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 Summary
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Data Cube: A Lattice of Cuboids
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Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells

 Ancestor vs. descendant cells

 Parent vs. child cells
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Cube Materialization: Full Cube vs. Iceberg Cube
 Full cube vs. iceberg cube

 Compute only the cells whose measure satisfies the iceberg 
condition 

 Ex.: Show only those cells whose count is at least 100

 Only a small portion of cells may be “above the water’’ in a 
sparse cube

iceberg 
condition

compute cube sales_iceberg as
SELECT month, city, customer_group, COUNT(*)
FROM salesInfo
CUBE BY month, city, customer_group
HAVING count(*) >= min support
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Why Iceberg Cube?

 No need to save nor show those cells whose value is below the 
threshold (iceberg condition)

 Efficient methods may even avoid computing the un-needed, 
intermediate cells

 Avoid explosive growth
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Example
 Example:  A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}  

 How many aggregate cells if “having count >= 1”? 

 Answer: (2101 ─ 2) ─ 4  (Why?!)
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Example
 Example:  A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}  

 What about the iceberg cells, (i,e., with condition: “having count >= 2”)?

 Answer: 4  (Why?!)
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Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

 Let cube P have only 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube contain if “having count(*) ≥ 10”?

 Answer: 2101 ─ 4  (still too big!)

 Closed cube:

 A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has 
the same measure value as c

 Ex. The same cube P has only 3 closed cells: 

 {(a1,  a2, *, …, *): 20, (a1, a2, a3 . . . , a100): 10, (a1, a2, b3, . . . , b100): 10}

 A closed cube is a cube consisting of only closed cells

 Cube Shell: The cuboids involving only a small # of dimensions, e.g., 2

 Idea: Only compute cube shells, other dimension combinations can be computed on 
the fly
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Roadmap for Efficient Computation
 General computation heuristics [1]

 Computing full/iceberg cubes: 3 methodologies 

 Bottom-Up: 

 Multi-Way array aggregation [2]

 Top-down: 

 BUC [3]

 High-dimensional OLAP: 

 A Shell-Fragment Approach [4]

 Computing alternative kinds of cubes: 

 Partial cube, closed cube, approximate cube, ……

1. (Agarwal et al.’96)
2. (Zhao, Deshpande & Naughton, 

SIGMOD’97)
3. (Beyer & Ramarkrishnan, 

SIGMOD’99) 
4. (Li, et al. VLDB’04)
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Efficient Data Cube Computation: General Heuristics
 Sorting, hashing, and grouping operations are applied 

 Share-sorts

 Share-partitions

S. Agarwal, R. Agrawal, P. M. 
Deshpande, A. Gupta, J. F. 
Naughton, R. Ramakrishnan, S. 
Sarawagi.  On the computation 
of multidimensional aggregates. 
VLDB’96

 Reuse

 Smallest-child: computing a cuboid from the smallest, 
previously computed cuboid

 Cache-results: caching results of a cuboid from which other 
cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the 
same time to amortize disk reads

all

product date country

prod,date prod,country

date, country

prod, date, country
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Multi-Way Array Aggregation (MOLAP)

 How can I efficiently calculate all group-by cell 

aggregations? Full cube computation

 Fundamental Concept: AB, AC, and BC can be computed 

from ABC.    A, B, and C can be computed from AB/AC/BC.

 Common Practice with limited memory: Do not load the 

entire dimension (in array form) into memory at once.  

Use Chunks:

 http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97array

based.pdf - Zhao et al. ‘97

http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97arraybased.pdf
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Multi-Way Array Aggregation (MOLAP)

 Chunk and store as(chunk_id, offset)

 Tells which cells in the chunk have data

 Goal: Read chunk only once in memory

 BC /AB only once

 Example: Student Record Data Warehouse 

 count(A) > count (B) > count(C)

 What is best order to put the chunks in 

order to calculate the aggregation?

