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Chapter 7 : Advanced Frequent Pattern Mining
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Mining Diverse Patterns

❑ Mining Multiple-Level Associations

❑ Mining Multi-Dimensional Associations

❑ Mining Quantitative Associations

❑ Mining Negative Correlations

❑ Mining Compressed and Redundancy-Aware Patterns
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Mining Multiple-Level Frequent Patterns

❑ Min-support thresholds for 
hierarchy items

❑ Uniform min-support 
across multiple levels 
(reasonable?)

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk 

[support = 6%]

Skim Milk 

[support = 2%]

❑ Level-reduced min-support:  Items at the lower level are expected to 
have lower support

❑ Efficient mining:  Shared multi-level mining

❑ Use the lowest min-support to pass down the set of candidates
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Redundancy Filtering at Mining Multi-Level 
Associations 

❑ Redundancy filtering:  redundant due to “ancestor” relationships 

❑ milk  wheat bread  [support = 8%, confidence = 70%]   (1)

❑ 2% milk  wheat bread [support = 2%, confidence = 72%] (2)

❑ Suppose the 2% milk sold is about ¼  of milk sold in gallons

❑ (2) should be able to be “derived” from (1)
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❑ milk  wheat bread  [support = 8%, confidence = 70%]   (1)

❑ 2% milk  wheat bread [support = 2%, confidence = 72%] (2) 

❑ A rule is redundant if its support is close to the “expected” value, 
according to its “ancestor” rule, and it has a similar confidence as its 
“ancestor”

❑ Rule (1) is an ancestor of rule (2), which one to prune?

Redundancy Filtering at Mining Multi-Level 
Associations 



7

Customized Min-Supports for Different Kinds of 
Items

❑ Same min-support threshold for all so far

❑ Diamonds, watches: valuable but less frequent

❑ One Method: Use group-based “individualized” min-support

❑ E.g., {diamond, watch}: 0.05%;  {bread, milk}: 5%; …

❑ How to mine such rules efficiently?

❑ Existing scalable mining algorithms can be easily extended to cover such 
cases
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Mining Multi-Dimensional Associations
❑ Single-dimensional rules (e.g., items are all in “product” dimension)

❑ buys(X, “milk”)  buys(X, “bread”)

❑ Multi-dimensional rules (i.e., items in  2 dimensions or predicates)

❑ Inter-dimension association rules (no repeated predicates)

❑ age(X, “18-25”)  occupation(X, “student”)  buys(X, “coke”)

❑ Hybrid-dimension association rules (repeated predicates)

❑ age(X, “18-25”)  buys(X, “popcorn”)  buys(X, “coke”)

❑ Attributes can be categorical or numerical

❑ Categorical Attributes (e.g., profession, product: no ordering among 

values): Data cube for inter-dimension association

❑ Quantitative Attributes: Numeric, implicit ordering among values—

discretization, clustering, and gradient approaches
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Mining Quantitative Associations

❑ Mining associations with numerical attributes

❑ E.g.:   Numerical attributes: age and salary

❑ Methods

❑ Static discretization based on predefined concept hierarchies 

❑ Discretization on each dimension with hierarchy

❑ age: {0-10, 10-20, …, 90-100} → {young, mid-aged, old}

❑ Dynamic discretization based on data distribution

❑ Clustering: Distance-based association 

❑ First one-dimensional clustering, then association

❑ Deviation analysis: 

❑ Gender = female Wage: mean=$7/hr (overall mean = $9)
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Mining Extraordinary Phenomena in Quantitative 
Association Mining

❑ Mining extraordinary (i.e., interesting) phenomena

❑ E.g.:  Gender = female Wage: mean=$7/hr (overall mean = $9)

❑ LHS: a subset of the population 

❑ RHS: an extraordinary behavior of this subset

❑ The rule is accepted only if a statistical test (e.g., Z-test) confirms the 
inference with high confidence

❑ Subrule: Highlights the extraordinary behavior of a subset of the 
population of the super rule 

❑ E.g.: (Gender = female) ^ (South = yes) mean wage = $6.3/hr

❑ Rule condition can be categorical or numerical (quantitative rules)

❑ E.g.: Education in [14-18] (yrs) mean wage = $11.64/hr
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Rare Patterns

❑ Rare patterns

❑ Very low support but interesting (e.g., buying Rolex watches)

❑ How to mine them? Setting individualized, group-based min-support 

thresholds for different groups of items
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Negative Patterns

❑ Negative patterns

❑ Negatively correlated: Unlikely to happen together

❑ Ex.:  Since it is unlikely that the same customer buys both a Ford Expedition (an SUV 

car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford 

Fusion are likely negatively correlated patterns

❑ How to define negative patterns?

