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Mining Diverse Patterns

 Mining Multiple-Level Associations

 Mining Multi-Dimensional Associations

 Mining Quantitative Associations

 Mining Negative Correlations

 Mining Compressed and Redundancy-Aware Patterns
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Mining Multiple-Level Frequent Patterns

 Items often form hierarchies

 E.g.:  Dairyland 2% milk; 
Wonder wheat bread

 How to set min-support 
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk 

[support = 6%]

Skim Milk 

[support = 2%]

 Uniform min-support across multiple levels (reasonable?)

 Level-reduced min-support:  Items at the lower level are 
expected to have lower support

 Efficient mining:  Shared multi-level mining

 Use the lowest min-support to pass down the set of 
candidates
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Redundancy Filtering at Mining Multi-Level 
Associations 

 Multi-level association mining may generate many redundant rules

 Redundancy filtering:  Some rules may be redundant due to “ancestor” 
relationships between items

 milk  wheat bread  [support = 8%, confidence = 70%]   (1)

 2% milk  wheat bread [support = 2%, confidence = 72%] (2)

 Suppose the 2% milk sold is about ¼ of milk sold in gallons

 (2) should be able to be “derived” from (1)
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 milk  wheat bread  [support = 8%, confidence = 70%]   (1)

 2% milk  wheat bread [support = 2%, confidence = 72%] (2) A rule 
is redundant if its support is close to the “expected” value, according to 
its “ancestor” rule, and it has a similar confidence as its “ancestor”

 Rule (1) is an ancestor of rule (2), which one to prune?

Redundancy Filtering at Mining Multi-Level 
Associations 



7

Customized Min-Supports for Different Kinds of Items
 We have used the same min-support threshold for all the items or item sets 

to be mined in each association mining

 In reality, some items (e.g., diamond, watch, …) are valuable but less 
frequent

 It is necessary to have customized min-support settings for different kinds of 
items 

 One Method: Use group-based “individualized” min-support

 E.g., {diamond, watch}: 0.05%;  {bread, milk}: 5%; …

 How to mine such rules efficiently?

 Existing scalable mining algorithms can be easily extended to cover such 
cases
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Mining Multi-Dimensional Associations
 Single-dimensional rules (e.g., items are all in “product” dimension)

 buys(X, “milk”)  buys(X, “bread”)

 Multi-dimensional rules (i.e., items in  2 dimensions or predicates)

 Inter-dimension association rules (no repeated predicates)

 age(X, “18-25”)  occupation(X, “student”)  buys(X, “coke”)

 Hybrid-dimension association rules (repeated predicates)

 age(X, “18-25”)  buys(X, “popcorn”)  buys(X, “coke”)

 Attributes can be categorical or numerical

 Categorical Attributes (e.g., profession, product: no ordering among 

values): Data cube for inter-dimension association

 Quantitative Attributes: Numeric, implicit ordering among values—

discretization, clustering, and gradient approaches
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Mining Quantitative Associations

 Mining associations with numerical attributes

 E.g.:   Numerical attributes: age and salary

 Methods

 Static discretization based on predefined concept hierarchies 

 Discretization on each dimension with hierarchy

 age: {0-10, 10-20, …, 90-100} → {young, mid-aged, old}

 Dynamic discretization based on data distribution

 Clustering: Distance-based association 

 First one-dimensional clustering, then association

 Deviation analysis: 

 Gender = femaleWage: mean=$7/hr (overall mean = $9)
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Mining Extraordinary Phenomena in Quantitative 
Association Mining

 Mining extraordinary (i.e., interesting) phenomena

 E.g.:  Gender = female Wage: mean=$7/hr (overall mean = $9)

 LHS: a subset of the population 

 RHS: an extraordinary behavior of this subset

 The rule is accepted only if a statistical test (e.g., Z-test) confirms the 
inference with high confidence

 Subrule: Highlights the extraordinary behavior of a subset of the 
population of the super rule 

 E.g.: (Gender = female) ^ (South = yes) mean wage = $6.3/hr

 Rule condition can be categorical or numerical (quantitative rules)

 E.g.: Education in [14-18] (yrs) mean wage = $11.64/hr
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Rare Patterns

 Rare patterns

 Very low support but interesting (e.g., buying Rolex watches)

 How to mine them? Setting individualized, group-based min-support 

thresholds for different groups of items
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Negative Patterns

 Negative patterns

 Negatively correlated: Unlikely to happen together

 Ex.:  Since it is unlikely that the same customer buys both a Ford Expedition (an SUV 

car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford 

Fusion are likely negatively correlated patterns

 How to define negative patterns?

