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Chapter 2. Getting to Know Your Data

d Data Objects and Attribute Types b\\
 Basic Statistical Descriptions of Data

Q Data Visualization

d Measuring Data Similarity and Correlation

ad Summary



Types of Data Sets: (1) Record Data

Person:
d Relational records pers 10 |_Somame | st Name | Ciy
0 Miller Paul London
3 Relational tables, highly structured [ oveon T Ao [ Wlenca |- roretin
Huber Urs Zurich
1 1 1 3 Bl G i
0 Data matrlx, €.8., numerical matrlx, crosstabs d"'_:_ il Parks
4 Bertolini Fabrizio Roam
China England France Japan UsA Total {: ar:
Active Outdoors Crochet Glove 12,00 4,00 1.00 240,00 257,00
Car_ID Maodel Year Value Pers_ID
Active Outdoors Lycra Glove 10.00 6.00 323.00 339.00 - 0
InFlux Crochet Glove 3.00 6.00 8.00 1Z22.00 149,00 H:” BEntIE‘y lg?j 1[}[][:'00
InFlux Lycra Glove 2,00 143,00 145,00 102 RO”'; Rﬁf{e 1965 330000 U
Triumph Pro Helmet 3.00 1.00 7.00 333,00 344,00 103 Peugeot 1993 ~00 3
Trumph Vertigo Helmet 3,00 22,00 474,00 499,00 104 Ferrari 2005 150000 4
Ktreme Adult Helmet 8.00 8.00 7.00 2,00 251,00 276,00 105 Renault 1998 2000 3
Xtreme Youth Helmet 1,00 76.00 77.00 106 Renault 2001 7000 3
Total 14,00 43,00 54,00 2.00( 1,972.00| 2,086 00 107 Smart 1999 2000 2
A Transaction data ] |,
g S <2 8 § S ss| g (BD o
TID Items 3| g = [ 3| 3 == e &
1 Bread, Coke, Milk
2 Beer’ Bread Document 1 3 0 5 0 2 6 0 2 0 2
3 Beer, Coke, Diaper, Milk
. - D t 2 0 7 0 2 1 0 0 3 0 0
4 Beer, Bread, Diaper, Milk oetmen
5 Coke, Diaper’ Milk Document 3 0 1 0 0 1 2 2 0 3 0

0 Document data: Term-frequency vector (matrix) of text documents




Types of Data Sets: (2) Graphs and Networks

Q Transportation network

a World Wide Web

O Molecular Structures

3 Social or information networks



Types of Data Sets: (3) Ordered Data

Q Video data: sequence of images

ad Temporal data: time-series

Time Series Plot of quakes
“ !
i |||"‘|'ﬁl |
e 1l
i fl, = | Mt ,
3 " || '4 W, F‘ff*ﬁ MYl | IRV lﬁll'\ 02
T 0 I| T 'Hll M IR o
154 z ||+ llr | |1|| “HJ'IH'I“ ' m'*“ |L'l : ghimpanzee
10 | { I i |3|E| Macaque
Iﬂ Human
5_1 0 220 30 4 50 € 70 80 %0 9 Chimpanzee
Ind Macaque
Human
Chimpanzee
. . Macaque
0 Sequential Data: transaction sequences o ——
Macaque
Human TATA T
acaqss ;.Zl
. g:?n‘wap';nzec AT AL
Q Genetic sequence data Macone

Chimpanzee

Macaque




Types of Data Sets: (4) Spatial, image and multimedia Data

Political/
Administrative
Boundaries

d Spatial data: maps

Streets
Vector

Parcels

Land Usage

Elevation

Real World

Q Image data:

ad Video data:



Important Characteristics of Structured Data

Qd Dimensionality

- Curse of dimensionality
a Sparsity

2 Only presence counts

3 Resolution

- Patterns depend on the scale
QA Distribution

2 Centrality and dispersion



Data Objects

Q Data sets are made up of data objects
O A data object represents an entity

Q Also called samples , examples, instances, data points, objects, tuples

attributes

id _____ name _|gender __lage
001 Bob 12

male

objects 002 Jessica female 23

003 Tim male 56



Attributes or dimensions, features, variables

Name Definition Examples
Nominal | categories, states, or “names of things” e Hair_color ={auburn, black, blond, brown, grey, red}
* marital status, occupation, ID numbers, zip codes
Binary Symmetric: equally important gender
(Oor1)
Asymmetric: not equally important Medical test (negative & positive); assign 1 to most
important outcome
Ordinal | Need order but no magnitude Size = {small, medium, large}, grades, army rankings
Numeric | Interval: temperature in C’or F°, calendar dates
e equal-sized units;
* ordered;

