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Mining Multiple-Level Frequent Patterns

a Items often form hierarchies

ad E.g.: Dairyland 2% milk;
Wonder wheat bread

O How to set min-support
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Reduced support

Milk

Level 1

[support = 10%] min_sup = 5%

2% Milk
[support = 6%]

. Skim Milk
[support = 2%]

_____

E Level 2

' min_sup =1%

0 Uniform min-support across multiple levels (reasonable?)

O Level-reduced min-support: ltems at the lower level are

expected to have lower support

Q Efficient mining: Shared multi-level mining

0 Use the lowest min-support to pass down the set of

candidates



Redundancy Filtering at Mining Multi-Level
Associations

Q Multi-level association mining may generate many redundant rules

Q Redundancy filtering: Some rules may be redundant due to “ancestor”
relationships between items

d  milk = wheat bread [support = 8%, confidence =70%] (1)
d 2% milk = wheat bread [support = 2%, confidence = 72%] (2)
d  Suppose the 2% milk sold is about % of milk sold in gallons

ad (2) should be able to be “derived” from (1)



Redundancy Filtering at Mining Multi-Level

Associations

milk = wheat bread [support = 8%, confidence =70%] (1)

2% milk = wheat bread [support = 2%, confidence = 72%] (2) A rule
is redundant if its support is close to the “expected” value, according to
its “ancestor” rule, and it has a similar confidence as its “ancestor”

Rule (1) is an ancestor of rule (2), which one to prune?



Customized Min-Supports for Different Kinds of ltems

d We have used the same min-support threshold for all the items or item sets
to be mined in each association mining

Q In reality, some items (e.g., diamond, watch, ...) are valuable but less
frequent

d It is necessary to have customized min-support settings for different kinds of
items

d One Method: Use group-based “individualized” min-support
d E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
2 How to mine such rules efficiently?

d Existing scalable mining algorithms can be easily extended to cover such
cases



Mining Multi-Dimensional Associations

Q Single-dimensional rules (e.g., items are all in “product” dimension)
3 buys(X, “milk”) = buys(X, “bread”)
ad Multi-dimensional rules (i.e., items in > 2 dimensions or predicates)
0 Inter-dimension association rules (no repeated predicates)
O age(X, “18-25") A occupation(X, “student”) = buys(X, “coke”)
Hybrid-dimension association rules (repeated predicates)
ad age(X, “18-25") A buys(X, “popcorn”) = buys(X, “coke”)
Q Attributes can be categorical or numerical

0 Categorical Attributes (e.g., profession, product: no ordering among
values): Data cube for inter-dimension association

O Quantitative Attributes: Numeric, implicit ordering among values—
discretization, clustering, and gradient approaches



Mining Quantitative Associations

O Mining associations with numerical attributes
O E.g.: Numerical attributes: age and salary
O Methods
O Static discretization based on predefined concept hierarchies
d Discretization on each dimension with hierarchy
d age:{0-10, 10-20, ..., 90-100} - {young, mid-aged, old}
0 Dynamic discretization based on data distribution
0 Clustering: Distance-based association
d First one-dimensional clustering, then association
0 Deviation analysis:

O Gender = female = Wage: mean=57/hr (overall mean = $9)
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Mining Extraordinary Phenomena in Quantitative
Association Mining

d Mining extraordinary (i.e., interesting) phenomena

O E.g.: Gender = female = Wage: mean=57/hr (overall mean = $9)
0 LHS: a subset of the population
0 RHS: an extraordinary behavior of this subset

d The ruleis accepted only if a statistical test (e.g., Z-test) confirms the
inference with high confidence

A Subrule: Highlights the extraordinary behavior of a subset of the
population of the super rule

O E.g.: (Gender = female) A (South = yes) = mean wage = $6.3/hr
d Rule condition can be categorical or numerical (quantitative rules)
O E.g.: Education in [14-18] (yrs) = mean wage = S11.64/hr
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Rare Patterns

OQ Rare patterns
d  Very low support but interesting (e.g., buying Rolex watches)

0  How to mine them? Setting individualized, group-based min-support
thresholds for different groups of items
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Negative Patterns

O Negative patterns
Negatively correlated: Unlikely to happen together

Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV
car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford
Fusion are likely negatively correlated patterns

- How to define negative patterns?

O A support-based definition of negative correlated patterns

d If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) <<

sup (A) X sup(B)
P P Does this remind you the definition of /ift?
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Defining Negative Correlated Patterns

A Is this a good definition for large transaction datasets?

O Ex.: Suppose a store sold two needle packages A and B 100 times each,
but only one transaction contained both A and B

O  When there are in total 200 transactions, we have
d s(AUB)=0.005, s(A) X s(B) =0.25, s(A U B) << s(A) X s(B)

O But when there are 10° transactions, we have
Q s(AUB)=1/10° s(A) X s(B) =1/10%x%x 1/103, s(A U B) > s(A) X s(B)

O What is the problem?—Null transactions: The support-based definition
is not null-invariant!
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Defining Negative Correlation: Need
Null-Invariance in Definition

Q A good definition on negative correlation should take care of the null-
invariance problem

0 Whether two itemsets A and B are negatively correlated should not be
influenced by the number of null-transactions

Q A Kulczynski measure-based definition
d If itemsets A and B are frequent but
(s(A U B)/s(A) + s(A U B)/s(B))/2 < e,

where € is a negative pattern threshold, then A and B are negatively
correlated

Q For the same needle package problem:
J No matter there are in total 200 or 10° transactions
a Ife=0.01, we have
(s(A U B)/s(A) +s(AUB)/s(B))/2=(0.01+0.01)/2<¢€
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Mining Compressed Patterns

