
CS 412 Intro. to Data Mining
Chapter 7 : Advanced Frequent Pattern Mining
Qi Li, Computer Science, Univ. I llinois at Urbana -Champaign, 2018

1

2

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

3

Mining Diverse Patterns

 Mining Multiple-Level Associations

 Mining Multi-Dimensional Associations

 Mining Quantitative Associations

 Mining Negative Correlations

 Mining Compressed and Redundancy-Aware Patterns

4

Mining Multiple-Level Frequent Patterns

 Items often form hierarchies

 E.g.: Dairyland 2% milk;
Wonder wheat bread

 How to set min-support
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk

[support = 6%]

Skim Milk

[support = 2%]

 Uniform min-support across multiple levels (reasonable?)

 Level-reduced min-support: Items at the lower level are
expected to have lower support

 Efficient mining: Shared multi-level mining

 Use the lowest min-support to pass down the set of
candidates

5

Redundancy Filtering at Mining Multi-Level
Associations

 Multi-level association mining may generate many redundant rules

 Redundancy filtering: Some rules may be redundant due to “ancestor”
relationships between items

 milk wheat bread [support = 8%, confidence = 70%] (1)

 2% milk wheat bread [support = 2%, confidence = 72%] (2)

 Suppose the 2% milk sold is about ¼ of milk sold in gallons

 (2) should be able to be “derived” from (1)

6

 milk wheat bread [support = 8%, confidence = 70%] (1)

 2% milk wheat bread [support = 2%, confidence = 72%] (2) A rule
is redundant if its support is close to the “expected” value, according to
its “ancestor” rule, and it has a similar confidence as its “ancestor”

 Rule (1) is an ancestor of rule (2), which one to prune?

Redundancy Filtering at Mining Multi-Level
Associations

7

Customized Min-Supports for Different Kinds of Items
 We have used the same min-support threshold for all the items or item sets

to be mined in each association mining

 In reality, some items (e.g., diamond, watch, …) are valuable but less
frequent

 It is necessary to have customized min-support settings for different kinds of
items

 One Method: Use group-based “individualized” min-support

 E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; …

 How to mine such rules efficiently?

 Existing scalable mining algorithms can be easily extended to cover such
cases

8

Mining Multi-Dimensional Associations
 Single-dimensional rules (e.g., items are all in “product” dimension)

 buys(X, “milk”) buys(X, “bread”)

 Multi-dimensional rules (i.e., items in 2 dimensions or predicates)

 Inter-dimension association rules (no repeated predicates)

 age(X, “18-25”) occupation(X, “student”) buys(X, “coke”)

 Hybrid-dimension association rules (repeated predicates)

 age(X, “18-25”) buys(X, “popcorn”) buys(X, “coke”)

 Attributes can be categorical or numerical

 Categorical Attributes (e.g., profession, product: no ordering among

values): Data cube for inter-dimension association

 Quantitative Attributes: Numeric, implicit ordering among values—

discretization, clustering, and gradient approaches

9

Mining Quantitative Associations

 Mining associations with numerical attributes

 E.g.: Numerical attributes: age and salary

 Methods

 Static discretization based on predefined concept hierarchies

 Discretization on each dimension with hierarchy

 age: {0-10, 10-20, …, 90-100} → {young, mid-aged, old}

 Dynamic discretization based on data distribution

 Clustering: Distance-based association

 First one-dimensional clustering, then association

 Deviation analysis:

 Gender = femaleWage: mean=$7/hr (overall mean = $9)

10

Mining Extraordinary Phenomena in Quantitative
Association Mining

 Mining extraordinary (i.e., interesting) phenomena

 E.g.: Gender = female Wage: mean=$7/hr (overall mean = $9)

 LHS: a subset of the population

 RHS: an extraordinary behavior of this subset

 The rule is accepted only if a statistical test (e.g., Z-test) confirms the
inference with high confidence

 Subrule: Highlights the extraordinary behavior of a subset of the
population of the super rule

 E.g.: (Gender = female) ^ (South = yes) mean wage = $6.3/hr

 Rule condition can be categorical or numerical (quantitative rules)

 E.g.: Education in [14-18] (yrs) mean wage = $11.64/hr

11

Rare Patterns

 Rare patterns

 Very low support but interesting (e.g., buying Rolex watches)

 How to mine them? Setting individualized, group-based min-support

thresholds for different groups of items

12

Negative Patterns

 Negative patterns

 Negatively correlated: Unlikely to happen together

 Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV

car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford

Fusion are likely negatively correlated patterns

 How to define negative patterns?

