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Types of Data Sets: (1) Record Data
❑ Relational records
❑ Relational tables, highly structured

❑ Data matrix, e.g., numerical matrix, crosstabs

❑ Transaction data

❑ Document data: Term-frequency vector (matrix) of text documents
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Document 3
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Types of Data Sets: (2) Graphs and Networks

❑ Transportation network

❑ World Wide Web

❑ Molecular Structures

❑ Social or information networks



5

Types of Data Sets: (3) Ordered Data
❑ Video data: sequence of images

❑ Temporal data: time-series

❑ Sequential Data: transaction sequences

❑ Genetic sequence data
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Types of Data Sets: (4) Spatial, image and multimedia Data

❑ Spatial data: maps

❑ Image data: 

❑ Video data:



7

Important Characteristics of Structured Data

❑ Dimensionality

❑ Curse of dimensionality

❑ Sparsity

❑ Only presence counts

❑ Resolution

❑ Patterns depend on the scale

❑ Distribution

❑ Centrality and dispersion
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Data Objects

❑ Data sets are made up of data objects

❑ A data object represents an entity

❑ Also called samples , examples, instances, data points, objects, tuples

id name gender age

001 Bob male 12

002 Jessica female 23

003 Tim male 56

objects

attributes
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Name Definition Examples

Nominal categories, states, or “names of things” • Hair_color = {auburn, black, blond, brown, grey, red}
• marital status, occupation, ID numbers, zip codes

Binary 
(0 or 1)

Symmetric: equally important gender

Asymmetric: not equally important Medical test (negative & positive); assign 1 to most 
important outcome 

Ordinal Need order but no magnitude Size = {small, medium, large}, grades, army rankings

Numeric Interval:
• equal-sized units; 
• ordered; 
• no true zero-point;

temperature in C˚or F˚, calendar dates

Ratio: inherent zero-point; being an order 
of magnitude larger than the unit of 
measurement

temperature in Kelvin, length, counts, monetary 
quantities

Attributes or dimensions, features, variables
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Discrete vs. Continuous Attributes 

Discrete Attribute Continuous Attribute

only a finite /countably infinite, sometimes 
integer

real numbers 

E.g., zip codes, profession, or the set of words 
in a collection of documents 

E.g., temperature, height, or weight

special case : binary attributes floating-point variables (practically with finite 
number of digits)
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Basic Statistical Descriptions of Data
❑ Motivation

❑ To better understand the data: central tendency, variation and spread

❑ Data dispersion characteristics

❑ Median, max, min, quantiles, outliers, variance, ...

❑ Data dispersion: 

❑ Analyzed with multiple granularities of precision

❑ Numerical dimensions correspond to sorted intervals

❑ Boxplot or quantile analysis on sorted intervals

❑ Dispersion analysis on computed measures

❑ Folding measures into numerical dimensions

❑ Boxplot or quantile analysis on the transformed cube
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Measuring the Central Tendency:  Mean, Median and 
Mode

• Mean: n->sample, N->population
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• Mode: 
• Value that occurs most frequently in the data

Bimodal： Trimodal:

𝑳𝟏: 𝐿𝑜𝑤 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑖𝑚𝑖𝑡

σ 𝒇𝒓𝒆𝒒: sum before the median interval

Width: interval width (𝐿2 − 𝐿1)

• Approximate median: 
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Symmetric vs. Skewed Data

❑ Median, mean and mode of symmetric, 

positively and negatively skewed data

positively skewed negatively skewed

symmetric
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Properties of Normal Distribution Curve
← — ————Represent data dispersion, spread — ————→

Represent central tendency
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Measures Data Distribution: Variance and Standard Deviation

❑ Variance and standard deviation (sample: s, population: σ)

❑ Variance: (algebraic, scalable computation)

❑ Q: Can you compute it incrementally and efficiently?