Pat-ID | Item-Sets Support
P1 {38,16,18,12} 205227
P2 {38,16,18,12,17} 205211
P3 {39,38,16,18,12,17} | 101758
P4 {39,16,18,12,17} 161563
P5 {39,16,18,12} 161576

A Closed patterns
2 P1, P2, P3, P4, P5
2 Emphasizes too much on
support
O Max-patterns

o P3:information loss
a Desired output (a good balance):

Q P2, P3,P4

Q Why mining compressed patterns? Too many
scattered patterns but not so meaningful

Q Pattern distance measure

| T(P1)NT (P
Dist(Py, Py) =1 TEP—BL_JTEPSI

Q &-clustering: For each pattern P, find all patterns
which can be expressed by P and whose distance
to P is within 6 (6-cover)

Q All patterns in the cluster can be represented by P



Redundancy-Aware Top-k Patterns

@ @
e ol g | *Fs, oo
eo0®® 0O° = @0®® o
@O0 @ O = @ OS/O
OC®® Ce & O® O
) © OO O @ .C?O
significance + relevance

Q Desired patterns: high significance & low redundancy

(a) a set of patterns (b) redundancy-aware
top-k
© O
© Q
@O®e® o® @ Oo o @
® O® @OPe
©CO%e Ce o Ce®y O
significance relevance

(c) traditional top-k

(d) summarization

d Method: Use MMS (Maximal Marginal Significance) for measuring the
combined significance of a pattern set

A Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Constraint-Based Pattern Mining

o O O 0O 0O 0O O O

Why Constraint-Based Mining?

Different Kinds of Constraints: Different Pruning Strategies
Constrained Mining with Pattern Anti-Monotonicity
Constrained Mining with Pattern Monotonicity
Constrained Mining with Convertible Constraints
Constrained Mining with Data Anti-Monotonicity
Constrained Mining with Succinct Constraints

Handling Multiple Constraints
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Why Constraint-Based Mining?

d Pattern mining in practice: Often a user-guided, interactive process

O User directs what to be mined using a data mining query language (or a
graphical user interface), specifying various kinds of constraints

Q What is constraint-based mining?

d  Mine together with user-provided constraints

O Why constraint-based mining?
O User flexibility: User provides constraints on what to be mined
0 Optimization: System explores such constraints for mining efficiency

d E.g., Push constraints deeply into the mining process



Various Kinds of User-Specified Constraints in Data Mining

Q Knowledge type constraint—Specifying what kinds of knowledge to mine
d  E.g.: Classification, association, clustering, outlier finding, ...
Q Data constraint—using SQL-like queries
 E.g.: Find products sold together in NY stores this year
Q Dimension/level constraint—similar to projection in relational database
d E.g.:Inrelevance to region, price, brand, customer category
d Interestingness constraint—various kinds of thresholds
d  E.g.: Strong rules: min_sup > 0.02, min_conf > 0.6, min_correlation > 0.7

Q Rule (or pattern) constraint <:| The focus of this study

O E.g.: Small sales (price < $10) triggers big sales (sum > $200)

20



Pattern Space Pruning with Pattern Anti-Monotonicity

ltem  Price  Profit B A constraint cis anti-monotone

a 100 40 ® If anitemset S violates constraint ¢, so does any of its superset
b 40 0 : .. . ,
® Thatis, mining on itemset S can be terminated
c 150 -20
4 35 -5 B Eg. 1 ciisum(S.price) <v is anti-monotone
e 55 =30
f 45  -10
g 80 20

h 10 . m E.g. 2:c,:range(S.profit) <15 is anti-monotone
Note: item.price > 0 m [temset ab violates c, (range(ab) = 40)

Profit can/be negative B So does every superset of ab

21



Pattern Space Pruning with Pattern Anti-Monotonicity

TID | Transaction ' m E.g. 3. c,: sum(S.Price) > v is not anti-monotone
10 4a,b,c,d,f h

20 b; C, dl f) gl h

30 b,cdfg
40 a,ce,f, g
min_sup = 2 m E.g 4.Isc, support(S) = o anti-monotone?
item T [Price TTPOfItY  n  ves! Apriori pruning is essentially pruning with an anti-
a S I monotonic constraint!
b 40 0
c 150 -20
d 35  -15
e 55 -30
f 45  -10
g 80 20
h 10 5

22
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Pattern Monotonicity and Its Roles

TID Transaction
10 a,b,c,d fh

20 b,cd,f,gh

B A constraint cis monotone: If an itemset S satisfies the
constraint ¢, so does any of its superset

30 b,cdfg ® Thatis, we do not need to check c in subsequent mining

40 a,cef,g

min_sup = 2
Item  Price
100
40
150
35
55
45
80
10

D o o o Q

> 0a -

m E.g.1:c,:sum(S.Price) > v is monotone

Profit
40 m E.g.2:c,: min(S.Price) <v is monotone
0
-20
-15  ®  E.g. 3: ¢ range(S.profit) > 15 is monotone
-30

-10
20 m So does every superset of ab

B Itemset ab satisfies c;

5



Apriori for Pattern Anti-Monotone Constraint

Item Price

Database D itemset

n

1 1 Up.| £ |itemset|sup.
TID |ltems C,| {1y | 2 e > Can be
? ? 10 134 {2} 3 > 3 chopped
4 4 ,
30 1235 {4y | 1 e
5 5 40 |25 {5} 3 _
C2 [itemset] sup C, MEMSEE —_—
F, |itemset| sup 12} | 1| ScanD {12}
{13} | 2 {13y | 2 |~ {1 3}
T2 | — | By
-5} ——3— 2=+ {2 3}
2 M Min_sup=2
C;litemsetl scanD  Fslitemset|sup Constraint:

{235} : 23632 Sum{S.price} < 5




Convertible Constraints: Ordering Data in Transactions

TID| Transaction | m Convert tough constraints into (anti-)monotone by proper ordering

10 ab,cdfh of items in transactions
20 a,b,cd,f,gh
30 bl C; dl f) g . .
B Examine c;: avg(S.profit) > 20
40 a,cefg , . : :
min_sup = 2 ®  Orderitems in (profit) value-descending order
Item  Price Profit H <qg g, .ﬁ b/ h; d; C, e>
a 100 40 B Anitemset ab violates c, (avg(ab) = 20)
b 40 0 ®m Sodoesab*(i.e., ab-projected DB)
C 150 -20 i . . .
| o e B C,: anti-monotone if patterns grow in the right order!
e 55 -30
f 45 -5
g 80 30
h 10 5

25



Can item-reordering work for Apriori?

TID Transaction
10 a,b,c,d, fh

constraint: avg(S.profit) > 20

20 ab,cdfgh F, litemset [sup.| F,|itemset|sup.
{a} 3 T
30 bcdfg Scan D i .,
40 a,ce,f -
_ ; {g} 3 {ag} 2 Chopped too

min_sup = 2 {d} 3 {ac——2" early
Item  Price Profit o L L.

100 40

40 0

150 20 m avg(gf) =12.5< 20, avg(af) =17.5 < 20, avg(ag) =35> 20
> > m Butavg(agf) =21.7 > 20

> g -~ MO O o T QL

55 -30
PER m Apriori will not generate “agf” as a candidate
80 30
10 5



Data $Space Pruning with Data Anti-Monotonicity

TID | Transaction | (] A constraint cis data anti-monotone: In the mining process, if a

10 a,bcdfh data entry t cannot contribute to a pattern p satisfying c, t
20 b,cd,fgh cannot contribute to p’s superset either
30 bcdfeg O Data space pruning: Data entry t can be pruned
40 a,ce,f, g
min_sup = 2 ) i .
e ey E.g. 1: c,: sum(S.Profit) > v is data anti-monotone
3 100 40 O Let constraint c, be: sum(S.Profit) 2 25
b 40 0 O Ti:1b, ¢, d, f, g} can be removed since none of their
c 150 -20 combinations can make an S whose sum of the profit is > 25
d 35  -15
e 55 -30
f 45  -10
g 80 20
h 10 5
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Data $Space Pruning with Data Anti-Monotonicity

TID | Transaction = ([ A constraint cis data anti-monotone: In the mining process, if a
10 a,b,cdfh data entry t cannot contribute to a pattern p satisfying c, t
20 b,cd,f,gh cannot contribute to p’s superset either
30 bocdfg O Data space pruning: Data entry t can be pruned
40 a,cefg
min_sup = 2 ) . . .
TP : == O E.g. 2:c,: min(S.Price) <v is data anti-monotone
Item Price Profit
4. 100 40 3 Consider v =5 but every item in a transaction, say T.,, has a
b 40 0 price higher than 10
c 150 -20
d 35  -15
e 55 -30 . . .
f o Q E.g. 3:c3: range(S.Profit) > 25 is data anti-monotone
g 80 20
h 10 5



Data Space Pruning Should Be Explored Recursively

TID Transaction

10 a,b,c,d, fh
20 b,c,d,f,gh

30 b,cdfg
40 a,cef,g
min_sup = 2

29

Item

a
b

QO o

5> 0 -+~ 0

Profit™™ O Example. c,: range(S.Profit) > 25

b’s-proj. DB !

TID Transaction

400 J  We check b’s projected database » 10 ()¢ d,fh
o6 O Butitem “@” is infrequent (sup = 1) 20 ¢ d,fgh
-15 30 cdfg
-30

R O After removing “a (40)” from T,

250 a T,, cannot satisfy c; any more

Q0  Since “b (0)” and “c (-20), d (-15), f (-10), h (5)”
Q By removing T,,, we can also prune “h” in T,y ps_proj. DB

TID Transaction

20 ¢, d,f, g,@
30 ¢d,fg
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Data Space Pruning Should Be Explored Recursively

b’ ' DB ; Constraint:
S-proj. TID Transaction Recursive . S
+o—Egrerdrih— D b’s FP-tree
V4 7 %) ata
20 ¢ d,f gl Pruning | single branch: cdfg: 2

Only a single branch “cdfg: 2”

30 ¢dfg w to be mined in b’s projected DB

Q Note: c; prunes T, effectively only after “a” is pruned (by min-sup) in b’s projected DB



31

Succinctness: Pruning Both Data and Pattern Spaces

B Succinctness: If the constraint ¢ can be enforced by directly manipulating the data
m E.g.1:To find those patterns without item i
® Remove i from DB and then mine (pattern space pruning)
m E.g. 2:To find those patterns containing item i
® Mine only i-projected DB (data space pruning)
m E.g. 3:c3:min(S.Price) <v is succinct

m Start with only items whose price <v and remove transactions with high-price
items only (pattern + data space pruning)

m E.g.4:c,:sum(S.Price) > v is not succinct

® It cannot be determined beforehand since sum of the price of itemset S keeps
Increasing
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Apriori + Succinct Constraint