 A support-based definition of negative correlated patterns

 If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) <<
sup (A) × sup(B)

Does this remind you the definition of lift?

13

Defining Negative Correlated Patterns

 Is this a good definition for large transaction datasets?

 Ex.: Suppose a store sold two needle packages A and B 100 times each,
but only one transaction contained both A and B

 When there are in total 200 transactions, we have

 s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

 But when there are 105 transactions, we have

 s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

 What is the problem?—Null transactions: The support-based definition
is not null-invariant!

14

Defining Negative Correlation: Need
Null-Invariance in Definition

 A good definition on negative correlation should take care of the null-
invariance problem

 Whether two itemsets A and B are negatively correlated should not be
influenced by the number of null-transactions

 A Kulczynski measure-based definition

 If itemsets A and B are frequent but

(s(A U B)/s(A) + s(A U B)/s(B))/2 < є,

where є is a negative pattern threshold, then A and B are negatively
correlated

 For the same needle package problem:

 No matter there are in total 200 or 105 transactions

 If є = 0.01, we have

(s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < є

15

Mining Compressed Patterns

 Why mining compressed patterns? Too many
scattered patterns but not so meaningful

 Pattern distance measure

 δ-clustering: For each pattern P, find all patterns
which can be expressed by P and whose distance
to P is within δ (δ-cover)

 All patterns in the cluster can be represented by P

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

 Closed patterns
 P1, P2, P3, P4, P5
 Emphasizes too much on

support
 Max-patterns
 P3: information loss

 Desired output (a good balance):
 P2, P3, P4

16

Redundancy-Aware Top-k Patterns
 Desired patterns: high significance & low redundancy

 Method: Use MMS (Maximal Marginal Significance) for measuring the
combined significance of a pattern set

 Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

17

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

18

Constraint-Based Pattern Mining
 Why Constraint-Based Mining?

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Convertible Constraints

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Handling Multiple Constraints

19

Why Constraint-Based Mining?
 Pattern mining in practice: Often a user-guided, interactive process

 User directs what to be mined using a data mining query language (or a
graphical user interface), specifying various kinds of constraints

 What is constraint-based mining?

 Mine together with user-provided constraints

 Why constraint-based mining?

 User flexibility: User provides constraints on what to be mined

 Optimization: System explores such constraints for mining efficiency

 E.g., Push constraints deeply into the mining process

20

Various Kinds of User-Specified Constraints in Data Mining

 Knowledge type constraint—Specifying what kinds of knowledge to mine

 E.g.: Classification, association, clustering, outlier finding, …

 Data constraint—using SQL-like queries

 E.g.: Find products sold together in NY stores this year

 Dimension/level constraint—similar to projection in relational database

 E.g.: In relevance to region, price, brand, customer category

 Interestingness constraint—various kinds of thresholds

 E.g.: Strong rules: min_sup 0.02, min_conf 0.6, min_correlation 0.7

 Rule (or pattern) constraint

 E.g.: Small sales (price < $10) triggers big sales (sum > $200)

The focus of this study

21

Pattern Space Pruning with Pattern Anti-Monotonicity

 A constraint c is anti-monotone

 If an itemset S violates constraint c, so does any of its superset

 That is, mining on itemset S can be terminated

 E.g. 1: c1: sum(S.price) v is anti-monotone

 E.g. 2: c2: range(S.profit) 15 is anti-monotone

 Itemset ab violates c2 (range(ab) = 40)

 So does every superset of ab

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative

22

 E.g. 3. c3: sum(S.Price) v is not anti-monotone

 E.g. 4. Is c4: support(S) σ anti-monotone?

