

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Qi Li, Computer Science, Univ. Illinois at Urbana-Champaign, 2018

Chapter 8. Classification: Basic Concepts

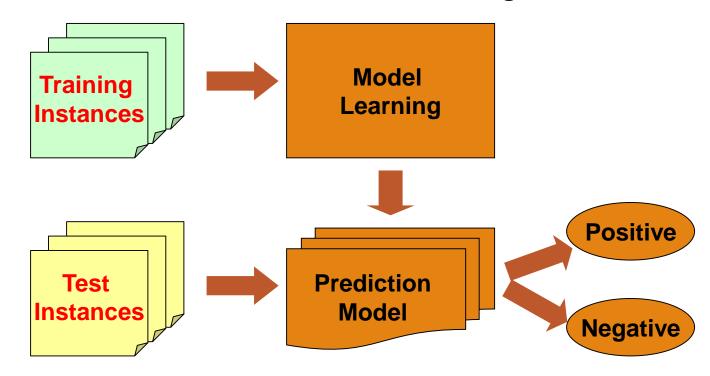
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Supervised vs. Unsupervised Learning (1)

- Supervised learning (classification)
 - Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
 - New data is classified based on the models built from the training set

				•
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Training Data with class label:

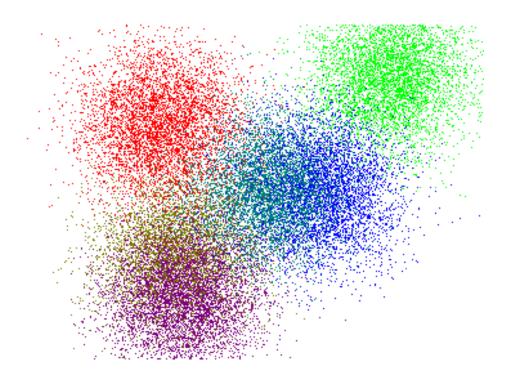


Supervised vs. Unsupervised Learning (2)

- Unsupervised learning (clustering)
 - ☐ The class labels of training data are unknown

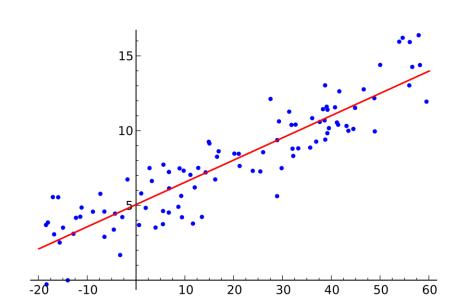
☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data



Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - Predict categorical class labels (discrete or nominal)
 - Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)



Prediction Problems: Classification vs. Numeric Prediction

- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- Model Construction and Training
 - Each sample is assumed to belong to a predefined class (shown by the class label)
 - ☐ The set of samples used for model construction is **training set**
 - ☐ Model: Represented as decision trees, rules, mathematical formulas, or other forms

Classification—Model Construction, Validation and Testing

- Model Validation and Testing:
 - Test: Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- **Model Deployment:** If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

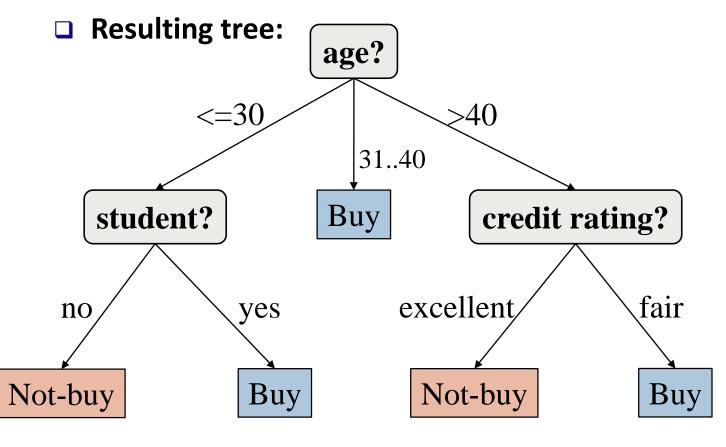
- Classification: Basic Concepts
- Decision Tree Induction

- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Decision Tree Induction: An Example

□ Decision tree construction:

 A top-down, recursive, divide-andconquer process



Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Decision Tree Induction: Algorithm

- Basic algorithm
 - ☐ Tree is constructed in a **top-down, recursive, divide-and-conquer manner**
 - At start, all the training examples are at the root
 - Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain, Gini index)

Decision Tree Induction: Algorithm

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- Method 1: Discretize continuous values and treat them as categorical values
 - **E.g.**, age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - Sort the value A in increasing order:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: the midpoint between each pair of adjacent values
 - \Box (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - \Box e.g., (15+18/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- Split: Based on split point P
 - The set of tuples in D satisfying $A \le P$ vs. those with A > P

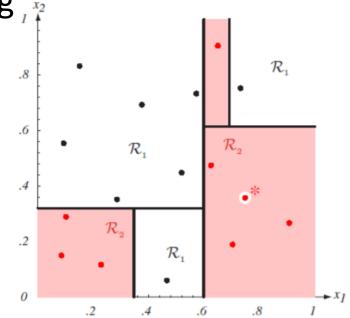
Pro's and Con's

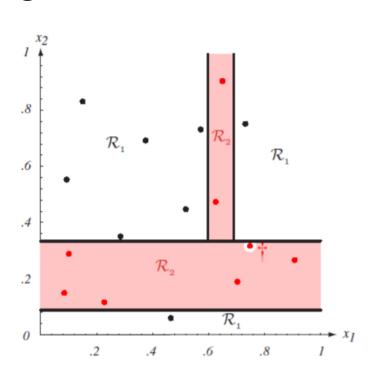
- Pro's
 - Easy to explain (even for non-expert)
 - Easy to implement (many software)
 - Efficient
 - Can tolerant missing data
 - White box
 - No need to normalize data
 - Non-parametric: No assumption on data distribution, no assumption on attribute independency
 - Can work on various attribute types

Con's

- Con's
 - Unstable. Sensitive to noise
 - Accuracy may be not good enough (depending on your data)
 - ☐ The optimal splitting is NP. Greedy algorithms are used

Overfitting **





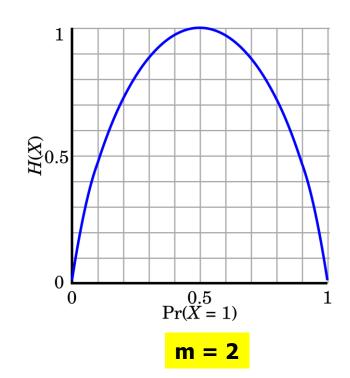
Splitting Measures: Information Gain

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - \Box Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \quad where \ p_i = P(Y = y_i)$$

- Interpretation
 - ☐ Higher entropy → higher uncertainty
 - Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$



Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

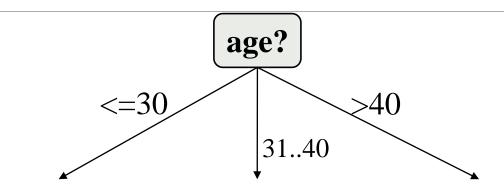
Class P: buys_computer = "yes"

Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

age	p _i	n _i	l(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971



$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Example: Attribute Selection with Information Gain

Class P: buys_computer = "yes"

Class N: buys_computer = "no"

income	p _i	n _i	l(p _i , n _i)
high	2	2	?
medium	4	2	?
low	3	1	?

student	p _i	n _i	l(p _i , n _i)
Yes	6	1	?
no	3	4	?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Similarly, we can get

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$

$$Gain(credit_rating) = 0.048$$

Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased towards attributes with a large number of values (e.g. ID)
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- □ The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - □ SplitInfo_{income}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - \Box GainRatio(income) = 0.029/1.557 = 0.019

Another Measure: Gini Index

- ☐ Gini index (or Gini impurity): Used in CART, and also in IBM IntelligentMiner
- CART is a binary tree
- $lue{}$ If a data set D contains examples from n classes, gini index, gini(D) is defined as
 - $\square gini(D) = 1 \sum_{j=1}^{n} p_j^2$
 - \square p_j is the relative frequency of class j in D
- What is the range of Gini index?
 - ☐ The minimum= 0, meaning pure
 - □ The maximum=? What is the case that Gini index reach the maximum?