❑ Standard deviation s (or σ) is the square root of variance s2 (orσ2)
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Note: The subtle difference of 
formulae for sample vs. population
• n : the size of the sample 
• N : the size of the population
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Graphic Displays of Basic Statistical Descriptions
❑ Boxplot: five-number summary

❑ Histogram: values and frequencies 

❑ Quantile plot:  each value xi is paired with fi indicating that approximately 100 fi % 
of data  are  xi

❑ Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution 
against the corresponding quantiles of another

❑ Scatter plot: data plotted as points
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Measuring the Dispersion of Data: Quartiles & Boxplots   
❑ Quartiles: Q1 (25th percentile), Q3 (75th percentile)

❑ Inter-quartile range: IQR = Q3 – Q1 

❑ Five number summary: min, Q1, median, Q3, max

❑ Boxplot: 

❑ Outliers: points beyond a specified outlier 

threshold, plotted individually

❑ Outlier: usually, a value higher/lower than 1.5 x 
IQR
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Visualization of Data Dispersion: 3-D Boxplots
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Histogram Analysis
❑ Histogram: tabulated frequencies, shown as bars

Histogram Bar chart

Histogram Bar charts

distributions of variables compare variables

quantitative data categorical data

Value: area of the bar Value: height of the bar (a crucial distinction when 
the categories are not of uniform width )

Order matters Can be reordered
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Histograms Often Tell More than Boxplots

❑ Same boxplot representation

❑ The same min, Q1, median, Q3, max

❑ Different data distributions



27 Data Mining: Concepts and Techniques

Quantile Plot

❑ Displays all of the data 

❑ overall behavior and unusual occurrences

❑ Plots quantile information

❑ For a data xi data sorted in increasing order, fi indicates that approximately 100 
fi% of the data are below or equal to the value xi
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Quantile-Quantile (Q-Q) Plot
❑ Graphs the quantiles of one univariate distribution against the corresponding 

quantiles of another

❑ View: Is there is a shift in going from one distribution to another?

❑ Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.  
Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2
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Scatter plot

❑ Provides a first look at bivariate data to see clusters of points, outliers, etc.
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Positively and Negatively Correlated Data

❑ The left half fragment is 

positively correlated

❑ The right half is negative 

correlated
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Uncorrelated Data
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Data Visualization
❑ Why data visualization?

❑ Gain insight into an information space by mapping data onto graphical primitives

❑ Provide qualitative overview of large data sets

❑ Search for patterns, trends, structure, irregularities, relationships among data

❑ Help find interesting regions and suitable parameters for further quantitative 
analysis

❑ Provide a visual proof of computer representations derived

❑ Categorization of visualization methods:

❑ Pixel-oriented visualization techniques

❑ Geometric projection visualization techniques

❑ Icon-based visualization techniques

❑ Hierarchical visualization techniques

❑ Visualizing complex data and relations
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Pixel-Oriented Visualization Techniques
❑ For a data set of m dimensions, visualization has m windows, one for each 

dimension

❑ The m dimension values of a record are mapped to m pixels at the corresponding 

positions in the windows

❑ The colors of the pixels reflect the corresponding values

(a) Income (b) Credit Limit (c) transaction volume (d) age
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Laying Out Pixels in Circle Segments
❑ Good for datasets with many dimensions

❑ Segments that look similar represent correlated dimensions

Representing about 265,000 50-dimensional Data Items 
with the ‘Circle Segments’ Technique
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Direct Data Visualization
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From Wiki: Scatter plot: A 3D scatter 
plot to visualize multivariate data
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Scatterplot Matrices

❑ Matrix of scatterplots (x-y-
diagrams) of the k-dim. 
data 

❑ A total of k(k-1)/2 distinct 
scatterplots

❑ Good for understanding 
whether two variables are 
correlated

❑ Not as helpful for high-
dimensional dataU

s
e
d
 b

y
e
rm

is
s
io

n
 o

f 
M

. 
W

a
rd

, 
W

o
rc

e
s
te

r 
P

o
ly

te
c
h
n
ic

In
s
ti
tu

te



38

news articles visualized as a landscape
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Landscapes

