {a100}: 1,

2-itemsets: {a1, a2}: 2, …, {a1, a50}: 2, {a1, a51}: 1 …, …, {a99, a100}: 1,

…, …, …, …

99-itemsets: {a1, a2, …, a99}: 1, …, {a2, a3, …, a100}: 1

100-itemset: {a1, a2, …, a100}: 1

 The total number of frequent itemsets:
A too huge set for any
one to compute or store!

14

Expressing Patterns in Compressed Form
 How to reduce the redundancy of the list of all the frequent itemsets?

 If {a1, …, a99} and {a1, …, a100} have the same support in the database, then we
don't need to list both of them

 Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and
there exists no super-pattern Y כ X, with the same support as X

 Ex. TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 Suppose minsup = 1. How many closed patterns does TDB1 contain?

 Two: P1: “{a1, …, a50}: 2”; P2: “{a1, …, a100}: 1”

15

Expressing Patterns in Compressed Form: Closed Patterns

 Closed pattern is a lossless compression of frequent patterns

 Reduces the # of patterns but does not lose the support information!

 Given

 You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”

P1: “{a1, …, a50}: 2”; P2: “{a1, …, a100}: 1”

16

Expressing Patterns in Compressed Form: Max-Patterns

 Solution 2: Max-patterns: A pattern X is a max-pattern if X is

frequent and there exists no frequent super-pattern Y כ X

 Difference from close-patterns?

 Do not care the real support of the sub-patterns of a max-pattern

 Let Transaction DB TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 Suppose minsup = 1. How many max-patterns does TDB1 contain?

 One: P: “{a1, …, a100}: 1”

17

Expressing Patterns in Compressed Form: Max-Patterns

 Max-pattern is a lossy compression!

 We only know a subset of the max-pattern P, {a1, …, a40} , is frequent

 But we do not know the real support of {a1, …, a40}, …, any more!

 Thus in many applications, mining close-patterns is more desirable than mining
max-patterns

18

Chapter 6: Mining Frequent Patterns, Association and
Correlations: Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation

 Summary

19

Efficient Pattern Mining Methods

 The Downward Closure Property of Frequent Patterns

 The Apriori Algorithm

 Extensions or Improvements of Apriori

 Mining Frequent Patterns by Exploring Vertical Data Format

 FPGrowth: A Frequent Pattern-Growth Approach

 Mining Closed Patterns

20

The Downward Closure Property of Frequent Patterns

 Observation: From TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 We get a frequent itemset: {a1, …, a50}

 Also, its subsets are all frequent: {a1}, {a2}, …, {a50}, {a1, a2}, …, {a1, …, a49}, …

 There must be some hidden relationships among frequent patterns!

 The downward closure (also called “Apriori”) property of frequent patterns

 If {beer, diaper, nuts} is frequent, so is {beer, diaper}

 Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}

 Apriori: Any subset of a frequent itemset must be frequent

 Efficient mining methodology

 If any subset of an itemset S is infrequent, then there is no chance for S to
be frequent—why do we even have to consider S!? A sharp knife for pruning!

21

Apriori Pruning and Scalable Mining Methods

 Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not even be generated! (Agrawal &

Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

 Scalable mining Methods: Three major approaches

 Level-wise, join-based approach: Apriori (Agrawal &
Srikant@VLDB’94)

 Vertical data format approach: Eclat (Zaki, Parthasarathy,
Ogihara, Li @KDD’97)

 Frequent pattern projection and growth: FPgrowth (Han, Pei,
Yin @SIGMOD’00)

22

Apriori: A Candidate Generation & Test Approach

 Outline of Apriori (level-wise, candidate generation and test)

 Initially, scan DB once to get frequent 1-itemset

 Repeat

 Generate length-(k+1) candidate itemsets from length-k frequent

itemsets

 Test the candidates against DB to find frequent (k+1)-itemsets

 Set k := k +1

 Until no frequent or candidate set can be generated

 Return all the frequent itemsets derived

23

The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Fk : Frequent itemset of size k

K := 1;

Fk := {frequent items}; // frequent 1-itemset

While (Fk != ) do { // when Fk is non-empty

Ck+1 := candidates generated from Fk; // candidate generation

Derive Fk+1 by counting candidates in Ck+1 with respect to TDB at minsup;

k := k + 1

}

return k Fk // return Fk generated at each level

24

The Apriori Algorithm—An Example

Database TDB

1st scan

C1

F1

F2

C2 C2

2nd scan

C3 F33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

minsup = 2

25

abc abd acd ace bcd

abcd acde

self-join self-join

pruned

Apriori: Implementation Tricks
 How to generate candidates?