Item

o B~ W N -

Price
1

2
3
4
5

Database D

TID |ltems

10 (13 4
20 (235
30 1235
40 |2 5

Database D

TID |ltems

10 134
20=2-35—
30 1235

Z0=tp-5——

C1
Scan D

Scan D

itemset

S

{1}
12}
{3}
14}
15}

c
Wk WWN S

itemset

)
C
O

{1}
2}
{3}
14}
15}

PR NEPN

itemset|sup.
{1} 2
{2} 3
BT
=
itemset | sup.
{1} 2
{3} 2

Min_sup=2
Constraint:

min{S.price} <= 2

Chopped too
early

Min_sup=2
Constraint:

min{S.price} <=1
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Constrained FP-Growth: Push a Succinct Constraint Deep

Item

o ~ W N B

Price

1

2
3
4
5

TID

Items

10
20
30
40

134
235
1235
25

TI1D

ltems

/\—/\/\

Remove
infrequent
length 1

1-Projected DB

TID

ltems

10
30

34
235

10
20
30
40

235

13

1235
25

2-Projected DB

Min_sup=2
Constraint:

min{S.price} <=2

No Need to projecton 3 or 5

TID

ltems

20
40

35
S
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Different Kinds of Constraints Lead to Different

Pruning Strategies

B In summary, constraints can be categorized as Pattern space pruning constraints vs.

data space pruning constraints

®  Anti-monotonic: If constraint c is violated, its further
mining can be terminated

®  Monotonic: If ¢ is satisfied, no need to check c again

m Convertible: c can be converted to monotonic or
anti-monotonic if items can be properly ordered in
processing

®  Succinct: If the constraint ¢ can be enforced by
directly manipulating the data

Data succinct: Data
space can be pruned at
the initial pattern
mining process

Data anti-monotonic: If
a transaction t does not
satisfy ¢, then t can be
pruned to reduce data
processing effort
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How to Handle Multiple Constraints?

B |tis beneficial to use multiple constraints in pattern mining
B But different constraints may require potentially conflicting item-ordering
m |If there exists conflict ordering between ¢, and c,
B Try to sort data and enforce one constraint first (which one?)
B Then enforce the other constraint when mining the projected databases
m E.g.c,:avg(S.profit) > 20, and c,: avg(S.price) < 50
m  Assum ¢, has more pruning power
®m  Sortin profit descending order and use c, first

®m  For each project DB, sort trans. in price ascending order and use c, at
mining



Summary: Constraint-Based Pattern Mining

Why Constraint-Based Mining?

Different Kinds of Constraints: Different Pruning Strategies
Constrained Mining with Pattern Anti-Monotonicity
Constrained Mining with Pattern Monotonicity
Constrained Mining with Convertible Constraints

Constrained Mining with Data Anti-Monotonicity

Constrained Mining with Succinct Constraints

U O 0O 0 0 0 0 O

Handling Multiple Constraints
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J Constraint-Based Frequent Pattern Mining

J Sequential Pattern Mining | o

J Graph Pattern Mining

J Pattern Mining Application: Mining Software Copy-and-Paste Bugs

J Summary
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Sequential Pattern Mining

Sequential Pattern and Sequential Pattern Mining

GSP: Apriori-Based Sequential Pattern Mining

SPADE: Sequential Pattern Mining in Vertical Data Format
PrefixSpan: Sequential Pattern Mining by Pattern-Growth
CloSpan: Mining Closed Sequential Patterns

Constraint-Based Sequential-Pattern Mining
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Sequence Databases & Sequential Patterns

Q Sequential pattern mining has broad applications

O Customer shopping sequences

O Purchase a laptop first, then a digital camera, and then a smartphone,
within 6 months

0 Medical treatments, natural disasters (e.g., earthquakes), science &
engineering processes, stocks and markets, ...

0 Weblog click streams, calling patterns, ...
0 Software engineering: Program execution sequences, ...
O Biological sequences: DNA, protein, ...
O Transaction DB, sequence DB vs. time-series DB
Q Gapped vs. non-gapped sequential patterns
0 Shopping sequences, clicking streams vs. biological sequences
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Sequential Pattern and Sequential Pattern Mining

O Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

A

< (ef)(ab)| (df)| c||b|>

A sequence:

Q An element may contain a set of items (also called
events)

* ltems within an element are unordered and we list

them alphabetically

A sequence database

SID
10
20
30
40

Sequence
<a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>

<eg(af)cbc>
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Sequential Pattern and Sequential Pattern Mining

O Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)> A sequence database
SID  Sequence
A Given support threshold min_sup = 2, <(ab)c> 10 <a(abc)(ac)d(cf)>

is a sequential pattern

20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Sequential Pattern Mining Algorithms

Q Algorithm requirement: Efficient, scalable, finding complete set, incorporating
various kinds of user-specific constraints

a The Apriori property still holds: If a subsequence s, is infrequent, none of s,’s
super-sequences can be frequent

O Representative algorithms
GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)
d  Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)
d  Pattern-growth methods: PrefixSpan (Pei, et al. @ TKDE'04)

ad Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)

d Constraint-based sequential pattern mining (to be covered in the constraint
mining section)



GSP: Apriori-Based Sequential Pattern Mining

Q Initial candidates: All 8-singleton sequences
d  <a>, <b>, <c>, <d>, <e>, <>, <g>, <h>
d Scan DB once, count support for each candidate

min_sup = 2
SID Sequence
10 <(bd)cb(ac)> Cand.  sup
<a> 3
20 <(bf)(ce)b(fg)> . ]
30 <(ah)(bf)abf> - .
40 <(be)(ce)d> - ;
50 <a(bd)bcb(ade)> s ;
<f> 2

3



GSP: Apriori-Based Sequential Pattern Mining

O Generate length-2 candidate sequences

min_sup = 2

Cand.