* no true zero-point;

Ratio: inherent zero-point; being an order
of magnitude larger than the unit of
measurement

temperature in Kelvin, length, counts, monetary
quantities
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Discrete vs. Continuous Attributes

Discrete Attribute Continuous Attribute

only a finite /countably infinite, sometimes real numbers
integer

E.g., zip codes, profession, or the set of words E.g., temperature, height, or weight
in a collection of documents

special case : binary attributes floating-point variables (practically with finite
number of digits)
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Basic Statistical Descriptions of Data

d Motivation

2 To better understand the data: central tendency, variation and spread

Q Data dispersion characteristics of

J  Median, max, min, quantiles, outliers, variance, ... |
- Data dispersion: =%

(x

0  Analyzed with multiple granularities of precision s
ad Numerical dimensions correspond to sorted intervals *|

H=
H=
p:
H=

O Boxplot or quantile analysis on sorted intervals i S

Aa Dispersion analysis on computed measures

Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube



Measuring the Central Tendency: Mean, Median and
Mode

 Mean: n->sample, N->population n
w; X,  Trimmed mean: Chopping extreme
1

1y X & ) .
X==>'% u :ZT Weighted arithmetic mean: X =-1=——  values (e.g., Olympics gymnastics

Ni= Z W, score computation)
i=1
 Median
* Approximate median: 7 Lq: Low interval limit
_ n/2—(> freq),. . : T
median = L, + J | )width Y. freq: sum before the median interval
freq, .qian Width: interval width (L, — L,)
* Mode:
* Value that occurs most frequently in the data
- o e Gt
f(x) 000
Bimodal: Trimodal: | == \\ /_\

1800

Frequenc:

. \ /
"l iﬂ\ﬂfﬂﬂ’fﬁﬁ\ﬁﬂ/ﬂ ﬁ

(} o ok LR s NS
FERESOFPE S FEPEEEE
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Symmetric vs. Skewed Data

Q Median, mean and mode of symmetric,
positively and negatively skewed data

Mode Mean
1 1 1

positively skewed

Sym mEtI'IC Mean

Median
Mode

Mean Mode
1 1 1

negatively skewed

" Median




Properties of Normal Distribution Curve

& — ————Represent data dispersion, spread — ————-

99.7% of the data are within
B 3 standard deviations of the mean »
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation

\—

iU— 30 n— 20 UL—a 1] u+o U+ 20 i+ 30

b Represent central tendency




Measures Data Distribution: Variance and Standard Deviation

d Variance and standard deviation (sample: s, population: o)

a Varianc&(a]lgebraic, scalable computation)

a Q: Canyou compute it incrementally and efficiently?

szzi_n (X —X)? —[Zx ——(Zx

Note: The subtle difference of
1 n n formulae for sample vs. population

2 1 E 2 2 * n:thesize of the sampl
—_— . — —_— — ] —_— - pie
Z (X' ’Ll) N X' H * N :the size of the population
0 Standard deviation s (or o) is the square root of variance s?(or o2

21
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Graphic Displays of Basic Statistical Descriptions

Q Boxplot: five-number summary
Q Histogram: values and frequencies

O Quantile plot: each value x; is paired with f; indicating that approximately 100 f; %
of data are <x;

ad Quantile-quantile (g-q) plot: graphs the quantiles of one univariant distribution
against the corresponding quantiles of another

O Scatter plot: data plotted as points



Measuring the Dispersion of Data: Quartiles & Boxplots

Q Quartiles: Q, (25 percentile), Q, (75" percentile) )
Q Inter-quartile range: IQR = Q;—Q, o I*—Wh'skﬂ
Q Five number summary: min, Q,, median, Q;, max B )
0 Boxplot: Median=> - Box
0 Outliers: points beyond a specified outlier
threshold, plotted individually Q| l‘_i_;msker
0 Outlier: usually, a value higher/lower than 1.5 x V¥
QR

23



Visualization of Data Dispersion: 3-D Boxplots

24



Histogram Analysis

Q Histogram: tabulated frequencies, shown as bars

distributions of variables
guantitative data

Value: area of the bar

Order matters

M

10000 30000 50000 70000 90000

25

Histogram

compare variables
categorical data

Value: height of the bar (a crucial distinction when
the categories are not of uniform width )

Can be reordered

Olympic Medals of all Times (till 2012 Olympics)

USA

Soviet Union
Great Britain
France

China

taly
100 200 300 400 500 600 700 800 300 1,00

Medals

]

Gold W Silver M Bronze
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Histograms Often Tell More than Boxplots

A

O Same boxplot representation
O The same min, Q1, median, Q3, max

O Different data distributions




Quantile Plot

a Displays all of the data
3 overall behavior and unusual occurrences
Q Plots quantile information