 Yes! Apriori pruning is essentially pruning with an anti-
monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Pattern Space Pruning with Pattern Anti-Monotonicity

23

Pattern Monotonicity and Its Roles

 A constraint c is monotone: If an itemset S satisfies the
constraint c, so does any of its superset

 That is, we do not need to check c in subsequent mining

 E.g. 1: c1: sum(S.Price) v is monotone

 E.g. 2: c2: min(S.Price) v is monotone

 E.g. 3: c3: range(S.profit) 15 is monotone

 Itemset ab satisfies c3

 So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

24

Apriori for Pattern Anti-Monotone Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

F2

C2 C2

Scan D

C3 F3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Min_sup=2

Constraint:

Sum{S.price} < 5

Item Price

1 1

2 2

3 3

4 4

5 5

Can be
chopped
early

25

Convertible Constraints: Ordering Data in Transactions

 Convert tough constraints into (anti-)monotone by proper ordering
of items in transactions

 Examine c1: avg(S.profit) > 20

 Order items in (profit) value-descending order

 <a, g, f, b, h, d, c, e>

 An itemset ab violates c1 (avg(ab) = 20)

 So does ab* (i.e., ab-projected DB)

 C1: anti-monotone if patterns grow in the right order!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

26

Can item-reordering work for Apriori?

 avg(gf) = 12.5 < 20, avg(af) = 17.5 < 20, avg(ag) = 35 > 20

 But avg(agf) = 21.7 > 20

 Apriori will not generate “agf” as a candidate

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

itemset sup.

{a} 3

{f} 4

{g} 3

{d} 3

… …

Scan D

F1 F2 itemset sup.

{af} 3

{fg} 4

{ag} 2

{ad} 2

… …

Chopped too
early

constraint: avg(S.profit) > 20

27

Data Space Pruning with Data Anti-Monotonicity
 A constraint c is data anti-monotone: In the mining process, if a

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

 Data space pruning: Data entry t can be pruned

 E.g. 1: c1: sum(S.Profit) v is data anti-monotone

 Let constraint c1 be: sum(S.Profit) ≥ 25

 T30: {b, c, d, f, g} can be removed since none of their
combinations can make an S whose sum of the profit is ≥ 25

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

28

Data Space Pruning with Data Anti-Monotonicity
 A constraint c is data anti-monotone: In the mining process, if a

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

 Data space pruning: Data entry t can be pruned

 E.g. 2: c2: min(S.Price) v is data anti-monotone

 Consider v = 5 but every item in a transaction, say T50 , has a
price higher than 10

 E.g. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

29

Data Space Pruning Should Be Explored Recursively

 Example. c3: range(S.Profit) > 25

 We check b’s projected database

 But item “a” is infrequent (sup = 1)

 After removing “a (40)” from T10

 T10 cannot satisfy c3 any more

 Since “b (0)” and “c (−20), d (−15), f (−10), h (5)”

 By removing T10, we can also prune “h” in T20

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Profit

a 40

b 0

c −20

d −15

e −30

f −10

g 20

h 5

b’s-proj. DB

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

b’s-proj. DB

30

Data Space Pruning Should Be Explored Recursively

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

Recursive
Data

Pruning

b’s FP-tree

single branch: cdfg: 2

Constraint:
range{S.profit} > 25

Only a single branch “cdfg: 2”
to be mined in b’s projected DB

 Note: c3 prunes T10 effectively only after “a” is pruned (by min-sup) in b’s projected DB

b’s-proj. DB

31

Succinctness: Pruning Both Data and Pattern Spaces

 Succinctness: If the constraint c can be enforced by directly manipulating the data

 E.g. 1: To find those patterns without item i

 Remove i from DB and then mine (pattern space pruning)

 E.g. 2: To find those patterns containing item i

 Mine only i-projected DB (data space pruning)

 E.g. 3: c3: min(S.Price) v is succinct

 Start with only items whose price v and remove transactions with high-price

items only (pattern + data space pruning)

 E.g. 4: c4: sum(S.Price) v is not succinct

 It cannot be determined beforehand since sum of the price of itemset S keeps

increasing

32

Apriori + Succinct Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

Min_sup=2

Constraint:

min{S.price} <= 1

Item Price

1 1

2 2

3 3

4 4

5 5

Min_sup=2

Constraint:

min{S.price} <= 2

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 1

{3} 2

{4} 1

{5} 1

itemset sup.