 A support-based definition of negative correlated patterns

 If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << 
sup (A) × sup(B)

Does this remind you the definition of lift?
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Defining Negative Correlated Patterns

 Is this a good definition for large transaction datasets? 

 Ex.:   Suppose a store sold two needle packages A and B 100 times each, 
but only one transaction contained both A and B

 When there are in total 200 transactions, we have 

 s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

 But when there are 105 transactions, we have

 s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

 What is the problem?—Null transactions: The support-based definition 
is not null-invariant!
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Defining Negative Correlation:  Need 
Null-Invariance in Definition

 A good definition on negative correlation should take care of the null-
invariance problem

 Whether two itemsets A and B are negatively correlated should not be 
influenced by the number of null-transactions 

 A Kulczynski measure-based definition  

 If itemsets A and B are frequent but 

(s(A U B)/s(A) + s(A U B)/s(B))/2 < є,

where є is a negative pattern threshold, then A and B are negatively 
correlated

 For the same needle package problem:

 No matter there are in total 200 or 105 transactions

 If є = 0.01, we have 

(s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < є
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Mining Compressed Patterns

 Why mining compressed patterns? Too many 
scattered patterns but not so meaningful

 Pattern distance measure

 δ-clustering: For each pattern P, find all patterns 
which can be expressed by P and whose distance 
to P is within δ (δ-cover)

 All patterns in the cluster can be represented by P

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

 Closed patterns 
 P1, P2, P3, P4, P5
 Emphasizes too much on 

support
 Max-patterns
 P3: information loss

 Desired output (a good balance):
 P2, P3, P4
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Redundancy-Aware Top-k Patterns
 Desired patterns: high significance & low redundancy

 Method:  Use MMS (Maximal Marginal Significance) for measuring the 
combined significance of a pattern set 

 Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Constraint-Based Pattern Mining
 Why Constraint-Based Mining? 

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Convertible Constraints

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Handling Multiple Constraints
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Why Constraint-Based Mining?
 Pattern mining in practice: Often a user-guided, interactive process 

 User directs what to be mined using a data mining query language (or a 
graphical user interface), specifying various kinds of constraints

 What is constraint-based mining?

 Mine together with user-provided constraints

 Why constraint-based mining?

 User flexibility: User provides constraints on what to be mined

 Optimization: System explores such constraints for mining efficiency

 E.g., Push constraints deeply into the mining process
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Various Kinds of User-Specified Constraints in Data Mining

 Knowledge type constraint—Specifying what kinds of knowledge to mine

 E.g.: Classification, association, clustering, outlier finding, …

 Data constraint—using SQL-like queries

 E.g.: Find products sold together in NY stores this year

 Dimension/level constraint—similar to projection in relational database 

 E.g.: In relevance to region, price, brand, customer category

 Interestingness constraint—various kinds of thresholds

 E.g.: Strong rules: min_sup  0.02, min_conf  0.6, min_correlation  0.7

 Rule (or pattern) constraint

 E.g.: Small sales (price < $10) triggers big sales (sum > $200) 

The focus of this study



21

Pattern Space Pruning with Pattern Anti-Monotonicity 

 A constraint c is anti-monotone

 If an itemset S violates constraint c, so does any of its superset 

 That is, mining on itemset S can be terminated

 E.g. 1:  c1: sum(S.price)  v is anti-monotone

 E.g. 2: c2: range(S.profit)  15 is anti-monotone

 Itemset ab violates c2 (range(ab) = 40)

 So does every superset of ab

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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 E.g. 3. c3: sum(S.Price)  v is not anti-monotone

 E.g. 4. Is c4: support(S)  σ anti-monotone?