O For a data x; data sorted in increasing order, f; indicates that approximately 100
f% of the data are below or equal to the value x;

140 -

[—
b
)
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e O

e O
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4
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4
4

Unit price ($)
o
>
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L 2
L 2
L 2
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1
o
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0.000 0.250 0.500 0.750 1.000
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Branch 2 (unit price $)

Quantile-Quantile (Q-Q) Plot

d Graphs the quantiles of one univariate distribution against the corresponding
guantiles of another

ad View: Is there is a shift in going from one distribution to another?

aQ Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.
Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Normal Q-Q Plot of Credit card debt in thousands
120 ~
110
100

=]
]
|

Expected Normal Value

40 50 60 70 80 90 100 110 120 -10° r . T T
Branch 1 (unit price $) Observed Value




Items sold
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Scatter plot

Q Provides a first look at bivariate data to see clusters of points, outliers, etc.

700 -
600
500 -
400
300 -
200
100

N
RN .
¢ LY A
*
o ¢ * N
AN .

Life Expectancy

20 40 60 80 100 120
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140
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Positively and Negatively Correlated Data

o % °
® o ® @
. e o ® ® o
e ©® ® ® e ? ® o
{ o ) e
 J o ®
0‘ ° o | « °®
[ J
. Q The left half fragment is
« . ,: . > positively correlated
o ._‘ % ° QO The right half is negative
i - correlated
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Uncorrelated Data

- ®
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Q Data Visualization Q\\

d Measuring Data Similarity and Correlation

ad Summary
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Data Visualization

Q Why data visualization?

a

L U O 0O O

U O 0O O O

Gain insight into an information space by mapping data onto graphical primitives
Provide qualitative overview of large data sets
Search for patterns, trends, structure, irregularities, relationships among data

Help find interesting regions and suitable parameters for further quantitative
analysis

Provide a visual proof of computer representations derived
Categorization of visualization methods:

Pixel-oriented visualization techniques

Geometric projection visualization techniques

lcon-based visualization techniques

Hierarchical visualization techniques

Visualizing complex data and relations
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Pixel-Oriented Visualization Techniques

A For a data set of m dimensions, visualization has m windows, one for each
dimension

ad The m dimension values of a record are mapped to m pixels at the corresponding
positions in the windows

Q The colors of the pixels reflect the corresponding values

——

(a) Income (b) Credit Limit (c) transaction volume
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Laying Out Pixels in Circle Segments

O Good for datasets with many dimensions

Q Segments that look similar represent correlated dimensions

one data record

Dim 1

Dim 2

Dim 4

Dim 3

Representing about 265,000 50-dimensional Data Items
with the ‘Circle Segments’ Technique



Direct Data Visualization

From Wiki: Scatter plot: A 3D scatter
plot to visualize multivariate data

2
o
o
o
-
wn
g | ]
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-
—]
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<

data courtesy of NCSA, University of lllinoiz ot Urbona—Champaign
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Scatterplot Matrices

O Matrix of scatterplots (x-y-

diagrams) of the k-dim.
data

O A total of k(k-1)/2 distinct
scatterplots

Q Good for understanding
whether two variables are
correlated

Q Not as helpful for high-
dimensional data
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Landscapes

Used by permission of B. Wright, Visible Decisions Inc.

Pacific Northwest Laboratory

news articles visualized as a landscape

Visualization of the data as
perspective landscape

Color indicates range of
specific variables

More advanced technique,
requires in-depth
understanding of the data
to know how to transform
data into a 2D spatial
representation in a
meaningful way
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Parallel Coordinates

Q n equidistant axes which correspond to

a

the attributes of the data set

Each data item corresponds to a line
which intersects the axes at the point
which corresponds to the value for the
attribute

Good for determining which attributes
are most important for distinguishing
between categories (e.g., Petal Length
here)

Parallel coordinate plot, Fisher's Iris data

45

3.5

2.5

2 - 4 0 - ——

Sepal Width Sepal Length Petal Width Petal Length
—— setosa —— versicolor— virginica
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Icon-Based Visualization Techniques

a Visualization of the data values as features of icons
Q Typical visualization methods
d  Chernoff Faces
o Stick Figures
Q General techniques
o Shape coding: Use shape to represent certain information encoding
Coloricons: Use color icons to encode more information

d  Tile bars: Use small icons to represent the relevant feature vectors in document
retrieval
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Chernoff Faces

A way to display variables on a two-dimensional
surface, e.g., let x be eyebrow slant, y be eye size, z be
nose length, etc.