 Step 1: self-joining Fk

 Step 2: pruning

 Example of candidate-generation

 F3 = {abc, abd, acd, ace, bcd}

 Self-joining: F3*F3

 abcd from abc and abd

 acde from acd and ace

 Pruning:

 acde is removed because ade is not in F3

 C4 = {abcd}

27

Candidate Generation (Pseudo-Code)

 Suppose the items in Fk-1 are listed in an order

 // Step 1: Joining

for each p in Fk-1

for each q in Fk-1

if p.item1= q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1 {

c = join(p, q)

 // Step 2: pruning

if has_infrequent_subset(c, Fk-1)

continue // prune

else add c to Ck

}

abc abd acd ace bcd

abcd acde

self-join self-join

28

Apriori: Improvements and Alternatives

 Reduce passes of transaction database scans

 Partitioning (e.g., Savasere, et al., 1995)

 Dynamic itemset counting (Brin, et al., 1997)

 Shrink the number of candidates

 Hashing (e.g., DHP: Park, et al., 1995)

 Pruning by support lower bounding (e.g., Bayardo 1998)

 Sampling (e.g., Toivonen, 1996)

 Exploring special data structures

 Tree projection (Agarwal, et al., 2001)

 H-miner (Pei, et al., 2001)

 Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

To be discussed in
subsequent slides

To be discussed in
subsequent slides

29

Partitioning: Scan Database Only Twice

 Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least
one of the partitions of TDB

TDB1
TDB2 TDBk+ = TDB++

sup1(X) < σ|TDB1| sup2(X) < σ|TDB2| supk(X) < σ|TDBk| sup(X) < σ|TDB|

. . .
. . .

30

Partitioning: Scan Database Only Twice

 Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB’95)

 Scan 1: Partition database so that each partition can fit in main memory (why?)

 Mine local frequent patterns in this partition

 Scan 2: Consolidate global frequent patterns

 Find global frequent itemset candidates (those frequent in at least one partition)

 Find the true frequency of those candidates, by scanning TDBi one more time

31

Direct Hashing and Pruning (DHP)

 DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD’95)

 Hashing: Different itemsets may have the same hash value: v = hash(itemset)

 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count

 Observation: A k-itemset cannot be frequent if its corresponding hashing bucket
count is below the minsup threshold

 Example: At the 1st scan of TDB, count 1-itemset, and

 Hash 2-itemsets in the transaction to its bucket

 {ab, ad, ce}

 {bd, be, de}

 …

 At the end of the first scan,

 if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Hash Table

Itemsets Count

{ab, ad, ce} 35

{bd, be, de} 298

…… …

{yz, qs, wt} 58

32

Exploring Vertical Data Format: ECLAT
 ECLAT (Equivalence Class Transformation): A depth-first search

algorithm using set intersection [Zaki et al. @KDD’97]

 Tid-List: List of transaction-ids containing an itemset

 Vertical format: t(e) = {T10, T20, T30}; t(a) = {T10, T20}; t(ae) = {T10, T20}

 Properties of Tid-Lists

 t(X) = t(Y): X and Y always happen together (e.g., t(ac} = t(d})

 t(X)  t(Y): transaction having X always has Y (e.g., t(ac)  t(ce))

 Deriving frequent patterns based on vertical intersections

 Using diffset to accelerate mining

 Only keep track of differences of tids

 t(e) = {T10, T20, T30}, t(ce) = {T10, T30} → Diffset (ce, e) = {T20}

A transaction DB in Horizontal
Data Format

Item TidList

a 10, 20

b 20, 30

c 10, 30

d 10

e 10, 20, 30

The transaction DB in Vertical
Data Format

Tid Itemset

10 a, c, d, e

20 a, b, e

30 b, c, e

33

Why Mining Frequent Patterns by Pattern Growth?