 Yes! Apriori pruning is essentially pruning with an anti-
monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Pattern Space Pruning with Pattern Anti-Monotonicity 
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Pattern Monotonicity and Its Roles

 A constraint c is monotone: If an itemset S satisfies the 
constraint c, so does any of its superset

 That is, we do not need to check c in subsequent mining

 E.g. 1: c1: sum(S.Price)  v is monotone

 E.g. 2: c2: min(S.Price)  v  is monotone

 E.g. 3: c3: range(S.profit)  15 is monotone

 Itemset ab satisfies c3

 So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5



24

Apriori for Pattern Anti-Monotone Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

F2

C2 C2

Scan D

C3 F3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Min_sup=2

Constraint: 

Sum{S.price} < 5

Item Price

1 1

2 2

3 3

4 4

5 5

Can be 
chopped 
early
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Convertible Constraints: Ordering Data in Transactions

 Convert tough constraints into (anti-)monotone by proper ordering 
of items in transactions

 Examine c1: avg(S.profit) > 20 

 Order items in (profit) value-descending order

 <a, g, f, b, h, d, c, e>

 An itemset ab violates c1 (avg(ab) = 20)

 So does ab* (i.e., ab-projected DB)

 C1: anti-monotone if patterns grow in the right order!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5
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Can item-reordering work for Apriori? 

 avg(gf) = 12.5 < 20, avg(af) = 17.5 < 20, avg(ag) = 35 > 20

 But avg(agf) = 21.7 > 20 

 Apriori will not generate “agf” as a candidate

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

itemset sup.

{a} 3

{f} 4

{g} 3

{d} 3

… …

Scan D

F1 F2 itemset sup.

{af} 3

{fg} 4

{ag} 2

{ad} 2

… …

Chopped too 
early

constraint: avg(S.profit) > 20 
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Data Space Pruning with Data Anti-Monotonicity
 A constraint c is data anti-monotone: In the mining process, if a 

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

 Data space pruning: Data entry t can be pruned 

 E.g. 1: c1: sum(S.Profit)  v is data anti-monotone

 Let constraint c1 be: sum(S.Profit) ≥ 25

 T30: {b, c, d, f, g} can be removed since none of their 
combinations can make an S whose sum of the profit is ≥ 25

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5



28

Data Space Pruning with Data Anti-Monotonicity
 A constraint c is data anti-monotone: In the mining process, if a 

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

 Data space pruning: Data entry t can be pruned 

 E.g. 2: c2: min(S.Price)  v  is data anti-monotone

 Consider v = 5 but every item in a transaction, say T50 , has a 
price higher than 10

 E.g. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
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Data Space Pruning Should Be Explored Recursively 

 Example. c3: range(S.Profit) > 25

 We check b’s projected database

 But item “a” is infrequent (sup = 1)

 After removing “a (40)” from T10

 T10 cannot satisfy c3 any more

 Since “b (0)” and “c (−20), d (−15), f (−10), h (5)”

 By removing T10, we can also prune “h” in T20

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Profit

a 40

b 0

c −20

d −15

e −30

f −10

g 20

h 5

b’s-proj. DB

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

b’s-proj. DB
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Data Space Pruning Should Be Explored Recursively 

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

Recursive
Data 

Pruning

b’s FP-tree

single branch: cdfg: 2 

Constraint:  
range{S.profit} > 25

Only a single branch “cdfg: 2” 
to be mined in b’s projected DB

 Note: c3 prunes T10 effectively only after “a” is pruned (by min-sup) in b’s projected DB

b’s-proj. DB
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Succinctness: Pruning Both Data and Pattern Spaces

 Succinctness: If the constraint c can be enforced by directly manipulating the data

 E.g. 1: To find those patterns without item i

 Remove i from DB and then mine (pattern space pruning)

 E.g. 2: To find those patterns containing item i

 Mine only i-projected DB (data space pruning)

 E.g. 3: c3: min(S.Price)  v is succinct

 Start with only items whose price  v and remove transactions with high-price 

items only (pattern + data space pruning)

 E.g. 4: c4: sum(S.Price)  v is not succinct

 It cannot be determined beforehand since sum of the price of itemset S keeps 

increasing
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Apriori + Succinct Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

Min_sup=2

Constraint: 

min{S.price} <= 1

Item Price

1 1

2 2

3 3

4 4

5 5

Min_sup=2

Constraint: 

min{S.price} <= 2

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 1

{3} 2

{4} 1

{5} 1

itemset sup.