❑ Visualization of the data as 
perspective landscape

❑ Color indicates range of 
specific variables

❑ More advanced technique, 
requires in-depth 
understanding of the data 
to know how to transform 
data into a 2D spatial 
representation in a 
meaningful way
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Parallel Coordinates

❑ n equidistant axes which correspond to 
the attributes of the data set

❑ Each data item corresponds to a line 
which intersects the axes at the point 
which corresponds to the value for the 
attribute

❑ Good for determining which attributes 
are most important for distinguishing 
between categories (e.g., Petal Length 
here)
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Icon-Based Visualization Techniques

❑ Visualization of the data values as features of icons

❑ Typical visualization methods

❑ Chernoff Faces

❑ Stick Figures

❑ General techniques

❑ Shape coding: Use shape to represent certain information encoding

❑ Color icons: Use color icons to encode more information

❑ Tile bars: Use small icons to represent the relevant feature vectors in document 

retrieval
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Chernoff Faces
❑ A way to display variables on a two-dimensional 

surface, e.g., let x be eyebrow slant, y be eye size, z be 

nose length, etc. 

❑ The figure shows faces produced using 10 

characteristics--head eccentricity, eye size, eye 

spacing, eye eccentricity, pupil size, eyebrow slant, 

nose size, mouth shape, mouth size, and mouth 

opening): Each assigned one of 10 possible values, 

generated using Mathematica (S. Dickson)

❑ Humans are good at distinguishing differences in faces

❑ Can be difficult to implement (need a good way to 

map variables to facial features)

http://www.wolfram.com/products/mathematica/
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Stick Figure

❑ A census data figure showing 

age, income, gender, 

education, etc.

❑ A 5-piece stick figure (1 body 

and 4 limbs w. different 

angle/length)

❑ Uses smaller number of 

features than Chernoff Faces

❑ Also requires careful design to 

make visualization meaningful
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Hierarchical Visualization Techniques
❑ Visualization of the data using a hierarchical partitioning into subspaces

❑ Methods

❑ Dimensional Stacking

❑ Worlds-within-Worlds

❑ Tree-Map 

❑ Cone Trees

❑ InfoCube
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Dimensional Stacking

❑ Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 
‘stacked’ into each other

❑ Partitioning of the attribute value ranges into classes.  The important attributes 
should be used on the outer levels.

❑ Adequate for data with ordinal attributes of low cardinality

❑ But, difficult to display more than nine dimensions

❑ Important to map dimensions appropriately
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Used by permission of M. Ward, Worcester Polytechnic Institute

Visualization of oil mining data with longitude and latitude mapped to the 
outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Dimensional Stacking
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Tree-Map
❑ Screen-filling method which uses a hierarchical partitioning of the screen into 

regions depending on the attribute values (e.g., size)

❑ Great for data that is naturally hierarchical (e.g., file systems)

Schneiderman@UMD: Tree-Map of a File System Schneiderman@UMD: Tree-Map to support 
large data sets of a million items 
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InfoCube
❑ A 3-D visualization technique where hierarchical information is displayed as nested 

semi-transparent cubes

❑ Similar to Tree-Map, but in 3-D

❑ The outermost cubes correspond to the top level data, while the subnodes or the 
lower level data are represented as smaller cubes inside the outermost cubes, etc.
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Visualizing Complex Data and Relations: Tag Cloud
❑ Tag cloud: Visualizing text data (e.g., 

user-generated tags)

❑ The importance/frequency of tag is 
represented by font size/color

❑ Popularly used to visualize 
word/phrase distributions

Newsmap: Google News Stories in 2005

KDD 2013 Research Paper Title Tag Cloud
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Visualizing Complex Data and Relations: Social Networks

❑ Visualizing non-numerical data: social and information networks

A typical network structure 

A social network

organizing 
information networks
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Similarity, Dissimilarity, and Proximity
❑ Similarity measure

❑ Similarity between two objects

❑ The higher value, the more alike

❑ Often falls in the range [0,1]:  0: no similarity; 1: completely similar

❑ Dissimilarity (or distance) measure

❑ How different two data objects are

❑ The lower, the more alike

❑ Minimum dissimilarity is often 0 (i.e., completely similar)

❑ Proximity usually refers to either similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix
❑ Data matrix

❑ Compare each row of data matrix.   