 Apriori: A breadth-first search mining algorithm

 First find the complete set of frequent k-itemsets

 Then derive frequent (k+1)-itemset candidates

 Scan DB again to find true frequent (k+1)-itemsets

34

Why Mining Frequent Patterns by Pattern Growth?

 Motivation for a different mining methodology

 Can we develop a depth-first search mining algorithm?

 For a frequent itemset ρ, can subsequent search be confined to only those
transactions that containing ρ?

 Such thinking leads to a frequent pattern growth approach:

 FPGrowth (J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” SIGMOD 2000)

35

Prerequisite: Find frequent 1-itemset

1. Scan DB once, find single item frequent pattern:

2. Sort frequent items in frequency descending
order, f-list F-list = f-c-a-b-m-p

TID Items in the Transaction

100 {f, a, c, d, g, i, m, p}

200 {a, b, c, f, l, m, o}

300 {b, f, h, j, o, w}

400 {b, c, k, s, p}

500 {a, f, c, e, l, p, m, n}

f:4, a:3, c:4, b:3, m:3, p:3

Let min_support = 3

36

Example: Construct FP-tree from a Transaction DB

3. Scan DB again, find the ordered frequent itemlist for each
transaction

TID Items in the Transaction Ordered, frequent itemlist

100 {f, a, c, d, g, i, m, p} f, c, a, m, p

200 {a, b, c, f, l, m, o} f, c, a, b, m

300 {b, f, h, j, o, w} f, b

400 {b, c, k, s, p} c, b, p

500 {a, f, c, e, l, p, m, n} f, c, a, m, p

37

Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

{}

f:1

c:1

a:1

m:1

p:1

4. For each transaction, insert the ordered
frequent itemlist into an FP-tree, with shared
sub-branches merged, counts accumulated

TID Items in the Transaction Ordered, frequent itemlist

100 {f, a, c, d, g, i, m, p} f, c, a, m, p

200 {a, b, c, f, l, m, o} f, c, a, b, m

300 {b, f, h, j, o, w} f, b

400 {b, c, k, s, p} c, b, p

500 {a, f, c, e, l, p, m, n} f, c, a, m, p

Header Table

After inserting the 1st frequent
Itemlist: “f, c, a, m, p”

38

Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

4. For each transaction, insert the ordered
frequent itemlist into an FP-tree, with shared sub-
branches merged, counts accumulated

After inserting the 2nd frequent
itemlist “f, c, a, b, m” {}

f:2

c:2

a:2

b:1m:1

p:1 m:1

TID Items in the Transaction Ordered, frequent itemlist

100 {f, a, c, d, g, i, m, p} f, c, a, m, p

200 {a, b, c, f, l, m, o} f, c, a, b, m

300 {b, f, h, j, o, w} f, b

400 {b, c, k, s, p} c, b, p

500 {a, f, c, e, l, p, m, n} f, c, a, m, p

Header Table

39

Example: Construct FP-tree from a Transaction DB

4. For each transaction, insert the ordered
frequent itemlist into an FP-tree, with shared sub-
branches merged, counts accumulated

After inserting all the frequent itemlists

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

TID Items in the Transaction Ordered, frequent itemlist

100 {f, a, c, d, g, i, m, p} f, c, a, m, p

200 {a, b, c, f, l, m, o} f, c, a, b, m

300 {b, f, h, j, o, w} f, b

400 {b, c, k, s, p} c, b, p

500 {a, f, c, e, l, p, m, n} f, c, a, m, p

Header Table

Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

40

Mining FP-Tree: Divide and Conquer
Based on Patterns and Data

 Pattern mining can be partitioned according to current patterns
 We start to calculate the conditional database from bottom to top (from the

least frequent item)
 Conditional database: the database under the condition that p exists
 p’s conditional database (Patterns containing p): fcam:2, cb:1