<a>
<b>
<c>
<d>
<e>

<f>

sup

N W W B~ Ul W

3
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singleton x singleton

<a> <b> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
sets
<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

Apriori Pruning

Q w/o pruning:
8*8 + 8*7/2=92
length-2 candidates
Q w/ pruning:
6*6 +6*5/2 =51
length-2 candidates
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GSP Mining and Pruning

5% scan: 1 cand. 1 length-5 seq. pat. <(bd)cba>
4% scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> ...

3"d scan: 46 cand. 20 length-3 seq. pat. 20

) <abb> <aab> <aba> <baa> <bab> ...
cand. not in DB at all

2" scan: 51 cand. 19 length-2 seq. pat.

<aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)>
10 cand. not in DB at all

15t scan: 8 cand. 6 length-1 seq. pat. <a> <b> <c> <d> <e> <f> <g> <h>
min_sup = 2
O Remove SID Sequence
: : 10 <(bd)cb(ac)>
3 Candidates not in DB

_ _ 20 <(bf)(ce)b(fg)>
O Candidates < min_sup 20 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
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GSP Mining and Pruning

d Repeat (for each level (i.e., length-k))
0 Scan DB to find length-k frequent sequences

O Generate length-(k+1) candidate sequences from length-k
frequent sequences using Apriori
0 setk=k+1
Q Until no frequent sequence or no candidate can be found

GSP (Generalized Sequential
Patterns): Srikant & Agrawal
@ EDBT’96)



Sequential Pattern Mining in Vertical Data
Format: The SPADE Algorithm

Q A sequence database is mapped to: <SID, EID>
ad Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID | EID | Items a b
SID - Sequence | . | . | It ;n | SID EID SID EID
1 <a(abc)(ac)d(cf)> 1 5 abe 1 1 1 2
T = — I 2 2 3
2 <(ad)c(bc)(ae)> T I 3 ; ? g g
3 <(ef)(ab)(df)cb> ; i :; 5 1 1 E
4 <eg(af)cbc> 5 5 . 3 2
. _ 9 2 3 be 4 3
min_sup = 5 : — n .
g % :}i SID EID (a) EID(Db) SID EID (b) EID(a)
Ref: SPADE (Sequential N B B L L 2 1 2 3
= - = 2 1 3 2 3 1
: 3 2 5
PAttern Discovery I b -, - s
c
using Equivalent Class) 112 3 Shii
a
, SID EID (a) EID(b) EID(a)
[M. Zaki 2001] e 7 ) 5 3
4 6 c A 1 3 4
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Prefix$pan: A Pattern-Growth Approach

SID

10
20
30
40

Sequence

<a(abc)(ac)d(cf)> % Prefix

min_sup = 2

<(ad)c(bc)(ae)> <a>
<(ef)(ab)(df)cb> <aa>
<eg(af)cbc> <ab>

Suffix (Projection)
<(abc)(ac)d(cf)> -
<(_bc)(ac)d(cf)> -
<(_c)(ac)d(cf)>

4

A PrefixSpan Mining: Prefix Projections
Step 1: Find length-1 sequential patterns

0 Step 2: Divide search space and mine each projected DB

O <a>, <b>, <c>, <d>, <e>, <f>

a
Q
a
Q

<a>-projected DB,
<b>-projected DB,

<f>-projected DB, ...

a Prefix and suffix

Given <a(abc)(ac)d(cf)>

Prefixes: <a>, <aa>,

<a(ab)>, <a(abc)>, ...

Suffix: Prefixes-based
projection

PrefixSpan (Prefix-projected
Sequential pattern mining)
Pei, et al. @ TKDE'04
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Prefix$Span: Mining Prefix-Projected DBs

SID
10
20
30

40
prefix <a>

<a>-projected DB
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>

<(_f)cbc>

prefix <aa> / N%b

<aa>-projected DB

Sequence min_sup = 2
<alabe)(ac)d(ct)> Length-1 sequential patterns
<(ad)c(bc)(ae)> <a>, <b>, <c>, <d>, <e>, <f>
<(ef)(ab)(df)cb>
<eg(af)cbc> \\>
prefix <b> prefix <c>, ..., <f>
<b>-projected DB
<(_c)(ac)d(cf)>
<(_c)(ae)> |
<(df)cb>

Major strength of PrefixSpan:

No candidate subsegs. to be generated

<af>-projected DB

Projected DBs keep shrinking



Implementation Consideration: Pseudo-Projection vs.
Physical Projection

Q Major cost of PrefixSpan: Constructing projected DBs

0 Suffixes largely repeating in recursive projected DBs

Q When DB can be held in main memory, use pseudo projection

l

No physically copying suffixes s = <a(abc)(ac)d(c)>

Q Pointer to the sequence

l <a>
| Offset of the suffix S|<a>: ( ’ 2) <(abc)(ac)d(cf)>
Q Butif it does not fit in memory l <ab>
2 Physical projection s|<ab>: (, 5) <(_c)(ac)d(cf)>

Q Suggested approach:
o Integration of physical and pseudo-projection
Swapping to pseudo-projection when the data fits in memory

50
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CloSpan: Mining Closed Sequential Patterns

Q Aclosed sequential pattern s: There exists no superpattern s’ such thats’> s, and s’
and s have the same support

3 Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15
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CloSpan: Mining Closed Sequential Patterns

Q Why directly mine closed sequential patterns?
0 Reduce # of (redundant) patterns

