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Data Cube: A Lattice of Cuboids
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Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells

 Ancestor vs. descendant cells

 Parent vs. child cells
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Cube Materialization: Full Cube vs. Iceberg Cube
 Full cube vs. iceberg cube

 Compute only the cells whose measure satisfies the iceberg 
condition 

 Ex.: Show only those cells whose count is at least 100

 Only a small portion of cells may be “above the water’’ in a 
sparse cube

iceberg 
condition

compute cube sales_iceberg as
SELECT month, city, customer_group, COUNT(*)
FROM salesInfo
CUBE BY month, city, customer_group
HAVING count(*) >= min support
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Why Iceberg Cube?

 No need to save nor show those cells whose value is below the 
threshold (iceberg condition)

 Efficient methods may even avoid computing the un-needed, 
intermediate cells

 Avoid explosive growth
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Example
 Example:  A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}  

 How many aggregate cells if “having count >= 1”? 

 Answer: (2101 ─ 2) ─ 4  (Why?!)
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Example
 Example:  A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}  

 What about the iceberg cells, (i,e., with condition: “having count >= 2”)?

 Answer: 4  (Why?!)



9

Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

 Let cube P have only 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube contain if “having count(*) ≥ 10”?

 Answer: 2101 ─ 4  (still too big!)

 Closed cube:

 A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has 
the same measure value as c

 Ex. The same cube P has only 3 closed cells: 

 {(a1,  a2, *, …, *): 20, (a1, a2, a3 . . . , a100): 10, (a1, a2, b3, . . . , b100): 10}

 A closed cube is a cube consisting of only closed cells

 Cube Shell: The cuboids involving only a small # of dimensions, e.g., 2

 Idea: Only compute cube shells, other dimension combinations can be computed on 
the fly
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Roadmap for Efficient Computation
 General computation heuristics [1]

 Computing full/iceberg cubes: 3 methodologies 

 Bottom-Up: 

 Multi-Way array aggregation [2]

 Top-down: 

 BUC [3]

 High-dimensional OLAP: 

 A Shell-Fragment Approach [4]

 Computing alternative kinds of cubes: 

 Partial cube, closed cube, approximate cube, ……

1. (Agarwal et al.’96)
2. (Zhao, Deshpande & Naughton, 

SIGMOD’97)
3. (Beyer & Ramarkrishnan, 

SIGMOD’99) 
4. (Li, et al. VLDB’04)
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Efficient Data Cube Computation: General Heuristics
 Sorting, hashing, and grouping operations are applied 

 Share-sorts

 Share-partitions

S. Agarwal, R. Agrawal, P. M. 
Deshpande, A. Gupta, J. F. 
Naughton, R. Ramakrishnan, S. 
Sarawagi.  On the computation 
of multidimensional aggregates. 
VLDB’96

 Reuse

 Smallest-child: computing a cuboid from the smallest, 
previously computed cuboid

 Cache-results: caching results of a cuboid from which other 
cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the 
same time to amortize disk reads

all

product date country

prod,date prod,country

date, country

prod, date, country
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Multi-Way Array Aggregation (MOLAP)

 How can I efficiently calculate all group-by cell 

aggregations? Full cube computation

 Fundamental Concept: AB, AC, and BC can be computed 

from ABC.    A, B, and C can be computed from AB/AC/BC.

 Common Practice with limited memory: Do not load the 

entire dimension (in array form) into memory at once.  

Use Chunks:

 http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97array

based.pdf - Zhao et al. ‘97

http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97arraybased.pdf


14

Multi-Way Array Aggregation (MOLAP)

 Chunk and store as(chunk_id, offset)

 Tells which cells in the chunk have data

 Goal: Read chunk only once in memory

 BC /AB only once

 Example: Student Record Data Warehouse 

 count(A) > count (B) > count(C)

 What is best order to put the chunks in 

order to calculate the aggregation?

A

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

C

B

2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

1

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 1..4

 One row of AC plane is partially 

computed

 One chunk of BC plane is fully 

computed (write to file)

 One row in AB plane is partially 

computed

 now scan through 5…8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 5…8

 Same row of AC plane is updated

 Another chunk of BC plane is 

fully computed (reuse the same 

place in memory)

 another row in AB plane is 

partially computed

 Continue on 9…12

 Continue on 13…16
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 13…16

 One row of AC plane is fully 

computed (write to file)

 Another chunk of BC plane is 

fully computed (reuse the same 

place in memory)

 Whole AB plane is partially 

computed

 Memory requirement:

 4000 x 10 (AC)  + 100 x 10 (BC) + 

4000 x 400 (AB) = 1,641,000 units
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Dimension Order: 1 – 5 – 9 – 13 – 2 – 6 – …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

 One column of BC plane is fully 

computed (write to file)

 Another chunk of AC plane is 

fully computed (reuse the same 

place in memory)

 Whole AB plane is partially 

computed

 Memory:

 400 x 10 (BC)  + 100 x 10 (BC) + + 

4000 x 400 (AB) 

 1,605,000 units

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Dimension Order: 1 – 17 – … – 13 – 29 – 45 – 61 …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

 One row of AC plane 

 One chunk of AB plane 

 All chunks in BC plane 

 Memory:

 1000 x 40 (AC) + 1000 x 100 (AB) 

+ 400 x 40 (AB) 

 156,000 units

 The best orderEntire BC 
plane One column 

of AC plane

One chunk of 
AB plane

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Main Goal of Multi-Way: Reducing memory and I/O

 How?