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Item Conditional database

p fcam:2, cb:1

Conditional database of each patternmin_support = 3

41

Mining FP-Tree: Divide and Conquer
Based on Patterns and Data

 p’s conditional database (Patterns containing p): fcam:2, cb:1
 After calculating p’s conditional database, we calculate m’s conditional

database

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

Item Conditional database

m fca:2, fcab:1

p fcam:2, cb:1

Conditional database of each patternmin_support = 3
{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

42

Mining FP-Tree: Divide and Conquer
Based on Patterns and Data

 Repeat and calculate the conditional database of b, a, and c
 Since f is the most frequent item, we don’t need to compute its conditional

dataset

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

Item Conditional database

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

Conditional database of each patternmin_support = 3
{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

43

f:3

Mine Each Conditional Database Recursively
 For each conditional database

 Mine single-item patterns

 Construct its FP-tree & mine it

{}

f:3

c:3

a:3

item cond. data base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

Conditional Data Bases

{}

f:3

c:3

am’s FP-tree

m’s FP-tree

{}

f:3

cm’s FP-tree

{}

cam’s FP-tree

m: 3

fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

fcam: 3

Actually, for single branch
FP-tree, all the frequent
patterns can be generated
in one shot

min_support = 3

e.g., mining m’s FP-tree

44

A Special Case: Single Prefix Path in FP-tree

 Suppose a (conditional) FP-tree T has a shared single prefix-path P

 Mining can be decomposed into two parts

 Reduction of the single prefix path into one node

 Concatenation of the mining results of the two parts



a2:n2

a3:n3

a1:n1

{}

b1:m1
c1:k1

c2:k2 c3:k3

b1:m1
c1:k1

c2:k2 c3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

45

FPGrowth: Mining Frequent Patterns by Pattern Growth

 Essence of frequent pattern growth (FPGrowth) methodology

 Find frequent single items and partition the database based on each
such single item pattern

 Recursively grow frequent patterns by doing the above for each
partitioned database (also called the pattern’s conditional database)

 To facilitate efficient processing, an efficient data structure, FP-tree, can
be constructed

46

FPGrowth: Mining Frequent Patterns by Pattern Growth

 Mining becomes

 Recursively construct and mine (conditional) FP-trees

 Until the resulting FP-tree is empty, or until it contains only one path—
single path will generate all the combinations of its sub-paths, each of
which is a frequent pattern

47

Assume only f’s are
frequent & the
frequent item
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection

 What if FP-tree cannot fit in memory?—Do not construct FP-tree

 “Project” the database based on frequent single items

 Construct & mine FP-tree for each projected DB

 Parallel projection vs. partition projection

 Parallel projection: Project the DB on each frequent item

 Space costly, all partitions can be processed in parallel

 Partition projection: Partition the DB in order

 Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h

f3 f4 i j

f2 f4 k

f1 f3 h

…

Trans. DB Parallel projection

f2 f3

f3

f2

…

f4-proj. DB f3-proj. DB f4-proj. DB

f2

f1

…

Partition projection

f2 f3

f3

f2

…

f1

…

f3-proj. DB

f2 will be projected to f3-proj.
DB only when processing f4-
proj. DB

48

CLOSET+: Mining Closed Itemsets by Pattern-Growth

 Efficient, direct mining of closed itemsets

 Intuition:

 If an FP-tree contains a single branch as
shown left

 “a1,a2, a3” should be merged

 Itemset merging: If Y appears in every
occurrence of X, then Y is merged with X

 d-proj. db: {acef, acf} → acfd-proj. db: {e}

 Final closed itemset: acfd:2

 There are many other tricks developed

 For details, see J. Wang, et al,, “CLOSET+:
Searching for the Best Strategies for Mining
Frequent Closed Itemsets”, KDD'03

TID Items

1 acdef

2 abe

3 cefg

4 acdf

Let minsupport = 2

a:3, c:3, d:2, e:3, f:3

F-List: a-c-e-f-d

a2:n1

a3:n1

a1:n1

{}

b1:m1
c1:k1

c2:k2 c3:k3

49

Chapter 6: Mining Frequent Patterns, Association and
Correlations: Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation

 Summary

50

Pattern Evaluation

 Limitation of the Support-Confidence Framework

 Interestingness Measures: Lift and χ2

 Null-Invariant Measures

 Comparison of Interestingness Measures

51

How to Judge if a Rule/Pattern Is Interesting?