—>

5

0 Attain the same expressive power

f
{
Q Property P,: If s> s, sis closed iff two project 4
DBs have the same size
Q Explore Backward Subpattern and Backward
b
\

Superpattern pruning to prune redundant
search space

Q Greatly enhances efficiency (Yan, et al., SDM’03)



CloSpan: When Two Projected DBs Have the Same Size

Q If s> s, sis closed iff two project DBs have the same size 0 :Z::Cnie min_sup = 2
2 When two projected sequence DBs have the same size? <afegbfac)>
d Here is one example: 3 <(af)ea>
a <efbcg> <cg> <fbcg>
f f <fegb(ac)> <(ac)> <gb(ac)>

<a>

size = 6)

Backward subpattern pruning Only need to keep

<egb(ac)>

size = 12 (including
% <ea> parentheses)
Backward superpattern pruning
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Constraint-Based Sequential-Pattern Mining

ad Share many similarities with constraint-based itemset mining

Q Anti-monotonic: If S violates ¢, the super-sequences of S also violate ¢
d  sum(S.price) < 150; min(S.value) > 10

Q Monotonic: If S satisfies ¢, the super-sequences of S also do so
d element_count (S) >5; S o {PC, digital camera}

a Data anti-monotonic: If a sequence s, with respect to S violates c,, s,

can be removed

O c3:sum(S.price) 2 v

Q Succinct: Enforce constraint c by explicitly manipulating data
d S o {i-phone, MacAir}

Q Convertible: Projection based on the sorted value not sequence order
o value_avg(S) < 25; profit_sum (S) > 160
2 max(S)/avg(S) < 2; median(S) — min(S) > 5
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Timing-Based Constraints in Seq.-Pattern Mining

ad Order constraint: Some items must happen before the other
0 {algebra, geometry} - {calculus} (where “=” indicates ordering)
O Anti-monotonic: Constraint-violating sub-patterns pruned

Q Min-gap/max-gap constraint: Confines two elements in a pattern
d E.g.,, mingap =1, maxgap =4
0 Succinct: Enforced directly during pattern growth

d Max-span constraint: Maximum allowed time difference between the
15t and the last elements in the pattern

0 E.g., maxspan (S) = 60 (days)
0 Succinct: Enforced directly when the 15t element is determined

O Window size constraint: Events in an element do not have to occur at
the same time: Enforce max allowed time difference

O  E.g., window-size = 2: Various ways to merge events into elements
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Episodes and Episode Pattern Mining

Q Episodes and regular expressions: Alternative to seq. patterns

0O Serial episodes: AB &= 3 total order relationship: first A then B
0 Parallel episodes: A|B == a partial order relationship: A and B can be in any order
O Regular expressions: (A|B)C*(DE) ¢= (DE) means D, E happen in the same time window
Q E.g. Given alarge shopping sequence database, one may like to find
d Suppose the pattern order follows the template (A|B)C*(D E), and

3 Sum of the prices of A, B, C*, D, and E is greater than $100, where C*
means C appears *-times

0 How to efficiently mine such episode patterns?
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Chapter 7 : Advanced Frequent Pattern Mining

J Mining Diverse Patterns

J Constraint-Based Frequent Pattern Mining

J Sequential Pattern Mining

J Graph Pattern Mining | 4

J Pattern Mining Application: Mining Software Copy-and-Paste Bugs

J Summary



What Is Graph Pattern Mining?

aQ Chem-informatics:

Mining frequent chemical compound structures

UVWY {j%(\f {7%(% \\&\/

M.Renz
. . P.Kroumliger—
Q Social networks, web communities, tweets, ... _ ger” ~ \
J.Aszligfalg Zuumlfl P. Kunath
. . ) C. Boumlhm
O Finding frequent research collaboration subgraphs  g.schneider_\ APryakhm
_ B.Braunmuumilller. - ; H.Kriegel M. Schubert
H.G.Molina R'Ri"‘lak"'f:t‘a“ S.Brecheisen” / ‘ SO B.Seeger

J.Widom ﬁ\ﬁ_uuma“ A.Silberschatz Y. E. loannidis M.Poumitke | M.Pfeifle C:ﬁeinz
e L~ T Tr—— T T J.Sander

Y.Papakonstantinou Y.Sagiv C.Beeri S.Sudarshan M.N.Garofalakis M.Livny
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Frequent (Sub)Graph Patterns

Q Given alabeled graph dataset D = {G,, G,, ..., G,)), the supporting graph set of a
subgraph gisD,={G; | g € G, G, €D}

0 support(g) = |Dg|/ |D]

Q A (sub)graph g is frequent if support(g) = min_sup Graph Dataset

a Ex.: Chemical structures \\/ NA/<
r—
Q Alternative: \©/ 4<—/‘<I \”/YY\
(A) (B) (C)

d  Mining frequent subgraph

patterns from a single large Frequent Graph Patterns

min_sup =2

graph or network 0
(1) @
N S (N

support = 67% \j .
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Applications of Graph Pattern Mining

d

O 0O 0O 0 0O O

Bioinformatics

O  Gene networks, protein interactions, metabolic pathways
Chem-informatics: Mining chemical compound structures
Social networks, web communities, tweets, ...
Cell phone networks, computer networks, ...
Web graphs, XML structures, Semantic Web, information networks
Software engineering: Program execution flow analysis

Building blocks for graph classification, clustering, compression, comparison,
and correlation analysis

Graph indexing and graph similarity search
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Graph Pattern Mining Algorithms: Different
Methodologies