❑ Dissimilarity (distance) matrix

❑ Distance of x(i, j) is same as distance of x(j,i)

❑ Distance functions (d) are usually different for real, 
boolean, categorical, ordinal, ratio, and vector variables

❑ Weights can be associated with different variables based 
on applications and data semantics
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Standardizing Numeric Data

❑ Z-score: 

❑ X: raw score to be standardized, μ: mean of the population, σ: standard deviation

❑ the distance between the raw score and the population mean in units of the 

standard deviation

❑ negative when the raw score is below the mean, “+” when above

❑ An alternative way: Calculate the mean absolute deviation

where

❑ standardized measure (z-score):

❑ Using mean absolute deviation is more robust than using standard deviation 
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Example: Data Matrix and Dissimilarity Matrix

point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix (by Euclidean Distance)

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix
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Distance on Numeric Data: Minkowski Distance
❑ Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xil) and j = (xj1, xj2, …, xjl) are two l-dimensional data 
objects, and p is the order (the distance so defined is also called L-p norm)

❑ Properties

❑ d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positivity)

❑ d(i, j) = d(j, i) (Symmetry)

❑ d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

❑ A distance that satisfies these properties is a metric

❑ Note:  There are nonmetric dissimilarities, e.g., set differences

1 1 2 2( , ) | | | | | |p p pp
i j i j il jld i j x x x x x x= − + − + + −
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Special Cases of Minkowski Distance

❑ p = 1: (L1 norm) Manhattan (or city block) distance

❑ E.g., the Hamming distance: the number of bits that are different between 
two binary vectors

❑ p = 2:  (L2 norm) Euclidean distance

❑ p →: (Lmax norm, L norm) “supremum” distance

❑ The maximum difference between any component (attribute) of the vectors

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −

2 2 2

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −
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Example: Minkowski Distance at Special Cases
point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum (L) 
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Proximity Measure for Binary Attributes
❑ A contingency table for binary data

❑ Distance measure for symmetric binary variables: 

❑ Distance measure for asymmetric binary variables: 

❑ Jaccard coefficient (similarity measure for 

asymmetric binary variables): 

❑ Note: Jaccard coefficient is the same as 

“coherence”:

Object i

Object j

(a concept discussed in Pattern Discovery)
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Example: Dissimilarity between Asymmetric Binary Variables

❑ Gender is a symmetric attribute (not counted in)

❑ The remaining attributes are asymmetric binary

❑ Let the values Y and P be 1, and the value N be 0

❑ Distance: 

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Proximity Measure for Categorical Attributes

❑ Categorical data, also called nominal attributes

❑ Example:  Color (red, yellow, blue, green), profession, etc.  

❑ Method 1: Simple matching

❑ m: # of matches, p: total # of variables

❑ Method 2: Use a large number of binary attributes

❑ Creating a new binary attribute for each of the M nominal states

p
mp

jid
−
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Ordinal Variables

❑ An ordinal variable can be discrete or continuous

❑ Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)

❑ Can be treated like interval-scaled 

❑ Replace an ordinal variable value by its rank:

❑ Map the range of each variable onto [0, 1] by replacing i-th object in 
the f-th variable by 

❑ Example:  freshman: 0; sophomore: 1/3; junior: 2/3; senior 1

❑ Then distance:  d(freshman, senior) = 1, d(junior, senior) = 1/3

❑ Compute the dissimilarity using methods for interval-scaled variables

1

1

if

if

f

r
z

M

−
=

−

{1,..., }if fr M



62

Attributes of Mixed Type
❑ A dataset may contain all attribute types

❑ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal

❑ One may use a weighted formula to combine their effects:

❑ If f is numeric: Use the normalized distance

❑ If f is binary or nominal:   dij
(f) = 0  if xif = xjf; or dij

(f) = 1 otherwise

❑ If f is ordinal

❑ Compute ranks zif (where                       )