 Keep the smallest plane in main memory

 Fetch and compute only one chunk at a time for the largest 

plane

 The planes should be sorted and computed according to their 

size in ascending order

 Suppose A>B>C>…

for a in A:

for b in B:

for c in C: …
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Pros and Cons of Multi-Way

 Pro: Efficient for computing the full cube for a small number of dimensions

 Con: Can not calculate iceberg cube.  

 i.e: If there are a large number of dimensions, “top-down” computation and 

iceberg cube computation methods (e.g., BUC) should be used
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Cube Computation: Computing in Reverse Order

 Iceberg cube computation

 BUC (Beyer & Ramakrishnan, SIGMOD’99) 

 Bottom-Up (cube) Computation 

 “top-down” in our view since we put Apex cuboid 
on the top!

 Divides dimensions into partitions and facilitates 
iceberg pruning

 Prune if not satisfy min_sup

 If minsup = 1 Þ compute full CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning and Aggregating
 Cannot fit in main memory

 Sort distinct values and partition to fit

 Aggregation when sorting

 Continue processing

 Iceberg cube

 If count of (a1, b1, *, *, *) < min_support

 No need to sort on C
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MultiWay VS BUC

multiway BUC

Input format Multi-dimensional array Relational database

Good for Full cube Iceberg cube

Key idea Simultaneously Aggregation Partition and sort

Calculation
direction

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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High-Dimensional OLAP?—The Curse of Dimensionality

 High-D OLAP Applications: 

 E.g. bio-data analysis, statistical surveys

 None of the previous cubing method can 
handle high dimensionality!

 Iceberg cube and compressed cubes: only 
delay the inevitable explosion

 Full materialization: still significant 
overhead in accessing results on disk

 A shell-fragment approach:  X. Li, J. Han, and 
H. Gonzalez, High-Dimensional OLAP: A 
Minimal Cubing Approach, VLDB'04

A curse of dimensionality:  A database of 
600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.
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Fast High-D OLAP with Minimal Cubing
 Observation: OLAP occurs only on a small subset of dimensions at a time

 Semi-Online Computational Model

 Partition the set of dimensions into shell fragments

 Compute data cubes for each shell fragment while retaining inverted indices or 
value-list indices

 Given the pre-computed fragment cubes, dynamically compute cube cells of 
the high-dimensional data cube online

 Major idea:  Tradeoff between the amount of pre-computation and the speed of 
online computation

 Reducing computing high-dimensional cube into precomputing a set of lower 
dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction



27

Offline Online

Use Frag-Shells for Online OLAP Query Computation

A B C D E F …

ABC Cube DEF Cube

D Cuboid
EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions
A B C D E F G H I J K L M N …

Online

Cube

Instantiated 

Base Table

Processing query in the form:  <a1, a2, …, an: M>
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Computing a 5-D Cube with 2-Shell Fragments

 Example: Let the cube aggregation function be 
count

 Divide the 5-D table into 2 shell fragments: 

 (A, B, C) and (D, E)

 Build traditional invert index or RID list (1-D)

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1
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Shell Fragment Cubes: Ideas
 Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices

 Ex. shell fragment cube ABC contains 7 cuboids:

 A, B, C; AB, AC, BC; ABC

 This completes the offline computation

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

 ID_Measure Table

 If measures other than 
count are present, store in 
ID_measure table separate 
from the shell fragments

Shell-fragment AB
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Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F 

shell fragment size, the fragment cubes’ space 

requirement is:

 For F < 5, the growth is sub-linear

 Fragment groupings can be arbitrary to allow for 

maximum online performance

 Known common combinations (e.g.,<city, state>) 

should be grouped together

 Shell fragment sizes can be adjusted for optimal 

balance between offline and online computation

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0
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Online Query Computation with Shell-Fragments
 A query has the general form:  <a1, a2, …, an: M>

 Each ai has 3 possible values

 Instantiated value– this is what we want to look at

 Inquire ? Function – want to analyze these dimensions

 Aggregate * function – don’t care about these dimensions

 Ex: Suppose we want to query student data for junior (year 3) students and 
want to compare scores for different genders and ages, but don’t care about 
what high school they attended.

 <3, ?, ?, *, 1: count>
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Online Query Computation with Shell-Fragments
 Method: Given the materialized fragment cubes, process a query as follows

 Divide the query into fragments, same as the shell-fragment

 Fetch the corresponding TID list for each fragment from the fragment cube

 Intersect the TID lists from each fragment to construct instantiated base table

 Compute the data cube using the base table with any cubing algorithm

Query:
<a2, b1, ?, *, ?): count()?>

A B C D E

(a2, b1): {4, 5}

(c1): {1, 2, 3, 4, 5}

{(e1: {1, 2}), (e2: {3, 4}), (e3: {5})}

Intersect -> base cuboid:
(c1, e2): {4}
(c1, e3): {5}

Online

Cube
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Data Mining in Cube Space
 Data cube is already aggregated

 Reports generated from a Data Cube can easily by drilled into through query in a drill-
down fashion.
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Complex Aggregation at Multiple Granularities: 
Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple 
dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the maximum price in 2019 
for each group, and the total sales among all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)
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Discovery-Driven Exploration of Data Cubes
 Discovery-driven exploration of huge cube space (Sarawagi, et al.’98), suggested 

way to highlight data:

 Pre-compute measures indicating exceptions.

 i.e: significantly different from the value anticipated

 Visual cues such as background color can be used to show the degree of 
exception of each cell
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Examples: Discovery-Driven Data Cubes
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Data Cube Technology: Summary

 Data Cube Computation: Cuboids; iceberg cube; closed cube and cube shell

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 High-Dimensional OLAP with Shell-Fragments

 Multidimensional Data Analysis in Cube Space

 Multi-feature Cubes 

 Discovery-Driven Exploration of Data Cubes 
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Text Cube
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