A

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

C

B

2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

1

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 1..4

 One row of AC plane is partially 

computed

 One chunk of BC plane is fully 

computed (write to file)

 One row in AB plane is partially 

computed

 now scan through 5…8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 5…8

 Same row of AC plane is updated

 Another chunk of BC plane is 

fully computed (reuse the same 

place in memory)

 another row in AB plane is 

partially computed

 Continue on 9…12

 Continue on 13…16
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Cube Computation: Multi-Way Array Aggregation (MOLAP)
 Scan Order:  1 – 2 – 3 – 4 – 5 – 6 – …

 Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

 While we scan through 13…16

 One row of AC plane is fully 

computed (write to file)

 Another chunk of BC plane is 

fully computed (reuse the same 

place in memory)

 Whole AB plane is partially 

computed

 Memory requirement:

 4000 x 10 (AC)  + 100 x 10 (BC) + 

4000 x 400 (AB) = 1,641,000 units
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Dimension Order: 1 – 5 – 9 – 13 – 2 – 6 – …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

 One column of BC plane is fully 

computed (write to file)

 Another chunk of AC plane is 

fully computed (reuse the same 

place in memory)

 Whole AB plane is partially 

computed

 Memory:

 400 x 10 (BC)  + 100 x 10 (BC) + + 

4000 x 400 (AB) 

 1,605,000 units

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Dimension Order: 1 – 17 – … – 13 – 29 – 45 – 61 …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

 One row of AC plane 

 One chunk of AB plane 

 All chunks in BC plane 

 Memory:

 1000 x 40 (AC) + 1000 x 100 (AB) 

+ 400 x 40 (AB) 

 156,000 units

 The best orderEntire BC 
plane One column 

of AC plane

One chunk of 
AB plane

6 7 8
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Main Goal of Multi-Way: Reducing memory and I/O

 How?

 Keep the smallest plane in main memory

 Fetch and compute only one chunk at a time for the largest 

plane

 The planes should be sorted and computed according to their 

size in ascending order

 Suppose A>B>C>…

for a in A:

for b in B:

for c in C: …
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Pros and Cons of Multi-Way

 Pro: Efficient for computing the full cube for a small number of dimensions

 Con: Can not calculate iceberg cube.  

 i.e: If there are a large number of dimensions, “top-down” computation and 

iceberg cube computation methods (e.g., BUC) should be used
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Cube Computation: Computing in Reverse Order

 Iceberg cube computation

 BUC (Beyer & Ramakrishnan, SIGMOD’99) 

 Bottom-Up (cube) Computation 

 “top-down” in our view since we put Apex cuboid 
on the top!

 Divides dimensions into partitions and facilitates 
iceberg pruning

 Prune if not satisfy min_sup

 If minsup = 1 Þ compute full CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning and Aggregating
 Cannot fit in main memory

 Sort distinct values and partition to fit

 Aggregation when sorting

 Continue processing

 Iceberg cube

 If count of (a1, b1, *, *, *) < min_support

 No need to sort on C



24

MultiWay VS BUC

multiway BUC

Input format Multi-dimensional array Relational database

Good for Full cube Iceberg cube

Key idea Simultaneously Aggregation Partition and sort

Calculation
direction

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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High-Dimensional OLAP?—The Curse of Dimensionality

 High-D OLAP Applications: 

 E.g. bio-data analysis, statistical surveys

 None of the previous cubing method can 
handle high dimensionality!