❑ Treat zif as interval-scaled
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Cosine Similarity of Two Vectors
❑ A document can be represented by a bag of terms or a long vector, with each 

attribute recording the frequency of a particular term (such as word, keyword, or 
phrase) in the document

❑ Other vector objects: Gene features in micro-arrays 

❑ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

❑ Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

where • indicates vector dot product, ||d||: the length of vector d

1 2
1 2

1 2

( , )
|| || || ||

d d
cos d d

d d

•
=


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Example: Calculating Cosine Similarity
❑ Calculating Cosine Similarity:

where • indicates vector dot product, ||d||: the length of vector d

❑ Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

❑ First, calculate vector dot product

d1•d2 = 5 X 3 + 0 X 0 + 3 X 2 + 0 X 0 + 2 X 1 + 0 X 1 + 0 X 1 + 2 X 1 + 0 X 0 + 0 X 1 = 25

❑ Then, calculate ||d1|| and ||d2||

❑ Calculate cosine similarity: cos(d1, d2 ) = 25/ (6.481 X 4.12) = 0.94

1 3 3 0 0 2 2 0 0 0 0 2 2 0 0 0 0 6.48|| || 5 0 0 15d + + +=  +  +   + + + + =     

2 3 2 2 0 0 1 1 1 1|| | 0 0 1 1 0 0 1 1 4.12| 3 0 0d + + + + + + +=  +  +         =

1 2
1 2

1 2

( , )
|| || || ||

d d
cos d d

d d

•
=


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Correlation Analysis (for Categorical Data)

❑ Χ2 (chi-square) test:

❑ Null hypothesis: The two distributions are independent

❑ The cells that contribute the most to the Χ2 value are those whose actual count is 

very different from the expected count

❑ The larger the Χ2 value, the more likely the variables are related

❑ Note:  Correlation does not imply causality

❑ # of hospitals and # of car-theft in a city are correlated

❑ Both are causally linked to the third variable: population
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Chi-Square Calculation: An Example
Play chess Not play chess Sum (row)

Like science fiction 250 (X1) 200 (X2) 450

Not like science fiction 50 (X3) 1000 (X4) 1050

Sum(col.) 300 1200 1500

❑ Null hypothesis: The two distributions are independent

❑ What does that mean?

❑ The ratio between people who play chess vs not play chess is the same for both 
groups of like science fiction and not like science fiction 

❑ X1:X2=X3:X4=300:1200

❑ X1:X3=X2:X4=450:1050

❑ X1+X2=450 X3+X4=1050

❑ X1+X3=300 X2+X4=1200
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Chi-Square Calculation: An Example

❑ Χ2 (chi-square) calculation (numbers in parenthesis are expected 

counts calculated based on the data distribution in the two categories)

❑ It shows that like_science_fiction and play_chess are correlated in the 

group

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 =

−
+

−
+

−
+

−
=

Play chess Not play chess Sum (row)

Like science fiction 250 (90) 200 (360) 450

Not like science fiction 50 (210) 1000 (840) 1050

Sum(col.) 300 1200 1500
We can reject the
null hypothesis of
independence at a 
confidence level of 
0.001

How to derive 90?
450/1500 * 300 = 90
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Chi-Square Calculation: An Example

❑ Degree of freedom

❑ (#categories_in_variable_A -1)((#categories_in_variable_B -1)

❑ number of values that are free to vary

A B C D Sum (row)

1 200

0 1000

Sum(col.) 300 300 300 300 1200
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Chi-Square Calculation: An Example

❑ Degree of freedom =?