{1} 2

{3} 2Scan D

C1

F1

Chopped too 
early



33

Constrained FP-Growth: Push a Succinct Constraint Deep

TID Items

10 1 3

20 2 3 5

30 1 2 3 5

40 2 5

Remove 
infrequent
length 1

TID Items

10 3 4

30 2 3 5

1-Projected DB

No Need to project on 3 or 5

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Item Price

1 1

2 2

3 3

4 4

5 5

TID Items

20 3 5

40 5

2-Projected DB

Min_sup=2

Constraint: 

min{S.price} <= 2
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Different Kinds of Constraints Lead to Different 
Pruning Strategies

 In summary, constraints can be categorized as Pattern space pruning constraints vs. 
data space pruning constraints 

Pattern space pruning constraints Data space pruning constraints

 Anti-monotonic: If constraint c is violated, its further 
mining can be terminated

 Monotonic: If c is satisfied, no need to check c again

 Convertible: c can be converted to monotonic or 
anti-monotonic if items can be properly ordered in 
processing

 Succinct: If the constraint c can be enforced by 
directly manipulating the data

 Data succinct: Data 
space can be pruned at 
the initial pattern 
mining process

 Data anti-monotonic: If 
a transaction t does not 
satisfy c, then t can be 
pruned to reduce data 
processing effort
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How to Handle Multiple Constraints?
 It is beneficial to use multiple constraints in pattern mining 

 But different constraints may require potentially conflicting item-ordering

 If there exists conflict ordering between c1 and c2

 Try to sort data and enforce one constraint first (which one?) 

 Then enforce the other constraint when mining the projected databases

 E.g. c1: avg(S.profit) > 20, and c2: avg(S.price) < 50

 Assum c1 has more pruning power

 Sort in profit descending order and use c1 first

 For each project DB, sort trans. in price ascending order and use c2 at 
mining 
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Summary: Constraint-Based Pattern Mining

 Why Constraint-Based Mining? 

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Convertible Constraints

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Handling Multiple Constraints
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Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining 

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data Format

 PrefixSpan: Sequential Pattern Mining by Pattern-Growth

 CloSpan: Mining Closed Sequential Patterns

 Constraint-Based Sequential-Pattern Mining
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Sequence Databases & Sequential Patterns

 Sequential pattern mining has broad applications

 Customer shopping sequences

 Purchase a laptop first, then a digital camera, and then a smartphone, 
within 6 months

 Medical treatments, natural disasters (e.g., earthquakes), science & 
engineering processes, stocks and markets, ...

 Weblog click streams, calling patterns, …

 Software engineering: Program execution sequences, …

 Biological sequences: DNA, protein, …

 Transaction DB, sequence DB vs. time-series DB

 Gapped vs. non-gapped sequential patterns

 Shopping sequences, clicking streams vs. biological sequences



40

Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of 
frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

 An element may contain a set of items (also called 
events)

* Items within an element are unordered and we list 
them alphabetically

A sequence: < (ef) (ab)  (df)  c   b >

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>



41

Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of 
frequent subsequences (i.e., satisfying the min_sup threshold)

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

 Given support threshold min_sup = 2, <(ab)c> 
is a sequential pattern

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

A sequence database
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Sequential Pattern Mining Algorithms

 Algorithm requirement: Efficient, scalable, finding complete set, incorporating 
various kinds of user-specific constraints 

 The Apriori property still holds:  If a subsequence s1 is infrequent, none of s1’s 
super-sequences can be frequent

 Representative algorithms

 GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)

 Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

 Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)

 Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)

 Constraint-based sequential pattern mining (to be covered in the constraint 
mining section)
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GSP: Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1
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GSP: Apriori-Based Sequential Pattern Mining
 Generate length-2 candidate sequences

min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

 w/o pruning:

8*8 + 8*7/2 = 92 

length-2 candidates

 w/ pruning:

6*6 + 6*5/2 = 51

length-2 candidates

singleton x singleton

sets

Apriori Pruning
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. 