{1} 2

{3} 2Scan D

C1

F1

Chopped too
early

33

Constrained FP-Growth: Push a Succinct Constraint Deep

TID Items

10 1 3

20 2 3 5

30 1 2 3 5

40 2 5

Remove
infrequent
length 1

TID Items

10 3 4

30 2 3 5

1-Projected DB

No Need to project on 3 or 5

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Item Price

1 1

2 2

3 3

4 4

5 5

TID Items

20 3 5

40 5

2-Projected DB

Min_sup=2

Constraint:

min{S.price} <= 2

34

Different Kinds of Constraints Lead to Different
Pruning Strategies

 In summary, constraints can be categorized as Pattern space pruning constraints vs.
data space pruning constraints

Pattern space pruning constraints Data space pruning constraints

 Anti-monotonic: If constraint c is violated, its further
mining can be terminated

 Monotonic: If c is satisfied, no need to check c again

 Convertible: c can be converted to monotonic or
anti-monotonic if items can be properly ordered in
processing

 Succinct: If the constraint c can be enforced by
directly manipulating the data

 Data succinct: Data
space can be pruned at
the initial pattern
mining process

 Data anti-monotonic: If
a transaction t does not
satisfy c, then t can be
pruned to reduce data
processing effort

35

How to Handle Multiple Constraints?
 It is beneficial to use multiple constraints in pattern mining

 But different constraints may require potentially conflicting item-ordering

 If there exists conflict ordering between c1 and c2

 Try to sort data and enforce one constraint first (which one?)

 Then enforce the other constraint when mining the projected databases

 E.g. c1: avg(S.profit) > 20, and c2: avg(S.price) < 50

 Assum c1 has more pruning power

 Sort in profit descending order and use c1 first

 For each project DB, sort trans. in price ascending order and use c2 at
mining

36

Summary: Constraint-Based Pattern Mining

 Why Constraint-Based Mining?

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Convertible Constraints

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Handling Multiple Constraints

37

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

38

Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data Format

 PrefixSpan: Sequential Pattern Mining by Pattern-Growth

 CloSpan: Mining Closed Sequential Patterns

 Constraint-Based Sequential-Pattern Mining

39

Sequence Databases & Sequential Patterns

 Sequential pattern mining has broad applications

 Customer shopping sequences

 Purchase a laptop first, then a digital camera, and then a smartphone,
within 6 months

 Medical treatments, natural disasters (e.g., earthquakes), science &
engineering processes, stocks and markets, ...

 Weblog click streams, calling patterns, …

 Software engineering: Program execution sequences, …

 Biological sequences: DNA, protein, …

 Transaction DB, sequence DB vs. time-series DB

 Gapped vs. non-gapped sequential patterns

 Shopping sequences, clicking streams vs. biological sequences

40

Sequential Pattern and Sequential Pattern Mining

 Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

 An element may contain a set of items (also called
events)

* Items within an element are unordered and we list
them alphabetically

A sequence: < (ef) (ab) (df) c b >

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

41

Sequential Pattern and Sequential Pattern Mining

 Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

 Given support threshold min_sup = 2, <(ab)c>
is a sequential pattern

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

A sequence database

42

Sequential Pattern Mining Algorithms

 Algorithm requirement: Efficient, scalable, finding complete set, incorporating
various kinds of user-specific constraints

 The Apriori property still holds: If a subsequence s1 is infrequent, none of s1’s
super-sequences can be frequent

 Representative algorithms

 GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)

 Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

 Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)

 Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)

 Constraint-based sequential pattern mining (to be covered in the constraint
mining section)

43

GSP: Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

SID Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

Cand. sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

44

GSP: Apriori-Based Sequential Pattern Mining
 Generate length-2 candidate sequences

min_sup = 2

Cand. sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

 <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

 <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

 w/o pruning:

8*8 + 8*7/2 = 92

length-2 candidates

 w/ pruning:

6*6 + 6*5/2 = 51

length-2 candidates

singleton x singleton

sets

Apriori Pruning

45

GSP Mining and Pruning

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat.
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat.