O Generation of candidate subgraphs

2 Apriori vs. pattern growth (e.g., FSG vs. gSpan)
ad Search order

o Breadth vs. depth
A Elimination of duplicate subgraphs

O Passive vs. active (e.g., gSpan [Yan & Han, 2002])
Q Support calculation

- Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang,
& Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])

d Order of pattern discovery
ad Path = tree - graph (e.g., GASTON [Nijssen & Kok, 2004])



Apriori-Based Approach

Q The Apriori property (anti-monotonicity): A size-k (k+1)-edge
subgraph is frequent if and only if all of its k-edge
subgraphs are frequent / @
Q A candidate size-(k+1) edge/vertex subgraph is @
generated if its corresponding two k-edge/vertex @
subgraphs are frequent @
O Iterative mining process:

0 Candidate-generation = candidate pruning = @ @
support counting =2 candidate elimination Join

62
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Candidate Generation:
Vertex Growing vs. Edge Growing

Q Methodology: Breadth-search, Apriori joining two size-k graphs
 Many possibilities at generating size-(k+1) candidate graphs

sSeNstete:

d Generating new graphs with one more vertex )
2 AGM (Inokuchi, Washio, & Motoda, PKDD’00)

d Generating new graphs with one more edge
2 FSG (Kuramochi & Karypis, ICDM’01)

Q Performance shows via edge growing is more efficient
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Pattern-Growth Approach

Q Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge

subgraphs

ad Major challenge
0 Generating many duplicate subgraphs
d Major idea to solve the problem

0 Define an order to generate
subgraphs
2 DFS spanning tree: Flatten a graph

into a sequence using depth-first
search

0 gSpan (Yan & Han, ICDM’02)

(k+1)-edge

&
s ©
NS

(k+2)-edge
@
O —
duplicate
graphs
O
O —
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g$SPAN: Graph Pattern Growth in Order

d

d

Right-most path extension in subgraph
pattern growth

Right-most path: The path from root to the

right-most leaf (choose the vertex with the
smallest index at each step)

Reduce generation of duplicate subgraphs

Completeness: The enumeration of graphs
using right-most path extension is complete

DFS code: Flatten a graph into a sequence
using depth-first search

/
|

' ShE (0,1)

,/ @ ’ 61: (1,2)

\ o ! e,: (2,3)
3

/

. @ e;: (3,0)
4 e, (2,4)
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Why Mine Closed Graph Patterns?

Q Challenge: An n-edge frequent graph may have 2" subgraphs

O Motivation: Explore closed frequent subgraphs to handle graph
pattern explosion problem

Q A frequent graph G is closed if there exists no supergraph of G that
carries the same support as G

o N If this subgraph is closed in the

e e
N% N graph dataset, it implies that
HO / N none of its frequent super-graphs
— o OH carries the same support

O Lossless compression: Does not contain non-closed graphs, but still
ensures that the mining result is complete

Q Algorithm CloseGraph: Mines closed graph patterns directly



CloseGraph: Directly Mining Closed Graph Patterns

ad CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

g At what condition can we A
e stop searching their children,
/ S i.e., early termination? )
k-edge
/ @ a Suppose G and G, are frequent, and G is a
@ subgraph of G,

a If in any part of the graph in the dataset

where G occurs, G, also occurs, then we
@ need not grow G (except some special, subtle

cases), since none of G’s children will be

(k+1)-edge closed except those of G,

67



Experiment and Performance Comparison

A The AIDS antiviral screen compound dataset from NCI/NIH

Q The dataset contains 43,905 chemical compounds

Q Discovered patterns: The smaller minimum support, the bigger and more
interesting subgraph patterns discovered

20% [ ) 0%, {
T A< O

Runtime: Frequent vs. Closed

# of Patterns: Frequent vs. Closed

- frequent graphs 10000
-— FSG

—— closed frequent graphs
1.0E+06
- = Gspan
1000

1.0E+02 T T T T 1 \ \ \ ‘
0.05 0.06 0.07 0.08 0.1 0.05 0.06 0.07 0.08 0.1

m —
E 8 - CloseGraph
)] 1.0E+05 ")
o) ~ -
100
.E' 1.0E+04 £ \- \
o =2
S M c 10 \-
Q 1.0E4+03 —— 3 \*\j
Q0 (a'd
£
>
2

68 Minimum support Minimum support
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J Constraint-Based Frequent Pattern Mining
J Sequential Pattern Mining
J Graph Pattern Mining
| 4
J Pattern Mining Application: Mining Software Copy-and-Paste Bugs

J Summary
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Pattern Mining Application: Software Bug Detection

3 Mining rules from source code
Bugs as deviant behavior (e.g., by statistical analysis)
Mining programming rules (e.g., by frequent itemset mining)

Mining function precedence protocols (e.g., by frequent subsequence mining)

U O O O

Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)
Q Mining rules from revision histories
By frequent itemset mining
O Mining copy-paste patterns from source code
O Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04]) (to be discussed here)

O Reference: Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, OSDI'04



https://pdfs.semanticscholar.org/05c1/06bb1a21a8d8d99b76953231f1476ec73df2.pdf
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Application Example: Mining Copy-and-Paste Bugs

QO Copy-pasting is common void __init prom_meminit(void)

3 12% in Linux file system

0 19% in X Window system for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

Q Copy-pasted code is error-prone

Q Mine “forget-to-change” bugs by
sequential pattern mining )

0 Build a sequence database from source ...

code for (i=0; i<n; i++) {

Code copy-and-
pasted but forget
to change “id”!

|

O Mining sequential patterns taken[i].adr = list[i].addr;
taken[i].bytes = list]i].si
taken[i].more = &totall[i+1];