Another Measure: Gini Index

lacksquare If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as

- Reduction in Impurity:
- □ The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

Example: D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

- \square Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) = 0.443$$

- ☐ Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450
- Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

Comparing Three Attribute Selection Measures

- ☐ The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - ☐ Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Comparing Three Attribute Selection Measures

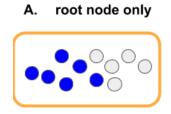
- In reality
- ☐ Theoretical comparison between the gini index and information gain criteria
- It only matters in 2% of the cases.
- Entropy might be a little slower to compute (because of the logarithm).

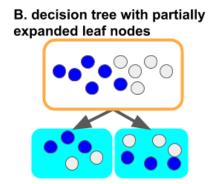
Other Attribute Selection Measures

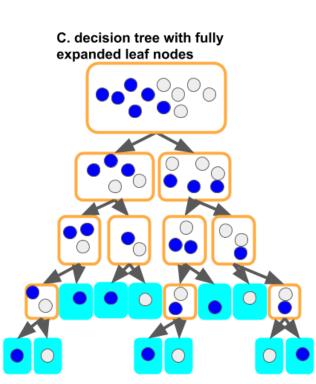
- Minimal Description Length (MDL) principle
 - Philosophy: The simplest solution is preferred
 - ☐ The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- CHAID: a popular decision tree algorithm, measure based on χ² test for independence
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear combination of attributes
- There are many other measures proposed in research and applications
 - E.g., G-statistics, C-SEP
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

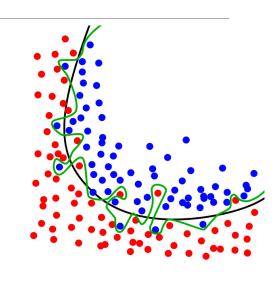
Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples









Overfitting and Tree Pruning

- Two approaches to avoid overfitting
 - Use a cross-validation set to compute the errors
 - Pre-pruning (Early stop): Stop splitting if the cross-validation error does not decrease significantly enough
 - Efficient but prone to under-fit (stop too early)
 - Post-pruning: After the full tree is constructed, prune back to the point where the cross-validation error is minimum
 - Extra computations but mathematically rigorous
 - Can be used alone, in combination, or not at all
 - For different purposes (accuracy, efficiency, interpretability)

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why is decision tree induction popular?
 - Relatively fast learning speed
 - Convertible to simple and easy to understand classification rules
 - Easy to be adapted to database system implementations (e.g., using SQL)
 - Comparable classification accuracy with other methods
 - Easy to ensemble, i.e., random forests, xgboost

RainForest: A Scalable Classification Framework

- ☐ The criteria that determine the quality of the tree can be computed separately
 - Builds an AVC-list: AVC (Attribute, Value, Class_label)
- **AVC-set** (of an attribute *X*)

Projection of training dataset onto the attribute X and class label where counts

of individual class label are aggregated

- AVC-group (of a node n)
 - Set of AVC-sets of all predictor attributes at the node *n*

age	income	student	credit_rating	buys
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

AVC-set on Age

Age	Buy_Computer	
	yes	no
<=30	2	3
3140	4	0
>40	3	2

AVC-set on Income

income	Buy_Computer		
	yes	no	
high	2	2	
medium	4	2	
low	3	1	

AVC-set on Student AVC-set on Credit Rating

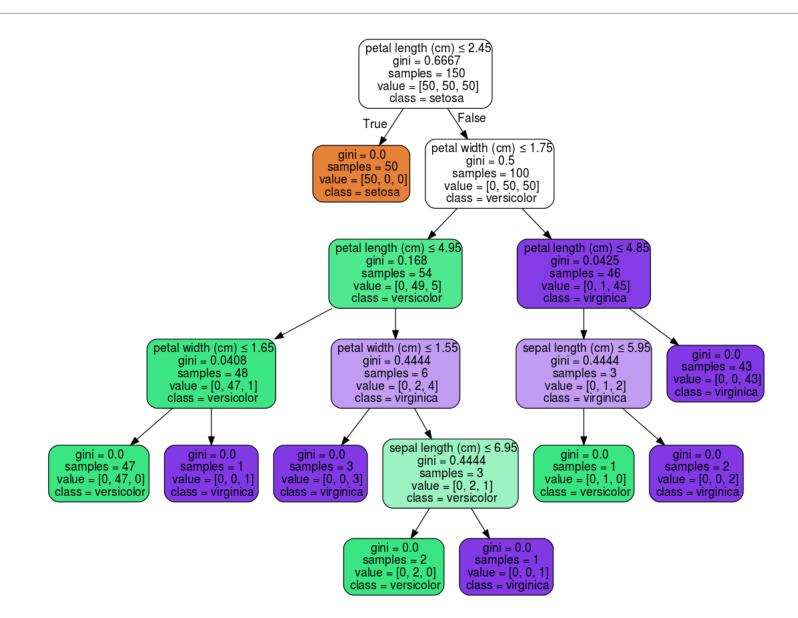
student	Buy_Computer		
	yes no		
yes	6	1	
no	3	4	

Credit	Buy_Computer		
rating	yes	no	
fair	6	2	
excellent	3	3	

The Training Data

Its AVC Sets

Visualization of a Decision Tree (in scikit-learn)



Visualization of a Decision Tree

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods

- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Bayes' Theorem: Basics

Total probability Theorem:

$$p(B) = \sum_{i} p(B|A_i)p(A_i)$$

Bayes' Theorem:

$$p(H|\mathbf{X}) = \frac{p(\mathbf{X}|H)P(H)}{p(\mathbf{X})} \propto p(\mathbf{X}|H)P(H)$$
posteriori probability likelihood prior probability

What we should choose

What we just see What

What we knew previously

X: a data sample ("evidence")

Prediction can be done based on Bayes' Theorem:

☐ H: X belongs to class C

Classification is to derive the maximum posteriori

Bayes' Theorem Example 1: Cancer Tests

	Cancer (1%)	No Cancer (99%)	Only 1% people have cancer
Test Pos	80%	9.6%	How accurate is the test?
Test Neg	20%	90.4%	80%? 99%? 1%?