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

 Remove

 Candidates not in DB

 Candidates < min_sup
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GSP Mining and Pruning
 Repeat (for each level (i.e., length-k))

 Scan DB to find length-k frequent sequences

 Generate length-(k+1) candidate sequences from length-k 
frequent sequences using Apriori

 set k = k+1

 Until no frequent sequence or no candidate can be found

GSP (Generalized Sequential 
Patterns): Srikant & Agrawal 
@ EDBT’96)
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Sequential Pattern Mining in Vertical Data 
Format: The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential 

PAttern Discovery 

using Equivalent Class) 

[M. Zaki 2001]

min_sup = 2

 A sequence database is mapped to: <SID, EID>
 Grow the subsequences (patterns) one item at a time by Apriori candidate generation
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PrefixSpan: A Pattern-Growth Approach

 PrefixSpan Mining: Prefix Projections

 Step 1: Find length-1 sequential patterns

 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: Divide search space and mine each projected DB

 <a>-projected DB,

 <b>-projected DB,

 …

 <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

 Prefix and suffix

 Given <a(abc)(ac)d(cf)>

 Prefixes: <a>, <aa>, 
<a(ab)>, <a(abc)>, …

 Suffix: Prefixes-based 
projection

PrefixSpan (Prefix-projected 
Sequential pattern mining) 
Pei, et al. @TKDE’04

min_sup = 2
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prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

prefix <aa>

…

prefix <af>

…

prefix <b> prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

 No candidate subseqs. to be generated

 Projected DBs keep shrinking

min_sup = 2

<b>-projected DB

<(_c)(ac)d(cf)>

<(_c)(ae)>

<(df)cb>

<c>
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Implementation Consideration: Pseudo-Projection vs. 
Physical Projection

 Major cost of PrefixSpan: Constructing projected DBs

 Suffixes largely repeating in recursive projected DBs 

 When DB can be held in main memory, use pseudo projection 

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 5)

 No physically copying suffixes

 Pointer to the sequence

 Offset of the suffix

 But if it does not fit in memory

 Physical projection

 Suggested approach:

 Integration of physical and pseudo-projection

 Swapping to pseudo-projection when the data fits in memory
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CloSpan: Mining Closed Sequential Patterns

 A closed sequential pattern s:  There exists no superpattern s’ such that s’ כ s, and s’

and s have the same support 

 Which ones are closed?  <abc>: 20, <abcd>:20, <abcde>: 15 
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CloSpan: Mining Closed Sequential Patterns

 Why directly mine closed sequential patterns?

 Reduce # of (redundant) patterns

 Attain the same expressive power

 Property P1: If s כ s1, s is closed iff two project 
DBs have the same size

 Explore Backward Subpattern and Backward 
Superpattern pruning to prune redundant 
search space

 Greatly enhances efficiency (Yan, et al., SDM’03)



53

<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

<b>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<b>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

 If s כ s1, s is closed iff two project DBs have the same size

 When two projected sequence DBs have the same size?

 Here is one example: 

Only need to keep 
size = 12 (including 
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2
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Constraint-Based Sequential-Pattern Mining
 Share many similarities with constraint-based itemset mining

 Anti-monotonic:  If S violates c, the super-sequences of S also violate c

 sum(S.price) < 150; min(S.value) > 10 

 Monotonic: If S satisfies c, the super-sequences of S also do so

 element_count (S) > 5; S  {PC, digital_camera}

 Data anti-monotonic: If a sequence s1 with respect to S violates c3,  s1

can be removed  

 c3: sum(S.price) ≥ v

 Succinct:  Enforce constraint c by explicitly manipulating data

 S   {i-phone, MacAir} 

 Convertible:  Projection based on the sorted value not sequence order

 value_avg(S) < 25; profit_sum (S) > 160

 max(S)/avg(S) < 2; median(S) – min(S) > 5
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Timing-Based Constraints in Seq.-Pattern Mining

 Order constraint: Some items must happen before the other

 {algebra, geometry} → {calculus} (where “→” indicates ordering)

 Anti-monotonic: Constraint-violating sub-patterns pruned

 Min-gap/max-gap constraint: Confines two elements in a pattern

 E.g., mingap = 1, maxgap = 4

 Succinct: Enforced directly during pattern growth

 Max-span constraint: Maximum allowed time difference between the 
1st and the last elements in the pattern

 E.g., maxspan (S) = 60 (days)

 Succinct: Enforced directly when the 1st element is determined

 Window size constraint: Events in an element do not have to occur at 
the same time: Enforce max allowed time difference

 E.g., window-size = 2: Various ways to merge events into elements
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Episodes and Episode Pattern Mining

 Episodes and regular expressions: Alternative to seq. patterns 

 Serial episodes:  AB

 Parallel episodes: A|B

 Regular expressions: (A|B)C*(DE)

 E.g.   Given a large shopping sequence database, one may like to find

 Suppose the pattern order follows the template (A|B)C*(D E), and

 Sum of the prices of A, B, C*, D, and E is greater than $100, where C* 

means C appears *-times

 How to efficiently mine such episode patterns?

a partial order relationship: A and B can be in any order

a total order relationship: first A then B

(DE) means D, E happen in the same time window
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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What Is Graph Pattern Mining?