}

(Simplified example from linux-
2.6.6/arch/sparc/prom/memory.c)

0 Finding mismatched identifier names &
bugs

Courtesy of Yuanyuan Zhou@UCSD



Building Sequence Database from Source Code

(mapped to) Hash values
Q Statement = number

' 65 for (i=0; i<n; i++) {
O Tokenize each component 16 total[i].adr = list[i].addr;
. 16 total[i].bytes = list[i].size;
0 Different operators, constants, key words = total[i].more = &total[i+1];

—> different tokens \
O Same type of identifiers = same token T R

O Program =2 A long sequence 65 for (i=0; i<n; i++) {
16 taken[i].adr = list[i].addr;
3 Cut the long sequence by blocks 16 taken([i].bytes = list[i].size;
71 taken[i].more = &total[i+1];

Map a statement
to a number

Final sequence DB:
(65)
(16, 16, 71)

(65)
Courtesy of Yuanyuan Zhou@UCSD (16, 16, 71)



73

Sequential Pattern Mining & Detecting
“Forget-to-Change” Bugs

Q Modification to the sequence pattern mining algorithm

0 Constrain the max gap

(16, 16, 71)

O Composing Larger Copy-Pasted Segments

0 Combine the neighboring copy-pasted segments

repeatedly

A Find conflicts: Identify names that cannot be mapped to the

corresponding ones

Q E.g., 1outof 4 “total” is unchanged, unchanged ratio =

0.25

d If O0<unchanged ratio < threshold, then report it as a bug
ad CP-Miner reported many C-P bugs in Linux, Apache, ... out of

millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD

Allow a maximal gap:
inserting statements
in copy-and-paste

N
falb—T——

f(a2);

f1 (b1);
f1 (b2);

f(a3); £2 (b3),

\/

conflict
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J Summary [ o



Summary: Advanced Frequent Pattern Mining

O Mining Diverse Patterns O Constraint-Based Frequent Pattern Mining
Mining Multiple-Level Associations 1 Why Constraint-Based Mining?
O Mining Multi-Dimensional Associations (J  Constrained Mining with Pattern Anti-Monotonicit
O Mining Quantitative Associations J  Constrained Mining with Pattern Monotonicity
2 Mining Negative Correlations d  Constrained Mining with Data Anti-Monotonicity
O Mining Compressed and Redundancy-Aware . Constrained Mining with Succinct Constraints
Patterns J  Constrained Mining with Convertible Constraints
QO Sequential Pattern Mining 1 Handling Multiple Constraints
1 Constraint-Based Sequential-Pattern Mining

0 Sequential Pattern and Sequential Pattern Mining
O Graph Pattern Mining

J  Graph Pattern and Graph Pattern Mining
) Apriori-Based Graph Pattern Mining Methods

O PrefixSpan: Sequential Pattern Mining by Pattern- - gSpan: A Patter.anrowth—Based Method
Growth J  CloseGraph: Mining Closed Graph Patterns

0  GSP: Apriori-Based Sequential Pattern Mining

O SPADE: Sequential Pattern Mining in Vertical Data
Format

O Pattern Mining Application: Mining Software Copy-

0 CloSpan: Mining Closed Sequential Patterns
and-Paste Bugs



76

References: Mining Diverse Patterns

R. Srikant and R. Agrawal, “Mining generalized association rules”, VLDB'95

Y. Aumann and Y. Lindell, “A Statistical Theory for Quantitative Association Rules”,
KDD'99

K. Wang, Y. He, J. Han, “Pushing Support Constraints Into Association Rules Mining”,
|IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003

D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns",
Knowledge and Data Engineering, 60(1): 5-29, 2007

D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns",
KDD'06

J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and
Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, “Mining Colossal Frequent Patterns by
Core Pattern Fusion”, ICDE'07



References: Constraint-Based Frequent Pattern Mining

Q R.Srikant, Q. Vu, and R. Agrawal, “Mining association rules with item constraints”,
KDD'97

Q R.Ng, LV.S. Lakshmanan, J. Han & A. Pang, “Exploratory mining and pruning
optimizations of constrained association rules”, SIGMOD’98

Q G. Grahne, L. Lakshmanan, and X. Wang, “Efficient mining of constrained correlated
sets”, ICDE'00

Q J.Pei, J. Han, and L. V. S. Lakshmanan, “Mining Frequent Itemsets with Convertible
Constraints”, ICDE'0O1

Q J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in Large
Databases”, CIKM'02

Q F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: Anticipated Data
Reduction in Constrained Pattern Mining”, PKDD'03

Q F Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing Framework for Graph
Pattern Mining”, PAKDD'07



78

References: Sequential Pattern Mining

d

R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance
improvements”, EDBT’96

M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences”, Machine
Learning, 2001

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
"Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach”, IEEE TKDE,
16(10), 2004

X.Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large
Datasets”, SDM'03

J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the pattern-
growth methods", J. Int. Inf. Sys., 28(2), 2007

M. N. Garofalakis, R. Rastogi, K. Shim: Mining Sequential Patterns with Regular Expression
Constraints. IEEE Trans. Knowl. Data Eng. 14(3), 2002

H. Mannila, H. Toivonen, and A. |I. Verkamo, “Discovery of frequent episodes in event
sequences”, Data Mining and Knowledge Discovery, 1997



79

References: Graph Pattern Mining

a

O O

U

U000

C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of
molecules, ICDM'02

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism, ICDM'03

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data, PKDD'00

M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01

S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference.
KDD'04

N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from
semistructured data, ICDM'02

X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02

X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03

X.Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04
X.Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05