The figure shows faces produced using 10
characteristics--head eccentricity, eye size, eye
spacing, eye eccentricity, pupil size, eyebrow slant,
nose size, mouth shape, mouth size, and mouth
opening): Each assigned one of 10 possible values,
generated using Mathematica (S. Dickson)

Humans are good at distinguishing differences in faces

Can be difficult to implement (need a good way to
map variables to facial features)

o
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A census data figure showing
age, income, gender

education, etc

A 5-piece stick figure (1 body
and 4 limbs w. different
angle/length)

Uses smaller number of
features than Chernoff Faces

Also requires careful design to
make visualization meaningful




Hierarchical Visualization Techniques

Q Visualization of the data using a hierarchical partitioning into subspaces

ad Methods X

Dimensional Stacking
Worlds-within-Worlds
Tree-Map

Cone Trees
InfoCube

o O 0 0 O

43
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Dimensional Stacking

O

p—
/// 3
j ] attribute 4
attribute 2 r
\
-
attribute 3

attribute 1

Partitioning of the n-dimensional attribute space in 2-D subspaces, which are
‘stacked’ into each other

Partitioning of the attribute value ranges into classes. The important attributes
should be used on the outer levels.

Adequate for data with ordinal attributes of low cardinality
But, difficult to display more than nine dimensions
Important to map dimensions appropriately



Dimensional Stacking

SEfstassas o e
B RS
.; .i.J..

Visualization of oil mining data with longitude and latitude mapped to the
outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes
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Tree-Map

Q Screen-filling method which uses a hierarchical partitioning of the screen into
regions depending on the attribute values (e.g., size)

d Great for data that is naturally hierarchical (e.g., file systems)

Baby.TU 4.3.91 1008

Schneiderman@UMD: Tree-Map of a File System

large data sets of a million items
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InfoCube

Q A 3-D visualization technique where hierarchical information is displayed as nested
semi-transparent cubes

2 Similar to Tree-Map, but in 3-D

d The outermost cubes correspond to the top level data, while the subnodes or the
lower level data are represented as smaller cubes inside the outermost cubes, etc.




Visualizing Complex Data and Relations: Tag Cloud

d Tag cloud: Visualizing text data (e.g.,

Q

Q

1 supervised learnin

social and |nfurmatl0ninetworks=§?@a€§‘=2‘.,.£~“é“i..{

—---‘-q-.-i - —

user-generated tags)

The importance/frequency of tag is
represented by font size/color

Popularly used to visualize
word/phrase distributions

temporal time series
nl’:lll{ rich data types

spatial
variable models

recommendg}';y?t'é'ﬁigzcla.sslﬁ.ci’@? |Z Zgraph'mining 1=~
o

S e S00i3] Media B '§3
i J N — VIR T

l
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scalable met
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Visualizing Complex Data and Relations: $ocial Networks

a Visualizing non-numerical data: social and information networks

organizing
information networks

A
s -,

(et
“\“- Wi IT A
Ny

N h \‘
)
Q

A typical network structure

A social network

49
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3 Summary
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Similarity, Dissimilarity, and Proximity

Q Similarity measure

o Similarity between two objects

The higher value, the more alike

 Often falls in the range [0,1]: O: no similarity; 1: completely similar
d Dissimilarity (or distance) measure

- How different two data objects are

O The lower, the more alike

d  Minimum dissimilarity is often O (i.e., completely similar)

ad Proximity usually refers to either similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

O Data matrix /xll
0 Compare each row of data matrix. :: D X5,
A Dissimilarity (distance) matrix
Distance of x(i, j) is same as distance of x(j,i) \ X
d Distance functions (d) are usually different for real,
boolean, categorical, ordinal, ratio, and vector variables
d

Weights can be associated with different variables based
on applications and data semantics
PP d(2,1)

\d(r.l,l)

X2
X22

Xn2

i

d(r;,2)
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Standardizing Numeric Data

Q Z-score: 7 = X;,u
0 X:raw score to be standardized, p: mean of the population, o: standard deviation

0 the distance between the raw score and the population mean in units of the
standard deviation

0 negative when the raw score is below the mean, “+” when above
Q An alternative way: Calculate the mean absolute deviation

S =T11(|)(1f —m|+[X, —m |+ .+]|X  —m_|)

where 1
M= 75X X +4 X )
X, —m,
0 standardized measure (z-score): Ly = S

O Using mean absolute deviation is more robust than using standard deviation



Example: Data Matrix and Dissimilarity Matrix

1 Data Matrix
X2 X4
point |attributel | attribute?
4 x1 1 2
X2 3 5
X3 2 0
x4 4 5
2 >
1
Dissimilarity Matrix (by Euclidean Distance)
x1 X2 X3 X4
x1 0
X
- > X2 3.61 0
0 2 4
x3 2.24 5.1 0
x4 4.24 1 5.39 0