 Iceberg cube and compressed cubes: only 
delay the inevitable explosion

 Full materialization: still significant 
overhead in accessing results on disk

 A shell-fragment approach:  X. Li, J. Han, and 
H. Gonzalez, High-Dimensional OLAP: A 
Minimal Cubing Approach, VLDB'04

A curse of dimensionality:  A database of 
600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.
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Fast High-D OLAP with Minimal Cubing
 Observation: OLAP occurs only on a small subset of dimensions at a time

 Semi-Online Computational Model

 Partition the set of dimensions into shell fragments

 Compute data cubes for each shell fragment while retaining inverted indices or 
value-list indices

 Given the pre-computed fragment cubes, dynamically compute cube cells of 
the high-dimensional data cube online

 Major idea:  Tradeoff between the amount of pre-computation and the speed of 
online computation

 Reducing computing high-dimensional cube into precomputing a set of lower 
dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction
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Offline Online

Use Frag-Shells for Online OLAP Query Computation

A B C D E F …

ABC Cube DEF Cube

D Cuboid
EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions
A B C D E F G H I J K L M N …

Online

Cube

Instantiated 

Base Table

Processing query in the form:  <a1, a2, …, an: M>
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Computing a 5-D Cube with 2-Shell Fragments

 Example: Let the cube aggregation function be 
count

 Divide the 5-D table into 2 shell fragments: 

 (A, B, C) and (D, E)

 Build traditional invert index or RID list (1-D)

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1
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Shell Fragment Cubes: Ideas
 Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices

 Ex. shell fragment cube ABC contains 7 cuboids:

 A, B, C; AB, AC, BC; ABC

 This completes the offline computation

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

 ID_Measure Table

 If measures other than 
count are present, store in 
ID_measure table separate 
from the shell fragments

Shell-fragment AB
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Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F 

shell fragment size, the fragment cubes’ space 

requirement is:

 For F < 5, the growth is sub-linear

 Fragment groupings can be arbitrary to allow for 

maximum online performance

 Known common combinations (e.g.,<city, state>) 

should be grouped together

 Shell fragment sizes can be adjusted for optimal 

balance between offline and online computation

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0
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Online Query Computation with Shell-Fragments
 A query has the general form:  <a1, a2, …, an: M>

 Each ai has 3 possible values

 Instantiated value– this is what we want to look at

 Inquire ? Function – want to analyze these dimensions

 Aggregate * function – don’t care about these dimensions

 Ex: Suppose we want to query student data for junior (year 3) students and 
want to compare scores for different genders and ages, but don’t care about 
what high school they attended.

 <3, ?, ?, *, 1: count>
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Online Query Computation with Shell-Fragments
 Method: Given the materialized fragment cubes, process a query as follows

 Divide the query into fragments, same as the shell-fragment

 Fetch the corresponding TID list for each fragment from the fragment cube

 Intersect the TID lists from each fragment to construct instantiated base table

 Compute the data cube using the base table with any cubing algorithm

Query:
<a2, b1, ?, *, ?): count()?>

A B C D E

(a2, b1): {4, 5}

(c1): {1, 2, 3, 4, 5}

{(e1: {1, 2}), (e2: {3, 4}), (e3: {5})}

Intersect -> base cuboid:
(c1, e2): {4}
(c1, e3): {5}

Online

Cube
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Data Mining in Cube Space
 Data cube is already aggregated

 Reports generated from a Data Cube can easily by drilled into through query in a drill-
down fashion.
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Complex Aggregation at Multiple Granularities: 
Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple 
dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the maximum price in 2019 
for each group, and the total sales among all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)
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Discovery-Driven Exploration of Data Cubes
 Discovery-driven exploration of huge cube space (Sarawagi, et al.’98), suggested 

way to highlight data:

 Pre-compute measures indicating exceptions.

 i.e: significantly different from the value anticipated

 Visual cues such as background color can be used to show the degree of 
exception of each cell
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Examples: Discovery-Driven Data Cubes
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Data Cube Technology: Summary

 Data Cube Computation: Cuboids; iceberg cube; closed cube and cube shell

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 High-Dimensional OLAP with Shell-Fragments

 Multidimensional Data Analysis in Cube Space

 Multi-feature Cubes 

 Discovery-Driven Exploration of Data Cubes 
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Text Cube
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