5th scan: 1 cand. 1 length-5 seq. pat.

SID Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

 Remove

 Candidates not in DB

 Candidates < min_sup

46

GSP Mining and Pruning
 Repeat (for each level (i.e., length-k))

 Scan DB to find length-k frequent sequences

 Generate length-(k+1) candidate sequences from length-k
frequent sequences using Apriori

 set k = k+1

 Until no frequent sequence or no candidate can be found

GSP (Generalized Sequential
Patterns): Srikant & Agrawal
@ EDBT’96)

47

Sequential Pattern Mining in Vertical Data
Format: The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential

PAttern Discovery

using Equivalent Class)

[M. Zaki 2001]

min_sup = 2

 A sequence database is mapped to: <SID, EID>
 Grow the subsequences (patterns) one item at a time by Apriori candidate generation

48

PrefixSpan: A Pattern-Growth Approach

 PrefixSpan Mining: Prefix Projections

 Step 1: Find length-1 sequential patterns

 <a>, , <c>, <d>, <e>, <f>

 Step 2: Divide search space and mine each projected DB

 <a>-projected DB,

 -projected DB,

 …

 <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

 Prefix and suffix

 Given <a(abc)(ac)d(cf)>

 Prefixes: <a>, <aa>,
<a(ab)>, <a(abc)>, …

 Suffix: Prefixes-based
projection

PrefixSpan (Prefix-projected
Sequential pattern mining)
Pei, et al. @TKDE’04

min_sup = 2

49

prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, , <c>, <d>, <e>, <f>

prefix <aa>

…

prefix <af>

…

prefix prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

 No candidate subseqs. to be generated

 Projected DBs keep shrinking

min_sup = 2

-projected DB

<(_c)(ac)d(cf)>

<(_c)(ae)>

<(df)cb>

<c>

50

Implementation Consideration: Pseudo-Projection vs.
Physical Projection

 Major cost of PrefixSpan: Constructing projected DBs

 Suffixes largely repeating in recursive projected DBs

 When DB can be held in main memory, use pseudo projection

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: (, 2)

s|<ab>: (, 5)

 No physically copying suffixes

 Pointer to the sequence

 Offset of the suffix

 But if it does not fit in memory

 Physical projection

 Suggested approach:

 Integration of physical and pseudo-projection

 Swapping to pseudo-projection when the data fits in memory

51

CloSpan: Mining Closed Sequential Patterns

 A closed sequential pattern s: There exists no superpattern s’ such that s’ כ s, and s’

and s have the same support

 Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

52

CloSpan: Mining Closed Sequential Patterns

 Why directly mine closed sequential patterns?

 Reduce # of (redundant) patterns

 Attain the same expressive power

 Property P1: If s כ s1, s is closed iff two project
DBs have the same size

 Explore Backward Subpattern and Backward
Superpattern pruning to prune redundant
search space

 Greatly enhances efficiency (Yan, et al., SDM’03)

53

<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

 If s כ s1, s is closed iff two project DBs have the same size

 When two projected sequence DBs have the same size?

 Here is one example:

Only need to keep
size = 12 (including
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2

54

Constraint-Based Sequential-Pattern Mining
 Share many similarities with constraint-based itemset mining

 Anti-monotonic: If S violates c, the super-sequences of S also violate c

 sum(S.price) < 150; min(S.value) > 10

 Monotonic: If S satisfies c, the super-sequences of S also do so

 element_count (S) > 5; S {PC, digital_camera}

 Data anti-monotonic: If a sequence s1 with respect to S violates c3, s1

can be removed

 c3: sum(S.price) ≥ v

 Succinct: Enforce constraint c by explicitly manipulating data

 S {i-phone, MacAir}

 Convertible: Projection based on the sorted value not sequence order

 value_avg(S) < 25; profit_sum (S) > 160

 max(S)/avg(S) < 2; median(S) – min(S) > 5

55

Timing-Based Constraints in Seq.-Pattern Mining

 Order constraint: Some items must happen before the other

 {algebra, geometry} → {calculus} (where “→” indicates ordering)