	Cancer (1%)	No Cancer (99%)
Test Pos	True Pos 1% x 80% = .008	False Pos 99% x 9.6% = .09504
Test Neg	False Neg 1% x 20% = .002	True Neg 99% x 90.4% = .89496

- ☐ Chance of true positive is thus

According to Bayes' Theorem, P(H|X) = P(X|H)P(H)/P(X), the chance of having a cancer given positive test results is

True pos / (True pos + False pos) = 0.008 / (0.008+0.09504) = <math>7.76%

The Theorem lets us correct for the skewness introduced by false positives

Bayes' Theorem Example 2: Picnic Day

- ☐ The morning is cloudy 🕾
- What is the chance of rain? P(Rain | Cloud) = ?
- □ 50% of all rainy days start off cloudy. P(Cloud | Rain) = 50%
- \Box Cloudy mornings are common (40% of days start cloudy) P(Cloud) = 40%
- □ This is usually a dry month (only 3 of 30 days tend to be rainy) P(Rain) = 10%
- P(Rain | Cloud) = P(Rain) P(Cloud | Rain) / P(Cloud) = 10% * 50% / 40% = 12.5%
- Again, the chance of rain is probably not as high as expected <a>©
- Bayes' Theorem allows us to tell back and forth between posterior and likelihood (e.g., P(Rain | Cloud) and P(Cloud | Rain)), tests and reality, which is the most important trick in Bayesian Inference

Naïve Bayes Classifier: Making a Naïve Assumption

- Based on the Bayes' Theorem, we can derive a Bayes Classifier to compute the posterior probability of classifying an object X to a class C
 - □ $P(C|X) \propto P(X|C)P(C) = P(x1|C)P(x2|x1,C)...P(xn|x1,...,C)P(C)$

- □ A naïve assumption to simplify the complex dependencies: *features are conditionally independent!*

- □ Super efficient: each feature only conditions on the class (boils down to sample counting)
- Achieves surprisingly comparable performance

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

□ If feature x_k is continuous-valued, $p(x_k = v_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30, Income = medium,

Student = yes, Credit_rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: Training Dataset

$$P(C_i|X) \propto P(X|C_i) * P(C_i)$$

 $P(C_i)$:

P(buys_computer = "yes") = 9/14 = 0.643

P(buys_computer = "no") = 5/14 = 0.357

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

```
Compute P(X|C_i) for each class:
```

```
P(age = "<=30"|buys_computer = "yes") = \frac{2}{9} = 0.222
P(age = "<= 30"|buys_computer = "no") = \frac{3}{5} = 0.6
```

```
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
```

```
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
```

```
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

$P(X|C_i)$: P(X|buys_computer = "yes") = P(age = "<=30" | buys_computer = "yes") P(income = "medium" | buys_computer = "yes") P(student = "yes" | buys_computer = "yes) P(credit rating = "fair" | buys_computer = "yes") $= 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$ P(X|buys_computer = "no") = P(age = "<= 30" | buys computer = "no") P(income = "medium" | buys computer = "no") P(student = "yes" | buys_computer = "no")

P(credit_rating = "fair" | buys_computer = "no")

 $= 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

P(X C _i)	C1 = yes	C2 = no
age <= 30	0.222	0.6
Inc. = med.	0.444	0.4
Stu. = yes	0.667	0.2
Credit = fair	0.667	0.4

Conditional probability

$P(X|C_i)*P(C_i)$:

P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028 P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007

Therefore, X is classified to class ("buys_computer = yes")

Avoiding the Zero-Probability Problem

- □ Naïve Bayesian prediction requires each conditional probability be **non-zero**
 - Otherwise, the predicted probability will be zero

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \dots \cdot p(x_n|C_i)$$

- Example. Suppose a dataset with 1000 tuples:
 - income = low (0), income = medium (990), and income = high (10)
- ☐ Use **Laplacian correction** (or Laplacian estimator)
 - Adding 1 to each case

$$Prob(income = low) = 1/(1000 + 3)$$

Prob(income = medium) =
$$(990 + 1)/(1000 + 3)$$

Prob(income = high) =
$$(10 + 1)/(1000 + 3)$$

$$\begin{split} \hat{P}(w_i \mid c) &= \frac{count(w_i, c) + 1}{\sum_{w \in V} \left(count(w, c) \right) + 1} \\ &= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c) \right) + |V|} \end{split}$$

The "corrected" probability estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Strength vs. Weakness

- Strength
 - Performance: A naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
 - Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct—prior knowledge can be combined with observed data

Naïve Bayes Classifier: Strength vs. Weakness

- Weakness
 - Assumption: attributes conditional independence, therefore loss of accuracy
 - E.g., Patient's Profile: (age, family history),
 - Patient's Symptoms: (fever, cough),
 - Patient's Disease: (lung cancer, diabetes).
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
 - How to deal with these dependencies?

Use Bayesian Belief Networks (to be covered in the next chapter)

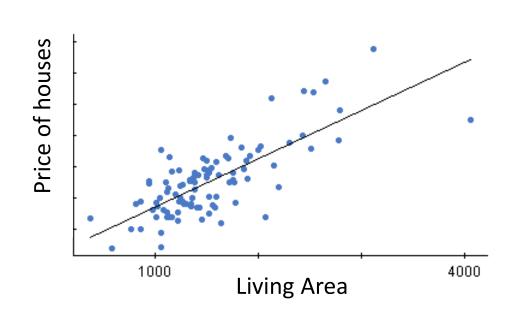
Chapter 8. Classification: Basic Concepts

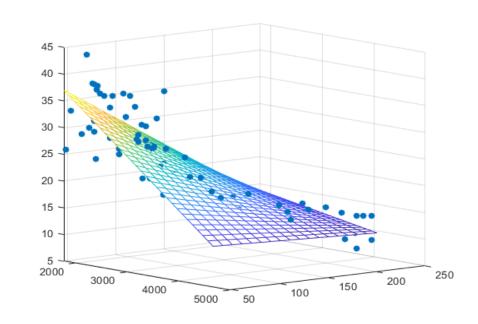
- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier

- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Linear Regression Problem: Example

- □ Mapping from independent attributes to **continuous value**: x => y
- □ {living area} => Price of the house
- □ {college; major; GPA} => Future Income





Linear Regression Problem: Model

- Linear regression
 - Data: n independent objects
 - Observed Value: y_i , $i = 1,2,3,\dots,n$
 - \square p-dimensional attributes: $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})^T$, $i = 1, 2, 3 \dots, n$
 - Model:
 - Weight vector: $w = (w_1, w_2, \dots, w_p)$
 - $y_i = w^T x_i + b$
 - ☐ The weight vector w and bias b is the model parameter learnt by data

Linear Regression Model: Solution

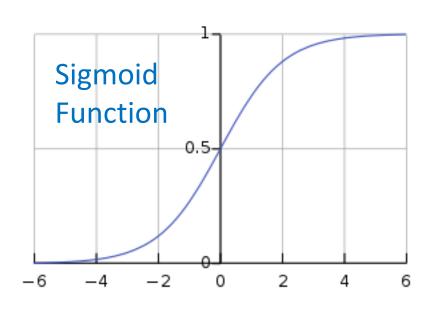
- Least Square Method
 - Cost Function: $L(w,b) = \sum_{i=1}^{m} (y_i wx_i b)^2$
 - Optimization Goal: argmin $L(w,b) = \sum_{i=1}^{m} (y_i wx_i b)^2$

Closed-form solution:

Logistic Regression: General Ideas

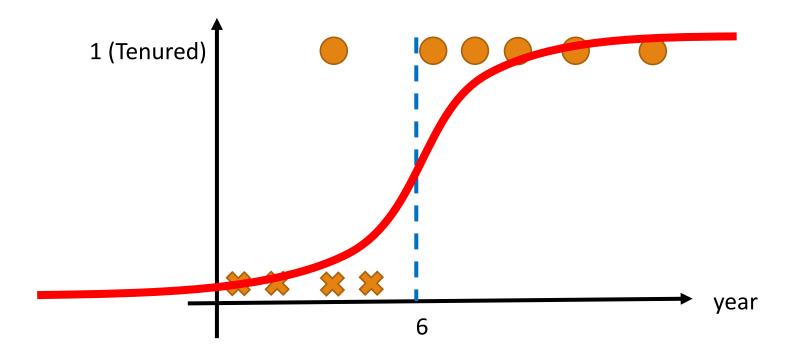
- How to solve "classification" problems by regression?
- Key idea of Logistic Regression
 - \square We need to transform the real value Y into a probability value $\in [0,1]$
- Sigmoid function:

- □ Projects $(-\infty, +\infty)$ to [0, 1]
- Not only LR uses this function, but also neural network, deep learning
- The projected value change sharply around zero point
- Notice that $\ln \frac{y}{1-y} = w^T x + b$



Logistic Regression: An Example

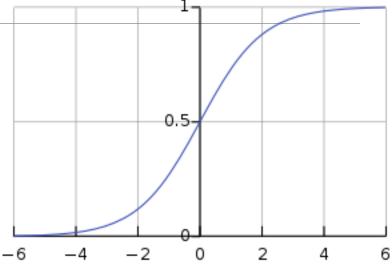
Suppose we only consider the year as feature



Logistic Regression: Model

- The prediction function to learn

 - $\mathbf{w} = (w_0, w_1, w_2, ..., w_n)$ are the parameters



- $lue{}$ A single data object with attributes x_i and class label y_i
 - Suppose the probability of $p(\hat{y}_i = 1 | x_i, w) = p_i$, then $p(\hat{y}_i = 0 | x_i, w) = 1 p_i$
 - $p(\widehat{y_i} = y_i) = p_i^{y_i} (1 p_i)^{1 y_i}$
- Maximum Likelihood Estimation

Logistic Regression: Optimization

Maximum Likelihood Estimation

■ Log likelihood:

$$l(w) = \sum_{i=1}^{N} y_i \log p(Y = 1 | X = x_i; w) + (1 - y_i) \log(1 - p(Y = 1 | X = x_i; w))$$

$$= \sum_{i=1}^{N} y_i x_i^T w - \log(1 + \exp(w^T x_i))$$

- ☐ There's no closed form solution
 - Gradient Descent

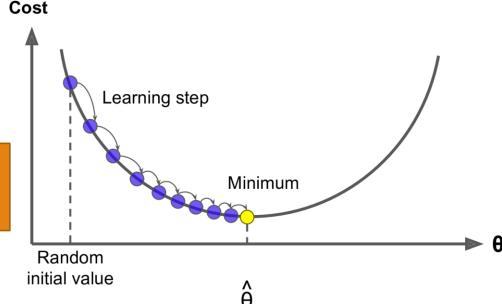
Gradient Descent

Gradient Descent is an iterative optimization algorithm for finding the minimum of a function (e.g., the negative log likelihood)

For a function F(x) at a point **a**, F(x) decreases fastest if we go in the direction of

the negative gradient of a

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \widehat{m{\gamma}}
abla F(\mathbf{a}_n)$$



Step size

When the gradient is zero, we arrive at the local minimum

Linear Regression VS. Logistic Regression

- Linear Regression
 - \square Y: Continuous Value $\in [-\infty, +\infty]$
 - $Y = W^T X + b$
 - Often used in value prediction problems

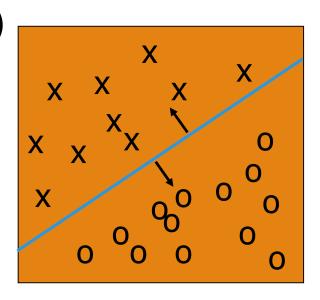
- Logistic Regression
 - Y: A discrete value from m classes
 - $P(Y = C_i) \in [0,1] \ and \ \Sigma_{i=1}^m P(Y = C_i) = 1$
 - Often used in classification problems

Comments on Logistic Regression

- Pros
 - Can handle multiple types of features
 - Fast and easy
 - Generally speaking, more robust and better performance than tree
 - Interpretable: both weights and predicted value
 - Predicted value: probability
 - Weights: effect of the feature. Unit change of log odds
- Cons
 - Linear model: if the decision boundary is not linear, then LR is not good

Linear Classifier: General Ideas

- Binary Classification
- \Box f(x) is a linear function based on the example's attribute values
 - $lue{}$ The prediction is based on the value of f(x)
 - \square Data above the blue line belongs to class 'x' (i.e., f(x) > 0)
 - \square Data below blue line belongs to class 'o' (i.e., f(x) < 0)
- Classical Linear Classifiers
 - Logistic Regression
 - Linear Discriminant Analysis (LDA)
 - Perceptron
 - SVM

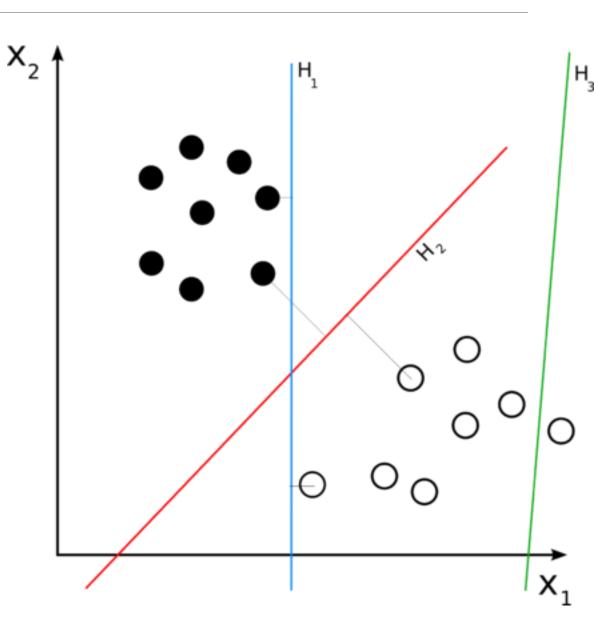


Linear Classifier: An Example

- ☐ A toy rule to determine whether a faculty member has tenure
 - Year >= 6 or Title = "Professor" ⇔ Tenure
- □ How to express the rule as a linear classifier?
- Features
 - $x_1(x_1 \ge 0)$ is an integer denoting the year
 - x₂ is a Boolean denoting whether the title is "Professor"
- \square A feasible linear classifier: $f(x) = (x_1 5) + 6 \cdot x_2$
 - \square When x_2 is True, because $x_1 \ge 0$, f(x) is always greater than 0
 - \square When x_2 is False, because $f(x) > 0 \Leftrightarrow x_1 \ge 6$
- ☐ There are many more feasible classifiers
 - $f(x) = (x_1 5.5) + 6 \cdot x_2$
 - $f(x) = 2 \cdot (x_1 5) + 11 \cdot x_2$
 - **.....**

Key Question: Which Line Is Better?

- There might be many feasible linear functions
 - Both H1 and H2 will work
- Which one is better?
 - H2 looks "better" in the sense that it is also furthest from both groups
 - We will introduce more in the SVM section



Generative vs. Discriminative Classifiers

- X: observed variables (features)
- Y: target variables (class labels)
- A generative classifier models p(Y, X)
 - □ It models how the data was "generated"? "what is the likelihood this or that class generated this instance?" and pick the one with higher probability
 - Naïve Bayes
 - Bayesian Networks
- A discriminative classifier models p(Y|X)
 - It uses the data to create a decision boundary
 - Logistic Regression
 - Support Vector Machines

Further Comments on Discriminative Classifiers

- Strength
 - Prediction accuracy is generally high
 - As compared to generative models
 - □ Robust, works when training examples contain errors
 - Fast evaluation of the learned target function
 - □ Comparing to (covered in future) Bayesian networks (which are normally slow)
- Criticism
 - Long training time
 - Difficult to understand the learned function (weights)
 - Bayesian networks can be used easily for pattern discovery
 - Not easy to incorporate domain knowledge
 - Easy in the form of priors on the data or distributions

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection

- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Model Evaluation and Selection

- Evaluation metrics
 - How can we measure accuracy?
 - Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
 - Holdout method
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_{1}	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- □ In a confusion matrix w. m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals
- **■** Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	P'	N'	All

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

■ Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
 - One class may be rare
 - E.g., fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
 - Measures handle the class imbalance problem
 - **Sensitivity** (recall): True positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

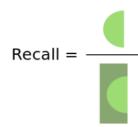
Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive?

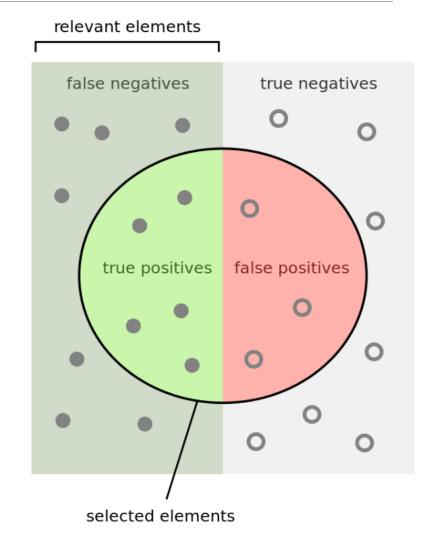
$$P = Precision = \frac{TP}{TP + FP}$$

■ Recall: Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN}$$