54
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Distance on Numeric Data: Minkowshki Distance

ad Minkowski distance: A popular distance measure

d(i, J):€/| Xil_lelp +| X, — X, P+t X — X |

where 7= (X3, X;, ..., X3) and j = (x;, X, ..., X;;) are two /-dimensional data
objects, and p is the order (the distance so defined is also called L-p norm)

ad Properties
2 d(i,j)>0ifi=#j,andd(i, i) = 0 (Positivity)
a d(i, j) =d(j, i) (Symmetry)
3 d(i, j) <d(i, k) + d(k, j) (Triangle Inequality)
Q A distance that satisfies these properties is a metric

O Note: There are nonmetric dissimilarities, e.g., set differences
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Special Cases of Minkowski Distance

Q p=1: (L, norm) Manhattan (or city block) distance

0 E.g., the Hamming distance: the number of bits that are different between

two binary vectors ..
Y d(i, J) = Xy =X |+ 1%, =X [+ Xy =X |

Q p=2: (L, norm) Euclidean distance

d(i, J):\/l Xil_le |2 +|Xi2_Xj2 |2 +"‘+|Xi| _le |2

Q p—>oo: (L norm, L_norm) “supremum” distance

max

0 The maximum difference between any component (attribute) of the vectors

. . N _. .. [
d(,j) = lim {/ vi = TP+ (i = 2yl e e — wp P = max g — 2



Example: Minkowski Distance at Special Cases

Manhattan (L,)

L

x1

X2

x3

x4

x1

0

X2

X3

(o)}

x4

S
3
6

Euclidean (L,)

L2

x1

X2

x3

x4

x1

0

X2

3.61

X3

2.24

x4

4.24

5.39

Supremum (L_)

Lo

x1

X2

X3

x4

x1

X2

X3

ol

point |attribute 1 |attribute 2
x1 1 2
X2 3 5
X3 2 0
x4 4 5
VN
X; X 7
4
2 'Xl
@ X3
0 2 4
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Proximity Measure for Binary Attributes

ad A contingency table for binary data

Object
1 0 sum
: ) q 3 q+r
Object / s t yid
sum q+s r<4t p d(' ) r—+ s
: L : Vs d} =
O Distance measure for symmetric binary variables ’ g4=r-=5-i

gl Y em T8
O Distance measure for asymmetric binary variables: (2, 7) = g+7T+ S

d Jaccard coefficient (similarity measure for g
v : . S1M il 7] =
asymmetric binary variables): accard(%; J) g+7+ s

Q Note: Jaccard coefficient is the same as (a concept discussed in Pattern Discovery)

sup(i, J) _ q
sup(t) + sup(y) — sup(i,j) . (¢+r)+(¢+s)—¢

coherence(i, j) =



Example: Dissimilarity between Asymmetric Binary Variables

59

Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack M Y N P N N N
Mary |F Y N P N P N
Jim M Y P N N N N

d Gender is a symmetric attribute (not counted in)

a
Q
a

d( jack,mary) =
d(jack, jim) =

d(jim,mary) =

Distance: d(z, j) =

r+ s

g=k T8

oO+1

24+0+1

1+1

1+1+1
142

14+1+4+2

= 0.33

= 0.67

= 0.75

The remaining attributes are asymmetric binary

1
(iR o

Let the values Y and P be 1, and the value N be O

Mary
1 1
2 2

zcol 3 3

1 2
Jdack

1

Zcol 3
Jim

1 1 1
0) 1 3
2ol 2 4

2

4

6

Mary

0
3
3

2
4
6
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Proximity Measure for Categorical Attributes

Q Categorical data, also called nominal attributes
0 Example: Color (red, yellow, blue, green), profession, etc.

d Method 1: Simple matching

o m: # of matches, p: total # of variables

d(i, j) =5

d Method 2: Use a large number of binary attributes

Creating a new binary attribute for each of the M nominal states
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Ordinal Variables

A An ordinal variable can be discrete or continuous
d Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
ad Can be treated like interval-scaled

O Replace an ordinal variable value by its rank: I, €{L,....,M .}

- Map the range of each variable onto [0, 1] by replacing i-th object in
the f-th variable by , r, —1

if Mf—l

d Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
ad Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3

d  Compute the dissimilarity using methods for interval-scaled variables
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Attributes of Mixed Type

O A dataset may contain all attribute types
2 Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
d One may use a weighted formula to combine their effects:
P
(1) q ()
2. w;"d;
d(i, j)=—