 Chem-informatics: 

 Mining frequent chemical compound structures

 Social networks, web communities, tweets, …

 Finding frequent research collaboration subgraphs
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Frequent (Sub)Graph Patterns

 Given a labeled graph dataset D = {G1, G2, …, Gn), the supporting graph set of a 
subgraph g is Dg = {Gi | g  Gi, Gi D}

 support(g) = |Dg|/ |D|

 A (sub)graph g is frequent if support(g) ≥ min_sup

 Ex.: Chemical structures
Graph Dataset

Frequent Graph Patterns

(A) (B) (C)

(1) (2)

min_sup = 2

support = 67%

 Alternative:

 Mining frequent subgraph 
patterns from a single large 
graph or network
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Applications of Graph Pattern Mining

 Bioinformatics

 Gene networks, protein interactions, metabolic pathways

 Chem-informatics: Mining chemical compound structures

 Social networks, web communities, tweets, …

 Cell phone networks, computer networks, …

 Web graphs, XML structures, Semantic Web, information networks 

 Software engineering: Program execution flow analysis

 Building blocks for graph classification, clustering, compression, comparison, 
and correlation analysis

 Graph indexing and graph similarity search
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Graph Pattern Mining Algorithms: Different 
Methodologies

 Generation of candidate subgraphs

 Apriori vs. pattern growth (e.g., FSG vs. gSpan)

 Search order

 Breadth vs. depth

 Elimination of duplicate subgraphs

 Passive vs. active (e.g., gSpan [Yan & Han, 2002])

 Support calculation

 Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang, 
& Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])

 Order of pattern discovery

 Path  tree  graph (e.g., GASTON [Nijssen & Kok, 2004]) 
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Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’
Join

 The Apriori property (anti-monotonicity): A size-k
subgraph is frequent if and only if all of its 
subgraphs are frequent

 A candidate size-(k+1) edge/vertex subgraph is 
generated if its corresponding two k-edge/vertex 
subgraphs are frequent

 Iterative mining process:  

 Candidate-generation  candidate pruning 
support counting  candidate elimination
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Candidate Generation:  
Vertex Growing vs. Edge Growing

 Generating new graphs with one more vertex

 AGM (Inokuchi, Washio, & Motoda, PKDD’00) 

 Generating new graphs with one more edge

 FSG (Kuramochi & Karypis, ICDM’01)

 Performance shows via edge growing is more efficient

 Methodology: Breadth-search, Apriori joining two size-k graphs

 Many possibilities at generating size-(k+1) candidate graphs 
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Pattern-Growth Approach

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate 
graphs

 Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge 
subgraphs

 Major challenge

 Generating many duplicate subgraphs

 Major idea to solve the problem

 Define an order to generate 
subgraphs

 DFS spanning tree: Flatten a graph 
into a sequence using depth-first 
search

 gSpan (Yan & Han, ICDM’02)
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gSPAN: Graph Pattern Growth in Order

 Right-most path extension in subgraph 
pattern growth

 Right-most path: The path from root to the 
right-most leaf (choose the vertex with the 
smallest index at each step)

 Reduce generation of duplicate subgraphs

 Completeness: The enumeration of graphs 

using right-most path extension is complete

 DFS code: Flatten a graph into a sequence 

using depth-first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,3)

e3: (3,0)

e4: (2,4)
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Why Mine Closed Graph Patterns?

 Challenge: An n-edge frequent graph may have 2n subgraphs

 Motivation: Explore closed frequent subgraphs to handle graph 
pattern explosion problem

 A frequent graph G is closed if there exists no supergraph of G that 
carries the same support as G

 Lossless compression: Does not contain non-closed graphs, but still 
ensures that the mining result is complete

 Algorithm CloseGraph: Mines closed graph patterns directly

If this subgraph is closed in the 
graph dataset, it implies that 
none of its frequent super-graphs 
carries the same support
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CloseGraph: Directly Mining Closed Graph Patterns

…

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition can we
stop searching their children,

i.e., early termination?

 CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

 Suppose G and G1 are frequent, and G is a 
subgraph of G1

 If in any part of the graph in the dataset 
where G occurs, G1 also occurs, then we 
need not grow G (except some special, subtle 
cases), since none of G’s children will be 
closed except those of G1
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Experiment and Performance Comparison

 The AIDS antiviral screen compound dataset from NCI/NIH

 The dataset contains 43,905 chemical compounds

 Discovered patterns: The smaller minimum support, the bigger and more 
interesting subgraph patterns discovered
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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Pattern Mining Application: Software Bug Detection
 Mining rules from source code

 Bugs as deviant behavior (e.g., by statistical analysis)

 Mining programming rules (e.g., by frequent itemset mining)

 Mining function precedence protocols (e.g., by frequent subsequence mining)

 Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)

 Mining rules from revision histories

 By frequent itemset mining

 Mining copy-paste patterns from source code

 Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04])  (to be discussed here)

 Reference: Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding 
Copy-paste and Related Bugs in Operating System Code”, OSDI’04

https://pdfs.semanticscholar.org/05c1/06bb1a21a8d8d99b76953231f1476ec73df2.pdf
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Application Example: Mining Copy-and-Paste Bugs

 Copy-pasting is common

 12% in Linux file system 

 19% in X Window system 

 Copy-pasted code is error-prone

 Mine “forget-to-change” bugs by 
sequential pattern mining

 Build a sequence database from source 
code

 Mining sequential patterns

 Finding mismatched identifier names & 
bugs

void __init prom_meminit(void)
{

……
for (i=0; i<n; i++) {

total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

(Simplified example from linux-
2.6.6/arch/sparc/prom/memory.c)

Code copy-and-
pasted but forget 
to change “id”!

Courtesy of Yuanyuan Zhou@UCSD
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Building Sequence Database from Source Code
 Statement       number

 Tokenize each component

 Different operators, constants, key words 
 different tokens

 Same type of identifiers  same token

 Program  A long sequence

 Cut the long sequence by blocks

old = 3;

5 61 20

Tokenize

Hash
16

new = 3;

5 61 20

16

Map a statement 
to a number

Final sequence DB:

(65)

(16, 16, 71)

…

(65)

(16, 16, 71)

for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

65
16
16
71

…

65
16
16
71

Hash values

Courtesy of Yuanyuan Zhou@UCSD

(mapped to)
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Sequential Pattern Mining & Detecting 
“Forget-to-Change” Bugs

 Modification to the sequence pattern mining algorithm

 Constrain the max gap

 Composing Larger Copy-Pasted Segments

 Combine the neighboring copy-pasted segments 
repeatedly

 Find conflicts:  Identify names that cannot be mapped to the 
corresponding ones

 E.g., 1 out of 4 “total” is unchanged, unchanged ratio = 
0.25

 If 0 < unchanged ratio < threshold,  then report it as a bug 

 CP-Miner reported many C-P bugs in Linux, Apache, … out of 
millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD

f (a1);
f (a2);
f (a3);

f1 (b1);
f1 (b2);
f2 (b3);

conflict

(16, 16, 71)
……
(16, 16, 10, 71)

Allow a maximal gap: 
inserting statements 
in copy-and-paste
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Summary: Advanced Frequent Pattern Mining
 Mining Diverse Patterns

 Mining Multiple-Level Associations

 Mining Multi-Dimensional Associations

 Mining Quantitative Associations

 Mining Negative Correlations

 Mining Compressed and Redundancy-Aware 
Patterns

 Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining 

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data 
Format

 PrefixSpan: Sequential Pattern Mining by Pattern-
Growth

 CloSpan: Mining Closed Sequential Patterns

 Constraint-Based Frequent Pattern Mining

 Why Constraint-Based Mining? 

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Constrained Mining with Convertible Constraints

 Handling Multiple Constraints

 Constraint-Based Sequential-Pattern Mining

 Graph Pattern Mining

 Graph Pattern and Graph Pattern Mining

 Apriori-Based Graph Pattern Mining Methods

 gSpan: A Pattern-Growth-Based Method

 CloseGraph: Mining Closed Graph Patterns

 Pattern Mining Application: Mining Software Copy-
and-Paste Bugs
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