 Pattern-mining will generate a large set of patterns/rules

 Not all the generated patterns/rules are interesting

 Interestingness measures: Objective vs. subjective

 Objective interestingness measures

 Support, confidence, correlation, …

 Subjective interestingness measures:

 Different users may judge interestingness differently

 Let a user specify

 Query-based: Relevant to a user’s particular request

 Judge against one’s knowledge-base

 unexpected, freshness, timeliness

52

Limitation of the Support-Confidence Framework

 Are s and c interesting in association rules: “A  B” [s, c]?

 Example: Suppose one school may have the following statistics on #
of students who may play basketball and/or eat cereal:

 Association rule mining may generate the following:

 play-basketball  eat-cereal [40%, 66.7%] (higher s & c)

 But this strong association rule is misleading: The overall % of
students eating cereal is 75% > 66.7%, a more telling rule:

 ¬ play-basketball  eat-cereal [35%, 87.5%] (high s & c)

play-basketball not play-basketball sum (row)

eat-cereal 400 350 750

not eat-cereal 200 50 250

sum(col.) 600 400 1000

Be careful!

53

Interestingness Measure: Lift

 Measure of dependent/correlated events: lift

33.1
1000/2501000/600

1000/200
),(


CBlift

89.0
1000/7501000/600

1000/400
),(


CBlift

)()(

)(

)(

)(
),(

CsBs

CBs

Cs

CBc
CBlift









B ¬B ∑row

C 400 350 750

¬C 200 50 250

∑col. 600 400 1000

Lift is more telling than s & c

 Lift(B, C) may tell how B and C are correlated

 Lift(B, C) = 1: B and C are independent

 > 1: positively correlated

 < 1: negatively correlated

 For our example,

 Thus, B and C are negatively correlated since lift(B, C) < 1;

 B and ¬C are positively correlated since lift(B, ¬C) > 1

54

Interestingness Measure: χ2

 Another measure to test correlated events: χ2
B ¬B ∑row

C 400 (450) 350 (300) 750

¬C 200 (150) 50 (100) 250

∑col 600 400 1000





Expected

ExpectedObserved 2
2)(



 For the table on the right,

 Lookup χ2 distribution table => B, C are correlated

 χ2-test shows B and C are negatively correlated since the expected
value is 450 but the observed is only 400

 Thus, χ2 is also more telling than the support-confidence framework

Expected value

Observed value

c 2 =
(400 - 450)2

450
+

(350 -300)2

300
+

(200 -150)2

150
+

(50 -100)2

100
= 55.56

55

Lift and χ2 : Are They Always Good Measures?

 Null transactions: Transactions that contain

neither B nor C

 Let’s examine the new dataset D

 BC (100) is much rarer than B¬C (1000) and ¬BC

(1000), but there are many ¬B¬C (100000)

 Unlikely B & C will happen together!

 But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are

strongly positively correlated!)

 χ2 = 670: Observed(BC) >> expected value (11.85)

 Too many null transactions may “spoil the soup”!

B ¬B ∑row

C 100 1000 1100

¬C 1000 100000 101000

∑col. 1100 101000 102100

B ¬B ∑row

C 100 (11.85) 1000 1100

¬C 1000 (988.15) 100000 101000

∑col. 1100 101000 102100

null transactions

Contingency table with expected values added

56

Interestingness Measures & Null-Invariance

 Null invariance: Value does not change with the # of null-transactions

 A few interestingness measures: Some are null invariant

Let

𝑝 =
𝑠 𝐴 ∪ 𝐵

𝑠 𝐴
= 𝑃 𝐵 𝐴

𝑞 =
𝑠 𝐴 ∪ 𝐵

𝑠 𝐵
= 𝑃(𝐴|𝐵)

𝑝, 𝑞 are null invariant

Essentially min,
max, mean variants
of 𝑝, 𝑞

57

Null Invariance: An Important Property

 Why is null invariance crucial for the analysis of massive transaction data?