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 =

−
+

−
+

−
+

−
=

Play chess Not play chess Sum (row)

Like science fiction 250 (90) 200 (360) 450

Not like science fiction 50 (210) 1000 (840) 1050

Sum(col.) 300 1200 1500
We can reject the
null hypothesis of
independence at a 
confidence level of 
0.001
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Variance for Single Variable (Numerical Data)
❑ The variance of a random variable X provides a measure of how much the value of 

X deviates from the mean or expected value of X:

❑ where σ2 is the variance of X, σ is called standard deviation

µ is the mean, and µ = E[X] is the expected value of X

❑ That is, variance is the expected value of the square deviation from the mean

❑ It can also be written as:

❑ Sample variance

2

2 2

2

( ) ( ) if  is discrete

var( ) [(X ) ]

( ) ( ) if  is continuous

x

x f x X

X E

x f x dx X



 




−

 −


= = − = 
 −






2 2 2 2 2 2var( ) [(X ) ] [X ] [X ] [ ( )]X E E E E x  = = − = − = −

𝑠2 =
1

𝑛
෍

𝑖

𝑛

𝑥𝑖 − ො𝜇 2 𝑠2 =
1

𝑛 − 1
෍

𝑖

𝑛

𝑥𝑖 − ො𝜇 2
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Covariance for Two Variables 
❑ Covariance between two variables X1 and X2

where µ1 = E[X1] is the respective mean or expected value of X1; similarly for µ2

❑ Sample covariance between X1 and X2: ො𝜎12 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖1 −ෞ𝜇1 𝑥𝑖2 −ෞ𝜇2

❑ Sample covariance is a generalization of the sample variance:

ො𝜎11 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖1 −ෞ𝜇1 𝑥𝑖1 −ෞ𝜇1

❑ Positive covariance: If σ12 > 0

❑ Negative covariance: If σ12  < 0 

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X    = − − = − = −
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Covariance for Two Variables 
❑ Independence: If X1 and X2 are independent, σ12 = 0 but the reverse is not true

❑ Some pairs of random variables may have a covariance 0 but are not independent

❑ Only under some additional assumptions (e.g., the data follow multivariate normal 
distributions) does a covariance of 0 imply independence

❑ Example:

E(𝑋1)=?

E(𝑋2)=?

E(𝑋1𝑋2)=?

𝑿𝟏 1 -1

𝑿𝟐 0 1 -1

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X    = − − = − = −
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Example:  Calculation of Covariance
❑ Suppose two stocks X1 and X2 have the following values in one week:  

❑ (2, 5), (3, 8), (5, 10), (4, 11), (6, 14)

❑ Question:  If the stocks are affected by the same industry trends, will their prices 
rise or fall together?

❑ Covariance formula

❑ Its computation can be simplified as: 

❑ E(X1) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4

❑ E(X2) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

❑ σ12 = (2×5 + 3×8 + 5×10 + 4×11 + 6×14)/5 − 4 × 9.6 = 4

❑ Thus, X1 and X2 rise together since σ12 > 0

12 1 1 2 2 1 2 1 2 1 2 1 2[( )( )] [ ] [ ] [ ] [ ]E X X E X X E X X E X E X    = − − = − = −

12 1 2 1 2[ ] [ ] [ ]E X X E X E X = −
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Correlation between Two Numerical Variables
❑ Correlation between two variables X1 and X2 is the standard covariance, obtained by 

normalizing the covariance with the standard deviation of each variable

❑ Sample correlation for two attributes X1 and X2: 

where n is the number of tuples, µ1 and µ2 are the respective means of X1 and X2 , 
σ1 and σ2 are the respective standard deviation of X1 and X2

❑ If ρ12 > 0: A and B are positively correlated (X1’s values increase as X2’s)

❑ The higher, the stronger correlation

❑ If ρ12 = 0: independent (under the same assumption as discussed in co-variance)

❑ If ρ12 < 0: negatively correlated

12 12
12

2 2
1 2 1 2

 


   
= =

ො𝜌12 =
ො𝜎12
ො𝜎1 ො𝜎2

=
σ𝑖=1
𝑛 𝑥𝑖1 − ො𝜇1 𝑥𝑖2 − ො𝜇2

σ𝑖=1
𝑛 𝑥𝑖1 − ො𝜇1

2σ𝑖=1
𝑛 𝑥𝑖2 − ො𝜇2

2



75

Visualizing Changes of Correlation Coefficient

❑ Correlation coefficient value range: 
[–1, 1]