Zw(f)

ad If f is numeric: Use the normalized distance

3 Iff is binary or nominal: d;{) =0 if x;= x;; or d;{" = 1 otherwise

3 If f is ordinal
I -1

M, —1

)

0 Compute ranks z; (whereZ;; =

Q Treat z; as interval-scaled
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Cosine Similarity of Two Vectors

U O

A document can be represented by a bag of terms or a long vector, with each
attribute recording the frequency of a particular term (such as word, keyword, or

phrase) in the document
Document  teamcoach hockey baseball soccer penalty score win loss season

Document] 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

Other vector objects: Gene features in micro-arrays
Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
Cosine measure: If d, and d, are two vectors (e.g., term-frequency vectors), then

cos(d. d,) = — 91°0>
VU d [l d, |

where e indicates vector dot product, | |d| |: the length of vector d
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Example: Calculating Cosine Similarity

~
Q Calculating Cosine Similarity: _ A-B
cos(d,,d,) = d; e d, sim(A, B) = cos(0) = TAA]
[[d, [[>]ld, || |8 0

where e indicates vector dot product, | |d||: the length of vector d
Q Ex: Find the similarity between documents 1 and 2.
d,=(5030200,20,0) d,=(3,0,20,110,1,0,1)
o First, calculate vector dot product
d,ed,=5X3+0X0+3X2+0X0+2X1+0X1+0X1+2X1+0X0+0X1=25
d  Then, calculate | |d,|| and ||d,]||

|d, |[=v5x5+0x0+3x3+0x0+2x2+0x0+0x0+2x2+0x0+0x0 =6.481
|d, ||= J3x340x0+2x2+0x0+1x1+1x1+0x0+1x1+0x0+1x1=4.12

0 Calculate cosine similarity: cos(d,, d,)=25/(6.481X4.12) =0.94
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Correlation Analysis (for Categorical Data)

observed

n 2
5 (O; — E;)
G2 TE

expected

Q X? (chi-square) test:

A Null hypothesis: The two distributions are independent

a The cells that contribute the most to the X? value are those whose actual count is
very different from the expected count

J The larger the X? value, the more likely the variables are related
0 Note: Correlation does not imply causality
o # of hospitals and # of car-theft in a city are correlated

- Both are causally linked to the third variable: population



Chi-Square Calculation: An Example

Play chess | Not play chess | Sum (row)
Like science fiction 250 (X1) | 200 (X2) 450
Not like science fiction | 50 (X3) 1000 (X4) 1050
Sum(col.) 300 1200 1500

Q Null hypothesis: The two distributions are independent
O What does that mean?

The ratio between people who play chess vs not play chess is the same for both
groups of like science fiction and not like science fiction

X1:X2=X3:X4=300:1200
X1:X3=X2:X4=450:1050
X1+X2=450 X3+X4=1050
X1+X3=300 X2+X4=1200

O

O O 0O O

66
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Chi-Square Calculation: An Example

Play chess | Not play chess | Sum (row)
Like science fiction 250 (90) | 200 (360) 450
Not like science fiction | 50 (210) 1000 (840) 1050
Sum(col.) 300 1200 1500

Q X? (chi-square) calculation (humbers in parenthesis are expected

How to derive 907
450/1500 * 300 = 90

We can reject the
null hypothesis of
independence at a

counts calculated based on the data distribution in the two categories) confidence level of

0.001

« 90

210

360

. 2 . 2 . 2 . 2
,_(250-90)° (50-210)° (200-360)" (L000-840)° . .., 3
840

d It shows that like_science_fiction and play_chess are correlated in the

group
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Chi-Square Calculation: An Example

Sum (row)
1 200
0 1000
Sum(col.) | 300 300 300 300 1200

0 Degree of freedom

 (#categories_in_variable A -1)((#categories_in_variable B -1)

- number of values that are free to vary
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Chi-Square Calculation: An Example

Play chess | Not play chess | Sum (row)
Like science fiction 250 (90) | 200 (360) 450
Not like science fiction | 50 (210) 1000 (840) 1050
Sum(col. 300 1200 1500 :
(col.) We can reject the
, (250-90)* (50-210)> (200-360)°> (1000—840)* SN o [njpoiliests e
= + + + = Ul independence at a
90 210 360 840 ;
U confidence level of
d Degree of freedom =7 0.001
Values of the Chi-squared distribution
P
DF | 0.995 | 0.975 | 0.20 0.10 0.05 | 0.025 | 0.02 0.01 | 0.005 | 0.002 | 0.001
1 |0.0000393/0.000982 1.642 | 2.706 = 3.841 | 5024 | 5412 | 6.635 7.879 | 9.550 | 10.828
2 | 0.0100 | 0.0506 | 3.219 | 4.605 & 5991 | 7.378 | 7.824 | 9.210 | 10.597 | 12.429 | 13.816
3 | 00717 | 0216 | 4642 | 6251  7.815 | 9.348 | 9.837 | 11.345 12.838 | 14.796 | 16.266
4 | 0207 | 0484 | 5989 | 7.779 = 9.488 | 11.143 | 11.668  13.277  14.860 | 16.924 | 18.467
5 | 0412 | 0.831 | 7.289 | 9236 11.070 | 12.833 | 13.388  15.086 16.750 | 18.907 | 20.515
6 | 0676 | 1.237 | 8558 | 10.645  12.592 | 14.449 | 15.033 | 16.812 & 18.548 | 20.791 | 22.458