 Many transactions may contain neither milk nor coffee!

 Lift and 2 are not null-invariant: not good to
evaluate data that contain too many or too
few null transactions!

 Many measures are not null-invariant!

milk vs. coffee contingency table

58

Comparison of Null-Invariant Measures

 Not all null-invariant measures are created equal

 Which one is better?

 D4—D6 differentiate the null-invariant measures

 Kulc (Kulczynski 1927) holds firm and is in balance of
both directional implications

All 5 are null-invariant

2-variable contingency table

59

Imbalance Ratio with Kulczynski Measure

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in
rule implications:

 Kulczynski and Imbalance Ratio (IR) together present a clear picture for all
the three datasets D4 through D6

 D4 is neutral & balanced; D5 is neutral but imbalanced

 D6 is neutral but very imbalanced

60

Example: Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database

 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low,
cosine: middle

61

What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets

 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author
in most of the papers; ……

 Null-invariance is an important property

 Lift, χ2 and cosine are good measures if null transactions are not predominant

 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the
interestingness of a pattern

62

What Measures to Choose for Effective Pattern Evaluation?

 Exercise: Mining research collaborations from research bibliographic data

 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)

 Can you find the likely advisor-advisee relationship and during which years such a
relationship happened?

 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-
Advisee Relationships from Research Publication Networks", KDD'10

63

Chapter 6: Mining Frequent Patterns, Association and
Correlations: Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation

 Summary

64

Summary
 Basic Concepts

 What Is Pattern Discovery? Why Is It Important?

 Basic Concepts: Frequent Patterns and Association Rules

 Compressed Representation: Closed Patterns and Max-Patterns

 Efficient Pattern Mining Methods

 The Downward Closure Property of Frequent Patterns

 The Apriori Algorithm

 Extensions or Improvements of Apriori

 Mining Frequent Patterns by Exploring Vertical Data Format

 FPGrowth: A Frequent Pattern-Growth Approach

 Mining Closed Patterns

 Pattern Evaluation

 Interestingness Measures in Pattern Mining

 Interestingness Measures: Lift and χ2

 Null-Invariant Measures

 Comparison of Interestingness Measures

65

Recommended Readings (Basic Concepts)

 R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of
items in large databases”, in Proc. of SIGMOD'93

 R. J. Bayardo, “Efficiently mining long patterns from databases”, in Proc. of
SIGMOD'98

 N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets
for association rules”, in Proc. of ICDT'99

 J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent Pattern Mining: Current Status and
Future Directions”, Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

66

Recommended Readings (Efficient Pattern Mining Methods)

 R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, VLDB'94

 A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algorithm for mining association rules in large
databases”, VLDB'95

 J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash-based algorithm for mining association rules”,
SIGMOD'95

 S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating association rule mining with relational database
systems: Alternatives and implications”, SIGMOD'98

 M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithm for discovery of association
rules”, Data Mining and Knowledge Discovery, 1997

 J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation”, SIGMOD’00

 M. J. Zaki and Hsiao, “CHARM: An Efficient Algorithm for Closed Itemset Mining”, SDM'02

 J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best Strategies for Mining Frequent Closed
Itemsets”, KDD'03

 C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, “Frequent Pattern Mining Algorithms: A Survey”, in
Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

67

Recommended Readings (Pattern Evaluation)

 C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS’98

 S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing
association rules to correlations. SIGMOD'97

 M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding
interesting rules from large sets of discovered association rules. CIKM'94

 E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE’03

 P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for
Association Patterns. KDD'02

 T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern
Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397,
2010

68
October 9, 2018 Data Mining: Concepts and Techniques