 Anti-monotonic: Constraint-violating sub-patterns pruned

 Min-gap/max-gap constraint: Confines two elements in a pattern

 E.g., mingap = 1, maxgap = 4

 Succinct: Enforced directly during pattern growth

 Max-span constraint: Maximum allowed time difference between the
1st and the last elements in the pattern

 E.g., maxspan (S) = 60 (days)

 Succinct: Enforced directly when the 1st element is determined

 Window size constraint: Events in an element do not have to occur at
the same time: Enforce max allowed time difference

 E.g., window-size = 2: Various ways to merge events into elements

56

Episodes and Episode Pattern Mining

 Episodes and regular expressions: Alternative to seq. patterns

 Serial episodes: AB

 Parallel episodes: A|B

 Regular expressions: (A|B)C*(DE)

 E.g. Given a large shopping sequence database, one may like to find

 Suppose the pattern order follows the template (A|B)C*(D E), and

 Sum of the prices of A, B, C*, D, and E is greater than $100, where C*

means C appears *-times

 How to efficiently mine such episode patterns?

a partial order relationship: A and B can be in any order

a total order relationship: first A then B

(DE) means D, E happen in the same time window

57

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

58

What Is Graph Pattern Mining?

 Chem-informatics:

 Mining frequent chemical compound structures

 Social networks, web communities, tweets, …

 Finding frequent research collaboration subgraphs

59

Frequent (Sub)Graph Patterns

 Given a labeled graph dataset D = {G1, G2, …, Gn), the supporting graph set of a
subgraph g is Dg = {Gi | g Gi, Gi D}

 support(g) = |Dg|/ |D|

 A (sub)graph g is frequent if support(g) ≥ min_sup

 Ex.: Chemical structures
Graph Dataset

Frequent Graph Patterns

(A) (B) (C)

(1) (2)

min_sup = 2

support = 67%

 Alternative:

 Mining frequent subgraph
patterns from a single large
graph or network

60

Applications of Graph Pattern Mining

 Bioinformatics

 Gene networks, protein interactions, metabolic pathways

 Chem-informatics: Mining chemical compound structures

 Social networks, web communities, tweets, …

 Cell phone networks, computer networks, …

 Web graphs, XML structures, Semantic Web, information networks

 Software engineering: Program execution flow analysis

 Building blocks for graph classification, clustering, compression, comparison,
and correlation analysis

 Graph indexing and graph similarity search

61

Graph Pattern Mining Algorithms: Different
Methodologies

 Generation of candidate subgraphs

 Apriori vs. pattern growth (e.g., FSG vs. gSpan)

 Search order

 Breadth vs. depth

 Elimination of duplicate subgraphs

 Passive vs. active (e.g., gSpan [Yan & Han, 2002])

 Support calculation

 Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang,
& Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])

 Order of pattern discovery

 Path tree graph (e.g., GASTON [Nijssen & Kok, 2004])

62

Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’
Join

 The Apriori property (anti-monotonicity): A size-k
subgraph is frequent if and only if all of its
subgraphs are frequent

 A candidate size-(k+1) edge/vertex subgraph is
generated if its corresponding two k-edge/vertex
subgraphs are frequent

 Iterative mining process:

 Candidate-generation candidate pruning
support counting candidate elimination

63

Candidate Generation:
Vertex Growing vs. Edge Growing

 Generating new graphs with one more vertex

 AGM (Inokuchi, Washio, & Motoda, PKDD’00)

 Generating new graphs with one more edge

 FSG (Kuramochi & Karypis, ICDM’01)

 Performance shows via edge growing is more efficient

 Methodology: Breadth-search, Apriori joining two size-k graphs

 Many possibilities at generating size-(k+1) candidate graphs

64

Pattern-Growth Approach

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate
graphs

 Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge
subgraphs

 Major challenge

 Generating many duplicate subgraphs

 Major idea to solve the problem

 Define an order to generate
subgraphs

 DFS spanning tree: Flatten a graph
into a sequence using depth-first
search

 gSpan (Yan & Han, ICDM’02)