Range: [0, 1]





Classifier Evaluation Metrics: Precision and Recall, and F-measures

- The "inverse" relationship between precision & recall
- We want one number to say if a classifier is good or not
- F measure (or F-score): harmonic mean of precision and recall
 - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)P * R}{\beta^2 P + R}$$
 Assigning β times as much weight to recall as to precision)

- F1-measure (balanced F-measure)
 - That is, when $\beta = 1$,

$$F_1 = \frac{2P * R}{P + R}$$

Classifier Evaluation Metrics: Example

☐ Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

- Sensitivity =
- Specificity =
- Accuracy =
- ☐ Error rate =
- Precision =
- ☐ Recall =
- □ F1 =

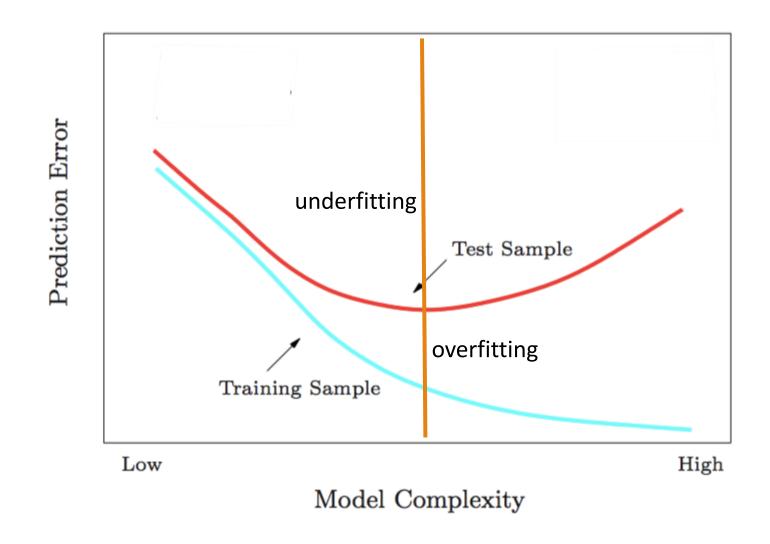
Classifier Evaluation Metrics: Example

☐ Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

- ☐ Sensitivity = TP/P = 90/300 = 30%
- □ Specificity = TN/N = 9560/9700 = 98.56%
- \triangle Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- \square Error rate = (FP + FN)/All = (140 + 210)/10000 = 3.50%
- \square Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- \square Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- \blacksquare F1 = 2 P × R /(P + R) = 2 × 39.13% × 30.00%/(39.13% + 30%) = 33.96%

Training Error VS Testing Error



Classifier Evaluation: Holdout & Cross-Validation

Holdout method

- Given data is randomly partitioned into two independent sets
 - □ Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Repeated random sub-sampling validation: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- \Box Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class distribution, in each fold is approximately the same as that in the initial data

Classifier Evaluation: Bootstrap

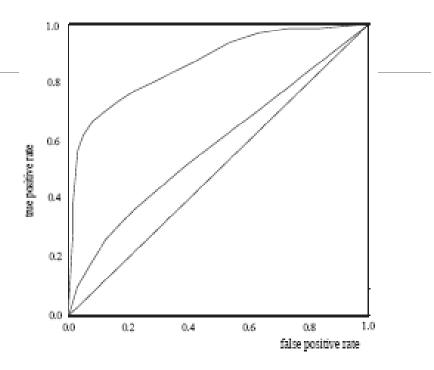
Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 bootstrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - \square Repeat the sampling procedure k times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Model Selection: ROC Curves

- **ROC** (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- ☐ The area under the ROC curve (AUC: Area Under Curve) is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- ☐ The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model



- Vertical axis represents the true positive rate (TP/P)
- Horizontal axis rep. the false positive rate (FP/N)
- ☐ The plot also shows a diagonal line
- □ A model with perfect accuracy will have an area of 1.0

Issues Affecting Model Selection

- Accuracy
 - classifier accuracy: predicting class label
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Chapter 8. Classification: Basic Concepts

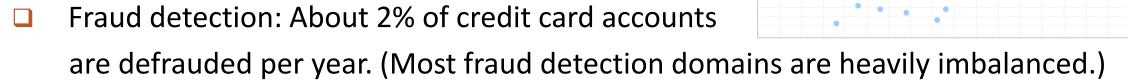
- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Classification of Class-Imbalanced Data Sets

Traditional methods assume a balanced distribution of classes and equal error costs. But in real world situations, we may face imbalanced data sets, which has

rare positive examples but numerous negative ones.

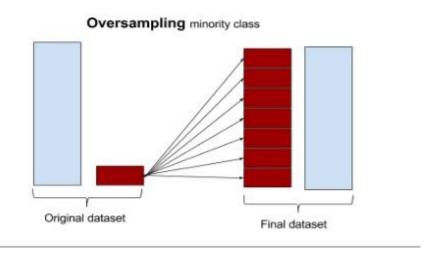
Medical diagnosis: Medical screening for a condition is usually performed on a large population of people without the condition, to detect a small minority with it (e.g., HIV prevalence in the USA is ~0.4%)

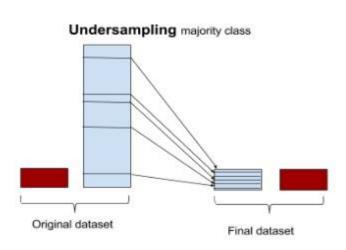


Product defect, accident (oil-spill), disk drive failures, etc.

Classification of Class-Imbalanced Data Sets

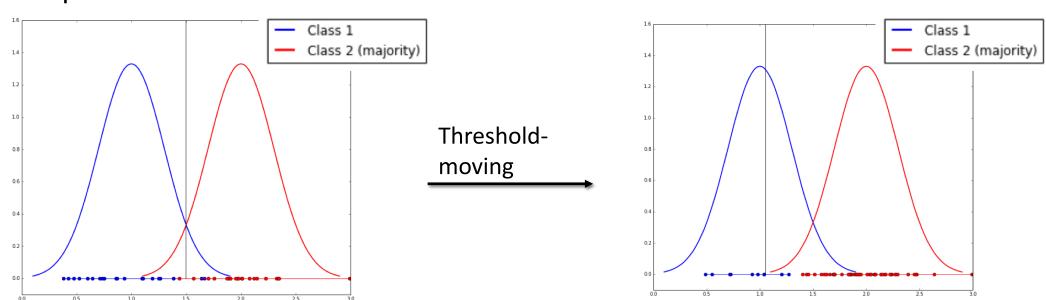
- Typical methods on imbalanced data (Balance the training set)
 - Oversampling: Oversample the minority class.
 - Under-sampling: Randomly eliminate tuples from majority class
 - Synthesizing: Synthesize new minority classes



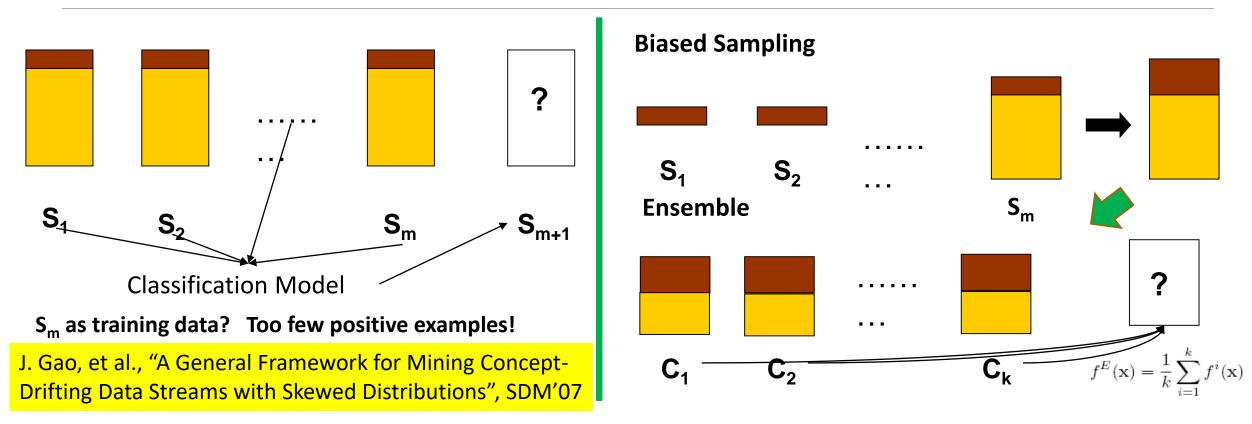


Classification of Class-Imbalanced Data Sets

- Typical methods on imbalanced data (At the algorithm level)
 - ☐ **Threshold-moving**: Move the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Class weight adjusting: Since false negative costs more than false positive, we can give larger weight to false negative
 - **Ensemble techniques**: Ensemble multiple classifiers introduced in the following chapter



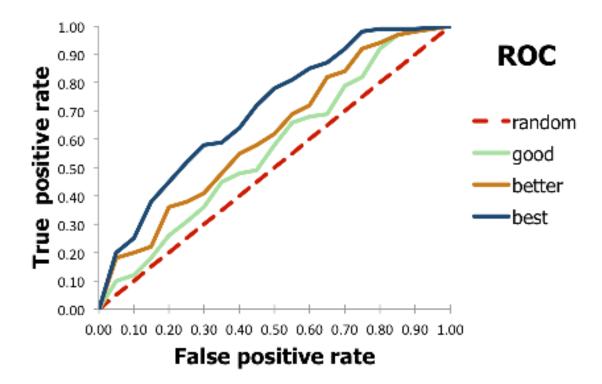
Classifying Data Streams with Skewed Distribution



- Classify data stream with skewed distribution (i.e., rare events)
 - **Biased sampling:** Save only the positive examples in the streams
 - Ensemble: Partition negative examples of S_m into k portions to build k classifiers
 - Effectively reduce classification errors on the minority class

Evaluate imbalanced data classifier

- Can we use Accuracy to evaluate imbalanced data classifier?
- □ Accuracy simply counts the number of errors. If a data set has 2% positive labels and 98% negative labels, a classifier that map all inputs to negative class will get an accuracy of 98%!
- ROC Curve



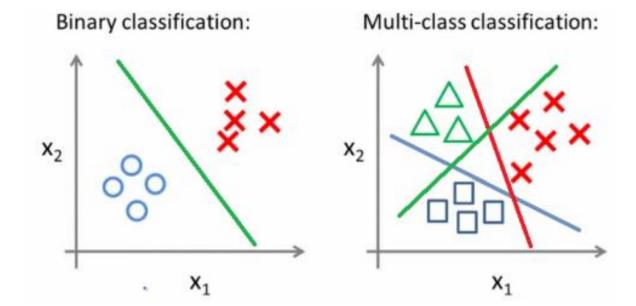
Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification

Summary

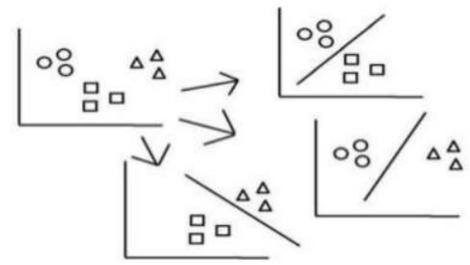
Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Methodology: Reducing the multi-class problem into multiple binary problems
- Method 1. One-vs.-rest (or one-vs.-all)
 - ☐ Given *m* classes, train *m* classifiers: one for each class
 - Classifier j: treat tuples in class j as positive & all the rest as negative
 - To classify a tuple **X**, the set of classifiers vote as an ensemble



Multiclass Classification

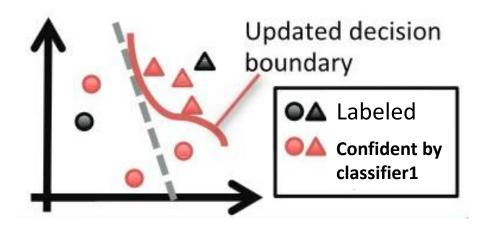
- ☐ Method 2. **one-vs.-one** (or **all-vs.-all**): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - ☐ To classify a tuple **X**, each classifier votes
 - X is assigned to the class with maximal vote



- □ Comparison: One-vs.-one tends to perform better than one-vs.-rest
- Many new algorithms have been developed to go beyond binary classifier method

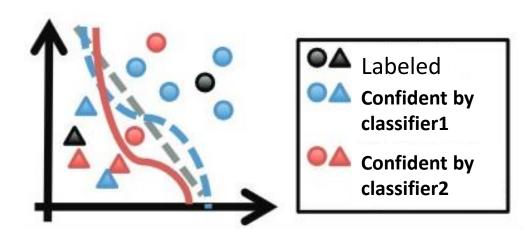
Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training
 - 1. Build a classifier using the labeled data
 - 2. Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - 3. Repeat the step 1 and 2
 - Adv.: easy to understand; Disadv.: may reinforce errors



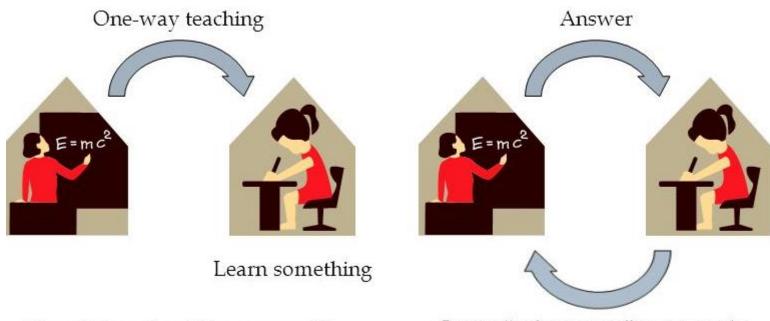
Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f_1 and f_2
 - ☐ Then f₁ and f₂ are used to predict the class label for unlabeled data X
 - \square Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 & vice versa
- Other methods include joint probability distribution of features and labels



Active Learning

- A special case of semi-supervised learning
- Active learner: Interactively query teachers (oracle) for labels of "informative" data



Everything should be prepared!

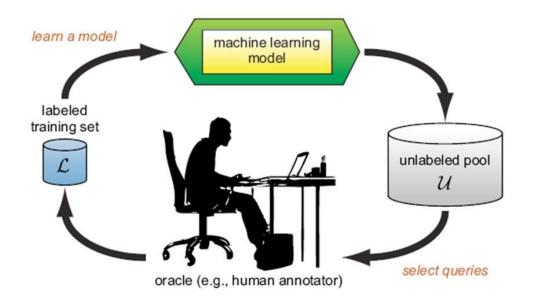
(a) Passive Learning

Query "informative" points only.

(b) Active Learning

Active Learning

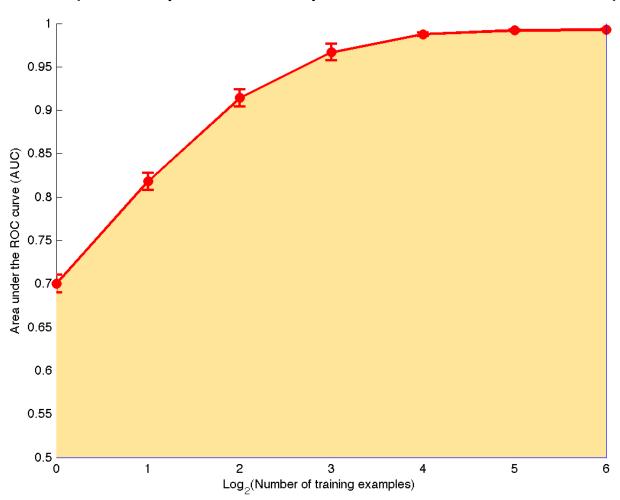
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - ☐ The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible



One good choice: unlabeled point closest to the current decision boundary

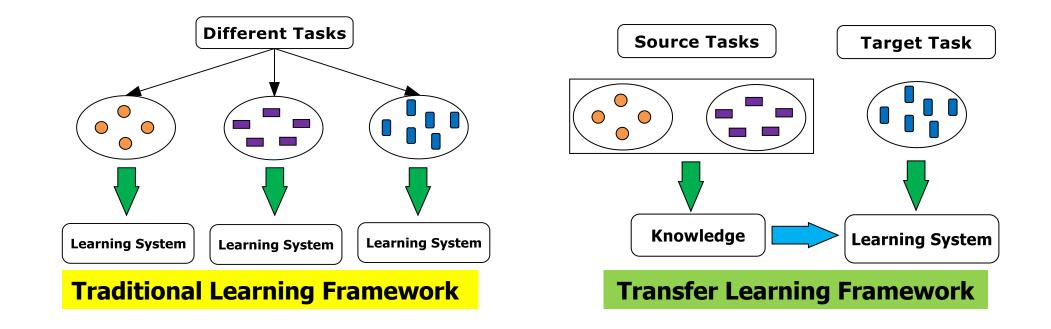
Active Learning

Evaluated using learning curves: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)

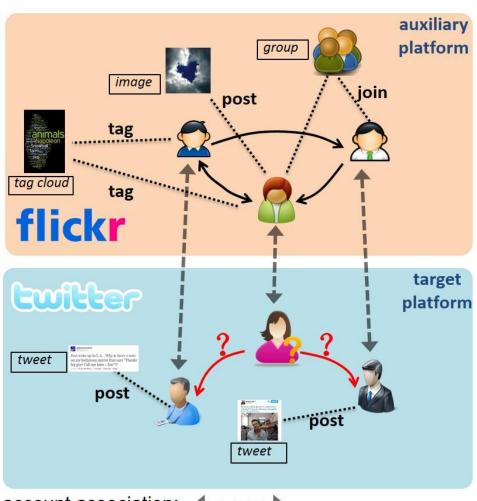


Transfer Learning: Conceptual Framework

- ☐ Traditional learning: Build a new classifier for each new task
- Transfer learning: Extract knowledge from one or more source tasks (e.g., recognizing cars) and apply the knowledge to a target task (e.g., recognizing trucks)
- ☐ Many algorithms are developed, applied to text classification, spam filtering, etc.



Transfer Learning: An Example



- Cross-platform friend recommendation[1]
- Users' social relation and behavior in one platform(flickr) offers important knowledge about social interest in another platform(Twitter)

[1]http://nlpr-web.ia.ac.cn/mmc/homepage/myan/Project_YanMing/ming_ICME2013/material/ICME2013Final.pdf

Weak Supervision: A New Programming Paradigm for Machine Learning

- Overcome the training data bottleneck
 - Leverage higher-level and/or noisier input from experts
- Sources of cheaply and efficiently provided weak labels
 - Higher-level, less precise supervision (e.g., heuristic rules, expected label distributions)
 - Cheaper, lower-quality supervision (e.g. crowdsourcing)
 - Existing resources (e.g. knowledge bases, pre-trained models)

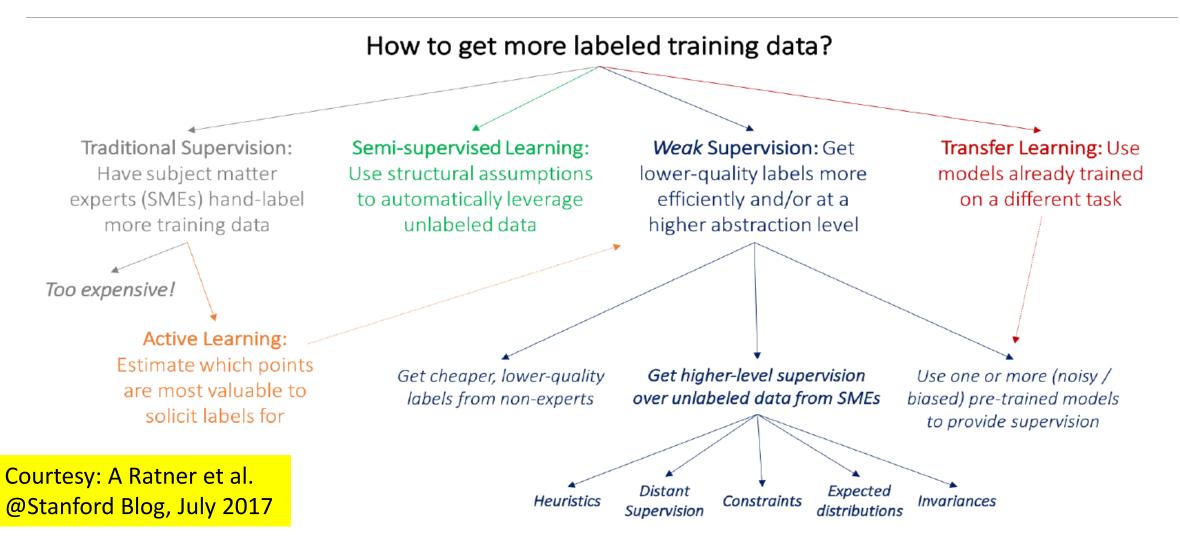
Weak Supervision: A New Programming Paradigm for Machine Learning

- ☐ These weak label distributions could take many forms
 - Weak Labels from crowd workers, output of heuristic rules, knowledge base(e.g. wikipedia), or the output of other classifiers, etc.
 - Constraints and invariances (e.g., from physics, logic, or other experts)
 - Probability distributions (e.g., from weak or biased classifiers or userprovided label or feature expectations or measurements)

Weak Supervision: A New Programming Paradigm for Machine Learning

- These weak label distributions could suffer from noises or errors
 - Insufficient labeling
 - Labeled Data + Unlabeled Data
 - Non-Unique labeling
 - Multi-label data: Label multiple valid labels to each data tuple
 - Ambiguous labeling
 - Partial-label data: Label multiple candidate labels to each data tuple

Relationships Among Different Kinds of Supervisions



Many areas of machine learning are motivated by the bottleneck of labeled training data, but are divided at a high-level by what information they leverage instead.

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Imbalanced Data Sets
- Additional Concepts on Classification
- Summary

Summary

- Classification: Model construction from a set of training data
- Effective and scalable methods
 - Decision tree induction, Bayes classification methods, linear classifier, ...
 - No single method has been found to be superior over all others for all data sets
- Evaluation metrics: Accuracy, sensitivity, specificity, precision, recall, F measure
- Model evaluation: Holdout, cross-validation, bootstrapping, ROC curves (AUC)
- Improve Classification Accuracy: Bagging, boosting