Variance for Single Variable (Numerical Data)

Q The variance of a random variable X provides a measure of how much the value of
X deviates from the mean or expected value of X:

( Z(X—ﬂ)zf(x) if X is discrete

o? = var(X) = E[(X- 1)*] =1
j (x—u)? f(x)dx if X is continuous

\_—0

O  where o?is the variance of X, o is called standard deviation
L is the mean, and p = E[X] is the expected value of X

O Thatis, variance is the expected value of the square deviation from the mean
O It can also be written as: o =var(X) = E[(X— x)?] = E[X*]- ¢* = E[X*]1-[E(X)]?

Q Sample variance & &
s* =£Z(xi—ﬁ)2 s? =n_12(xi—ﬁ)2
l l

70
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Covariance for Two Variables

a Covariance between two variables X; and X,
oy, = EI(X, — 1) (X, = 1)) = ELX X, ] =, = E[X X, - E[X JELX, ]

where W, = E[X;] is the respective mean or expected value of X;; similarly for p,

: ~ 1
Sample covariance between X; and X,: 01, = —

n i=1 (in — A1) Gz — 12)

Sample covariance is a generalization of the sample variance:

n
1
61 == ) (i — ) (i — 1)
=1

a Positive covariance: If 0,,> 0

d Negative covariance: If 0,, <0
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Covariance for Two Variables

a Independence: If X, and X, areindependent, ., = 0 but the reverse is not true
Some pairs of random variables may have a covariance 0 but are not independent

d  Only under some additional assumptions (e.g., the data follow multivariate normal
distributions) does a covariance of 0 imply independence

Q Example:

X, 0 1 1
oy, = E[(Xy = 26)(X;, = 14,)] = E[X, X, ] = w1, = E[X X, 1= E[ X, JE[ X, ]

E(X,)=?
E(X,)=?
E(X,X,)=?



Example: Calculation of Covariance

Q Suppose two stocks X; and X, have the following values in one week:
4 (2; 5)1 (3; 8)) (5) 10)) (4) 11)1 (6; 14)

Q Question: If the stocks are affected by the same industry trends, will their prices
rise or fall together?

Q Covariance formula
oy, = E[(X, = 4)(X, — 1,)] = E[X X, ] = g1, = E[X X, ] - E[X,JE[X,]
Q Its computation can be simplified as: o, = E[ X, X,]-E[X,]E[X,]
aQ E(X)=(2+3+5+4+6)/5=20/5=4
0 E(X,)=(5+8+10+11+14)/5=48/5=9.6
O 0y, =(2x5+3x8 +5x10 +4x11 + 6x14)/5-4x9.6=4

a Thus, X, and X, rise together since 6, >0
73
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Correlation between Two Numerical Variables

Q Correlation between two variables X, and X, is the standard covariance, obtained by
normalizing the covariance with the standard deviation of each variable

0, = O, Oy
12 _
0,0, \/(7120'22
aQ Sample correlation for two attributes X, and X,: ~ " "
P 1 2,5 012 i=1(xin — f1y) (xiz — fiz)
Y816,

n 0.2 \%m 02

i=1(x11 .ul) i=1(x12 .UZ)

where n is the number of tuples, p, and p, are the respective means of X, and X,,
0, and o, are the respective standard deviation of X, and X,

Q If p,, >0: Aand B are positively correlated (X;’s values increase as X,’s)
The higher, the stronger correlation
a If py, =0:independent (under the same assumption as discussed in co-variance)

a If p,, <0: negatively correlated



Visualizing Changes of Correlation Coefficient

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40

Q Correlation coefficient value range:
[_1; 1]

Q A set of scatter plots shows sets of
points and their correlation
coefficients changing from-1to 1

0.40 0.50 0.60 0.70 0.80 0.90 1.00




Covariance Matrix

d The variance and covariance information for the two variables X, and X,
can be summarized as 2 X 2 covariance matrix as

T Xl_:ul
2=E((X=p)(X=p) 1=EI( )K= Xy = 1))