65

gSPAN: Graph Pattern Growth in Order

 Right-most path extension in subgraph
pattern growth

 Right-most path: The path from root to the
right-most leaf (choose the vertex with the
smallest index at each step)

 Reduce generation of duplicate subgraphs

 Completeness: The enumeration of graphs

using right-most path extension is complete

 DFS code: Flatten a graph into a sequence

using depth-first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,3)

e3: (3,0)

e4: (2,4)

66

Why Mine Closed Graph Patterns?

 Challenge: An n-edge frequent graph may have 2n subgraphs

 Motivation: Explore closed frequent subgraphs to handle graph
pattern explosion problem

 A frequent graph G is closed if there exists no supergraph of G that
carries the same support as G

 Lossless compression: Does not contain non-closed graphs, but still
ensures that the mining result is complete

 Algorithm CloseGraph: Mines closed graph patterns directly

If this subgraph is closed in the
graph dataset, it implies that
none of its frequent super-graphs
carries the same support

67

CloseGraph: Directly Mining Closed Graph Patterns

…

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition can we
stop searching their children,

i.e., early termination?

 CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

 Suppose G and G1 are frequent, and G is a
subgraph of G1

 If in any part of the graph in the dataset
where G occurs, G1 also occurs, then we
need not grow G (except some special, subtle
cases), since none of G’s children will be
closed except those of G1

68

Experiment and Performance Comparison

 The AIDS antiviral screen compound dataset from NCI/NIH

 The dataset contains 43,905 chemical compounds

 Discovered patterns: The smaller minimum support, the bigger and more
interesting subgraph patterns discovered

20% 10% 5%

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0.05 0.06 0.07 0.08 0.1

frequent graphs
closed frequent graphs

Minimum support

N
u

m
b

e
r

o
f

p
at

te
rn

s

of Patterns: Frequent vs. Closed

1

10

100

1000

10000

0.05 0.06 0.07 0.08 0.1

FSG

Gspan

CloseGraph

R
u

n
 t

im
e

 (
se

c)

Runtime: Frequent vs. Closed

Minimum support

69

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

70

Pattern Mining Application: Software Bug Detection
 Mining rules from source code

 Bugs as deviant behavior (e.g., by statistical analysis)

 Mining programming rules (e.g., by frequent itemset mining)

 Mining function precedence protocols (e.g., by frequent subsequence mining)

 Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)

 Mining rules from revision histories

 By frequent itemset mining

 Mining copy-paste patterns from source code

 Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04]) (to be discussed here)

 Reference: Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, OSDI’04

https://pdfs.semanticscholar.org/05c1/06bb1a21a8d8d99b76953231f1476ec73df2.pdf

71

Application Example: Mining Copy-and-Paste Bugs

 Copy-pasting is common

 12% in Linux file system

 19% in X Window system

 Copy-pasted code is error-prone

 Mine “forget-to-change” bugs by
sequential pattern mining

 Build a sequence database from source
code

 Mining sequential patterns

 Finding mismatched identifier names &
bugs

void __init prom_meminit(void)
{

……
for (i=0; i<n; i++) {

total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

(Simplified example from linux-
2.6.6/arch/sparc/prom/memory.c)

Code copy-and-
pasted but forget
to change “id”!