❑ A set of scatter plots shows sets of 
points and their correlation 
coefficients changing from –1 to 1  
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Covariance Matrix
❑ The variance and covariance information for the two variables X1 and X2

can be summarized as 2 X 2 covariance matrix as 

❑ Generalizing it to d dimensions, we have,

1 1

1 1 2 2

2 2

[( )( ) ] [( )( )]T
X

E E X X
X


   



−
 = − − = − −

−
X X

1 1 1 1 1 1 2 2

2 2 1 1 2 2 2 2

2

1 12

2

21 2

[( )( )] [( )( )]

[( )( )] [( )( )]

E X X E X X

E X X E X X

   

   

 

 

− − − − 
=  

− − − − 

 
=  
 
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KL Divergence: Comparing Two Probability Distributions 

❑ The Kullback-Leibler (KL) divergence: 
Measure the difference between two 
probability distributions over the same 
variable x

❑ From information theory, closely 
related to relative entropy, 
information divergence, and 
information for discrimination

❑ DKL(p(x) || q(x)):  divergence of q(x) from 
p(x), measuring the information lost 
when q(x) is used to approximate p(x)

Ack.: Wikipedia entry: The Kullback-Leibler (KL) divergence 
Discrete form

Continuous form
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Normalization

Measure Input Range Pros/Cons

Z-Score −∞,+∞
But scores 
outside −3, 3 are 
likely to be outliers

• Pros: 
• Easy to calculate
• Good for outlier detection

• Cons:
• Small data sets skew the results

Mean Absolute 
Deviance

[0, +∞]

Min/Max Normalization • Pros:
• Allows for custom range of data


−

=
x

 z
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Distance Measures

Measure Input Range Pros/Cons

Minkowski • Pros:
• Most commonly used distance for numerical data
• Positivity/Symmetry/Triangle Inequality

Manhattan • Pros:
• Not sensitive to outliers.

• Cons:
• Non differentiable

Euclidean • Pros:
• differentiable

• Cons
• Sensitive to outliers

Supremum
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Similarity/Dissimilarity Measures (Binary)
Measure Input Range Pros/Cons

Symmetric Binary 
Variable

[0, 1] • Null variant
• if 0 and 1 are equally important

Asymmetric Binary 
Variable

[0, 1] • Null invariant
• If 0 is not important (such as meaning did not 

appear, too common in data, …)

Jaccard Coefficient / 
Coherence

[0, 1] • This is a similarity measure
• The higher the value, the more similar the two 

vector
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Measures – More
Measure Input Range Pros/Cons

Cosine Similarity [−1, 1]
In many applications, 𝑑𝑖 are 
all positive, then [0, 1]

Commonly used in text mining
1-> similar
0-> irrelevant
-1-> opposite

Chi-Squared Test [0, +∞] Correlation measure for categorical data
Higher value->strong correlation

Variance / Covariance −∞,+∞ Correlation measure for continuous data
High positive value->strong positive 
correlation
Very negative value->strong negative 
correlation

Correlation 
coefficient

[−1, 1] Correlation measure for continuous data
High positive value->strong positive 
correlation
Very negative value->strong negative 
correlation

1 2
1 2

1 2

( , )
|| || || ||

d d
cos d d

d d

•
=



12 12
12

2 2
1 2 1 2

 


   
= =



82

Chapter 2.  Getting to Know Your Data

❑ Data Objects and Attribute Types

❑ Basic Statistical Descriptions of Data

❑ Data Visualization

❑ Measuring Data Similarity and Correlation

❑ Summary
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Summary

❑ Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

❑ Many types of data sets, e.g., numerical, text, graph, Web, image.

❑ Gain insight into the data by:

❑ Basic statistical data description: central tendency, dispersion,  graphical displays

❑ Data visualization: map data onto graphical primitives

❑ Measure data similarity and correlation

❑ Above steps are the beginning of data preprocessing 

❑ Many methods have been developed but still an active area of research
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