- Additional concepts on classification: Multiclass classification, semi-supervised classification, active learning, transfer learning, weak supervision

Prepare for Exam

- Do calculations Step by step
 - Decision tree, Naive Bayes classification methods
 - Accuracy, sensitivity, specificity, precision, recall, F measure
 - Prediction for logistic regression (with provided parameters)
- Concepts
 - What does a term mean
 - Describe the procedure
 - Pros and cons for the classification methods
 - Interpret the results

References (1)

- C. Apte and S. Weiss. **Data mining with decision trees and decision rules**. Future Generation Computer Systems, 13, 1997
- P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data for scaling machine learning. KDD'95
- □ A. J. Dobson. **An Introduction to Generalized Linear Models**. Chapman & Hall, 1990.
- R. O. Duda, P. E. Hart, and D. G. Stork. **Pattern Classification**, 2ed. John Wiley, 2001
- U. M. Fayyad. **Branching on attribute values in decision tree generation**. AAAI'94.
- Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 1997.
- J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of large datasets. VLDB'98.
- J. Gehrke, V. Gant, R. Ramakrishnan, and W.-Y. Loh, BOAT -- Optimistic Decision Tree Construction. SIGMOD'99.
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

References (2)

- T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 2000
- J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing Research, Blackwell Business, 1994
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. EDBT'96
- T. M. Mitchell. **Machine Learning**. McGraw Hill, 1997
- S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998
- ☐ J. R. Quinlan. **Induction of decision trees**. *Machine Learning*, 1:81-106, 1986.
- J. R. Quinlan. **C4.5: Programs for Machine Learning**. Morgan Kaufmann, 1993.
- ☐ J. R. Quinlan. **Bagging, boosting, and c4.5**. AAAI'96.

References (3)

- R. Rastogi and K. Shim. **Public: A decision tree classifier that integrates building and pruning**. VLDB'98
- J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. VLDB'96
- J. W. Shavlik and T. G. Dietterich. **Readings in Machine Learning**. Morgan Kaufmann, 1990
- P. Tan, M. Steinbach, and V. Kumar. **Introduction to Data Mining**. Addison Wesley, 2005
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991
- S. M. Weiss and N. Indurkhya. **Predictive Data Mining**. Morgan Kaufmann, 1997
- I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,
 2ed. Morgan Kaufmann, 2005

Bayes' Theorem: Basics

Total probability Theorem:

$$P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$$

■ Bayes' Theorem:

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Let **X** be a data sample ("evidence"): class label is unknown
- Let H be a *hypothesis* that X belongs to class C
- Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
- P(H) (prior probability): the initial probability
 - E.g., **X** will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - □ E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- \square Suppose there are m classes C_1 , C_2 , ..., C_m .
- \Box Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i | X)$
- ☐ This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

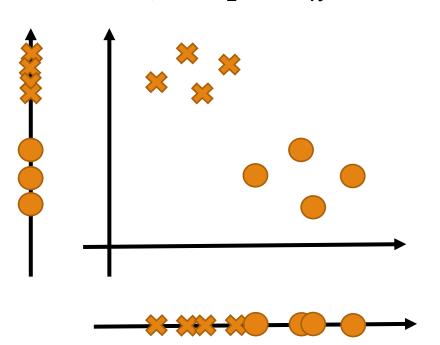
☐ Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) \infty P(\mathbf{X}|C_i) P(C_i)$$

needs to be maximized

Linear Discriminant Analysis (LDA)

- □ Linear Discriminant Analysis (LDA) works when the attributes are all continuous
 - □ For the categorical attributes, discriminant correspondence analysis is the equivalent technique
- □ Basic Ideas: Project all samples on a line such that different classes are well separated
- lacktriangle Example: Suppose we have 2 classes and 2-dimensional samples x_1, \dots, x_n
 - \square n_1 samples come from class 1
 - \square n_2 samples come from class 2
- $lue{}$ Let the line direction be given by unit vector $oldsymbol{v}$
- There are two candidates of projections
 - ightharpoonup Vertical: v = (0,1)
 - \Box Horizontal: v = (1,0)
- Which one looks better?
- How to mathematically measure it?



Fisher's LDA (Linear Discriminant Analysis)

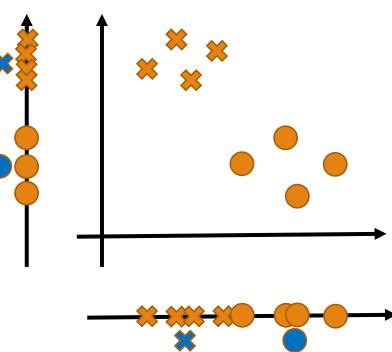
- $\mathbf{v}^T x_i$ is the distance of projection of x_i from the origin
- Let μ_1 and μ_2 be the means of class 1 and class 2 in the original space

$$\square \quad \mu_1 = \frac{1}{n_1} \sum_{i \in \text{class } 1} x_i$$

$$\square \quad \mu_2 = \frac{1}{n_2} \sum_{i \in \text{class 2}} x_i$$

- ☐ The distance between the means of the projected points

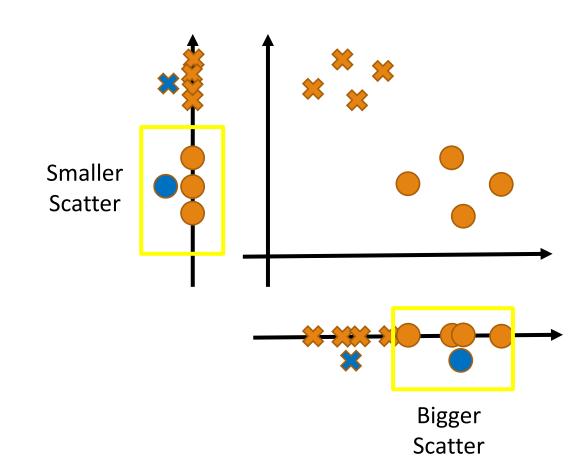
 - Good? No. Horizontal one may have larger distance



Fisher's LDA (con't)

- Normalization needed
- $lue{}$ Scatter: Sample variance multiplied by n

- Fisher's LDA
 - □ Maximize $J(v) = \frac{(v^T \mu_1 v^T \mu_2)^2}{s_1 + s_2}$
 - Closed-form optimal solution



Fisher's LDA: Summary

- Advantages
 - Useful for dimension reduction
 - Easy to extend to multi-classes
- Fisher's LDA will fail
 - lacksquare When $\mu_1 = \mu_2$, J(v) is always 0.
 - When classes have large overlap when projected to any line