Hy

_(ELO¢ — )X, — 1) E[fxl—ul)(xz—u»]j
E[(X; = 16,)(X; =) E[(X; = 26,)(X;, = 14,)]

2
_ O3 Glzj
2
O, O,

Q Generalizing it to d dimensions, we have,

/ 11 L12 - LX1d \ / .-7% oo
21 X2 - L2d oo g%

D = . . ) . = E[(X — 1)(X — ;;_)T] —
\ Ldl Lqg2 - L ) \ 041 049
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KL Divergence: Comparing Two Probability Distributions

Q The Kullback-Leibler (KL) divergence:
Measure the difference between two
probability distributions over the same
variable x
d From information theory, closely

related to relative entropy,
information divergence, and
information for discrimination

aQ Dy (p(x) || g(x)): divergence of g(x) from
p(x), measuring the information lost
when g(x) is used to approximate p(x)

Dgr(p(x)||q(x Z p(x 111
Discrete form a zEX

o)

77 J oo q(x)

pe)/ Y \at)
°,;-1';; —n
Original Gaussian PDF's
ONVAN
5 s :

Dy (p(x)||q(x)) = / p(x) In p(T)d’r {1 Continuous form

/ 0 Dy, (P HQ )
) / 0.1
ﬁP o f///,/"" M—4L
KL Area to be Integrated
" D (Plo)

Ack.: Wikipedia entry: The Kullback-Leibler (KL) divergence



Normalization

D B S L S —

Z-Score - [—o0, +00] * Pros:
O' But scores e Easy to calculate
outside [—3, 3] are * Good for outlier detection

likely to be outliers <+ Cons:
* Small data sets skew the results

Mean Absolute [0, +0]
Deviance
T . —
Zi=1 |z; — 7|
n
Min/Max Normalization * Pros:
f V] — mina nw-mina — e Allows for custom range of data
vy = X nw_mazx

max,4 — ming
(nw-mazxg — nw-ming) + nw-min



Distance Measures

e e I

Minkowski * Pros:
(Z |z — 1 ) 0 — o0 * Most commonly used distance for numerical data
* Positivity/Symmetry/Triangle Inequality

Manhattan Minkowski,p =1 * Pros:
) * Not sensitive to outliers.
Z'mﬂ — yl 0 = oo * Cons:
* Non differentiable
Euclidean Minkowski,p = 2 * Pros:
0 — oo » differentiable

,n 1/2
(Z [z — $j3|2) 0 e

=1 * Sensitive to outliers

Supremum Minkowski,p — oo

!
IJI}aX [Zif — 5]

0 — o0



Similarity/Dissimilarity Measures (Binary)

mu

Symmetric Binary r+s [0, 1] * Null variant

Variable q+r+s+t  ifOand 1 are equally important

Asymmetric Binary [0, 1] * Null invariant

Variable TS e |f0is not important (such as meaning did not
qg+r—+s

appear, too common in data, ...)

Jaccard Coefficient / q [0, 1] * This is a similarity measure
Coherence (g+7r)+(g+3)—q * The higher the value, the more similar the two
vector
0 sum
1 q r qt+r
0 S t s+t
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Cosine Similarity

Chi-Squared Test

cos(d,,d

X° =

Variance / Covariance

Correlation
coefficient

aJgq12 — E [(X

Measures — More

IiiiiiiiiiIIIIIIIIIIIIIIIIIiiiiiIIIIIIIIIIIIII|iiiiHiilIIIIIIIIIIIIIIIIIIIIIIIHIiiiiiiiiiiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

)_
ol || IIOI I

n (O?, _Efr’.)2
2T E

1 — ) (X2 — pg)]

In many appllcatlons, d; are
all positive, then [0, 1]

[0, +00]

[-1,1]

Commonly used in text mining
1-> similar

0-> irrelevant

-1-> opposite

Correlation measure for categorical data
Higher value->strong correlation

Correlation measure for continuous data
High positive value->strong positive
correlation

Very negative value->strong negative
correlation

Correlation measure for continuous data
High positive value->strong positive
correlation

Very negative value->strong negative
correlation
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Chapter 2. Getting to Know Your Data

d Data Objects and Attribute Types
 Basic Statistical Descriptions of Data
d Data Visualization

d Measuring Data Similarity and Correlation

ad Summary Q\\
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Summary

Q Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

ad Many types of data sets, e.g., numerical, text, graph, Web, image.

Q Gain insight into the data by:
0 Basic statistical data description: central tendency, dispersion, graphical displays
- Data visualization: map data onto graphical primitives
- Measure data similarity and correlation

d Above steps are the beginning of data preprocessing

ad Many methods have been developed but still an active area of research
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