Courtesy of Yuanyuan Zhou@UCSD

72

Building Sequence Database from Source Code
 Statement number

 Tokenize each component

 Different operators, constants, key words
 different tokens

 Same type of identifiers same token

 Program A long sequence

 Cut the long sequence by blocks

old = 3;

5 61 20

Tokenize

Hash
16

new = 3;

5 61 20

16

Map a statement
to a number

Final sequence DB:

(65)

(16, 16, 71)

…

(65)

(16, 16, 71)

for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

65
16
16
71

…

65
16
16
71

Hash values

Courtesy of Yuanyuan Zhou@UCSD

(mapped to)

73

Sequential Pattern Mining & Detecting
“Forget-to-Change” Bugs

 Modification to the sequence pattern mining algorithm

 Constrain the max gap

 Composing Larger Copy-Pasted Segments

 Combine the neighboring copy-pasted segments
repeatedly

 Find conflicts: Identify names that cannot be mapped to the
corresponding ones

 E.g., 1 out of 4 “total” is unchanged, unchanged ratio =
0.25

 If 0 < unchanged ratio < threshold, then report it as a bug

 CP-Miner reported many C-P bugs in Linux, Apache, … out of
millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD

f (a1);
f (a2);
f (a3);

f1 (b1);
f1 (b2);
f2 (b3);

conflict

(16, 16, 71)
……
(16, 16, 10, 71)

Allow a maximal gap:
inserting statements
in copy-and-paste

74

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

75

Summary: Advanced Frequent Pattern Mining
 Mining Diverse Patterns

 Mining Multiple-Level Associations

 Mining Multi-Dimensional Associations

 Mining Quantitative Associations

 Mining Negative Correlations

 Mining Compressed and Redundancy-Aware
Patterns

 Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data
Format

 PrefixSpan: Sequential Pattern Mining by Pattern-
Growth

 CloSpan: Mining Closed Sequential Patterns

 Constraint-Based Frequent Pattern Mining

 Why Constraint-Based Mining?

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Constrained Mining with Convertible Constraints

 Handling Multiple Constraints

 Constraint-Based Sequential-Pattern Mining

 Graph Pattern Mining

 Graph Pattern and Graph Pattern Mining

 Apriori-Based Graph Pattern Mining Methods

 gSpan: A Pattern-Growth-Based Method

 CloseGraph: Mining Closed Graph Patterns

 Pattern Mining Application: Mining Software Copy-
and-Paste Bugs

76

References: Mining Diverse Patterns
 R. Srikant and R. Agrawal, “Mining generalized association rules”, VLDB'95

 Y. Aumann and Y. Lindell, “A Statistical Theory for Quantitative Association Rules”,
KDD'99

 K. Wang, Y. He, J. Han, “Pushing Support Constraints Into Association Rules Mining”,
IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003

 D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns",
Knowledge and Data Engineering, 60(1): 5-29, 2007

 D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns",
KDD'06

 J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and
Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

 F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, “Mining Colossal Frequent Patterns by
Core Pattern Fusion”, ICDE'07

77

References: Constraint-Based Frequent Pattern Mining

 R. Srikant, Q. Vu, and R. Agrawal, “Mining association rules with item constraints”,
KDD'97

 R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, “Exploratory mining and pruning
optimizations of constrained association rules”, SIGMOD’98

 G. Grahne, L. Lakshmanan, and X. Wang, “Efficient mining of constrained correlated
sets”, ICDE'00

 J. Pei, J. Han, and L. V. S. Lakshmanan, “Mining Frequent Itemsets with Convertible
Constraints”, ICDE'01

 J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in Large
Databases”, CIKM'02

 F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: Anticipated Data
Reduction in Constrained Pattern Mining”, PKDD'03

 F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing Framework for Graph
Pattern Mining”, PAKDD'07

78

References: Sequential Pattern Mining
 R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance

improvements”, EDBT’96

 M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences”, Machine
Learning, 2001

 J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
"Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE,
16(10), 2004

 X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large
Datasets”, SDM'03

 J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the pattern-
growth methods", J. Int. Inf. Sys., 28(2), 2007

 M. N. Garofalakis, R. Rastogi, K. Shim: Mining Sequential Patterns with Regular Expression
Constraints. IEEE Trans. Knowl. Data Eng. 14(3), 2002

 H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes in event
sequences”, Data Mining and Knowledge Discovery, 1997

79

References: Graph Pattern Mining
 C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of

molecules, ICDM'02

 J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism, ICDM'03

 A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data, PKDD'00

 M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01

 S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference.
KDD'04

 N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from
semistructured data, ICDM'02

 X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02

 X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03

 X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04

 X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05

80
80