❑ A support-based definition of negative correlated patterns

❑ If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << 
sup (A) × sup(B)

Does this remind you the definition of lift?
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Defining Negative Correlated Patterns

❑ Ex.:   Suppose a store sold two needle packages A and B 100 times each, 
but only one transaction contained both A and B

❑ When there are in total 200 transactions, we have 

❑ s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

❑ But when there are 105 transactions, we have

❑ s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

❑ What is the problem?—Null transactions: The support-based definition 
is not null-invariant!

Is this a good definition for large transaction datasets? 
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Defining Negative Correlation:  Need 
Null-Invariance in Definition

❑ A Kulczynski measure-based definition  

❑ If itemsets A and B are frequent but (s(A U B)/s(A) + s(A U B)/s(B))/2 < є,
then A and B are negatively correlated

❑ For the same needle package problem:

❑ No matter there are in total 200 or 105 transactions

❑ If є = 0.01, we have 

(s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < є

negative 
pattern 
threshold
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Mining Compressed Patterns

❑ Why mining compressed patterns? Too many 
scattered patterns but not so meaningful

❑ Pattern distance measure

❑ δ-clustering: For each pattern P, find all patterns 
which can be expressed by P and whose distance 
to P is within δ (δ-cover)

❑ All patterns in the cluster can be represented by P

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

❑ Closed patterns 
❑ P1, P2, P3, P4, P5
❑ Emphasizes too much on 

support
❑ Max-patterns
❑ P3: information loss

❑ Desired output (a good balance):
❑ P2, P3, P4
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Redundancy-Aware Top-k Patterns
❑ Desired patterns: high significance & low redundancy

❑ Method:  Use MMS (Maximal Marginal Significance) for measuring the 
combined significance of a pattern set 

❑ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs
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Constraint-Based Pattern Mining
❑ Why Constraint-Based Mining? 

❑ Different Kinds of Constraints: Different Pruning Strategies

❑ Constrained Mining with Pattern Anti-Monotonicity

❑ Constrained Mining with Pattern Monotonicity

❑ Constrained Mining with Convertible Constraints

❑ Constrained Mining with Data Anti-Monotonicity

❑ Constrained Mining with Succinct Constraints

❑ Handling Multiple Constraints
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Why Constraint-Based Mining?
❑ Pattern mining in practice: Often a user-guided, interactive process 

❑ User directs what to be mined using a data mining query language (or a 
graphical user interface), specifying various kinds of constraints

❑ What is constraint-based mining?

❑ Mine together with user-provided constraints

❑ Why constraint-based mining?

❑ User flexibility: User provides constraints on what to be mined

❑ Optimization: System explores such constraints for mining efficiency

❑ E.g., Push constraints deeply into the mining process
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Various Kinds of User-Specified Constraints in Data Mining

❑ Knowledge type constraint—Specifying what kinds of knowledge to mine

❑ E.g.: Classification, association, clustering, outlier finding, …

❑ Data constraint—using SQL-like queries

❑ E.g.: Find products sold together in NY stores this year

❑ Dimension/level constraint—similar to projection in relational database 

❑ E.g.: In relevance to region, price, brand, customer category

❑ Interestingness constraint—various kinds of thresholds

❑ E.g.: Strong rules: min_sup  0.02, min_conf  0.6, min_correlation  0.7

❑ Rule (or pattern) constraint

❑ E.g.: Small sales (price < $10) triggers big sales (sum > $200) 

The focus of this study
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Pattern Space Pruning with Pattern Anti-Monotonicity 

◼ A constraint c is anti-monotone

◼ If an itemset S violates constraint c, so does any of its superset 

◼ That is, mining on itemset S can be terminated

◼ E.g. 1:  c1: sum(S.price)  v is anti-monotone

◼ Sum grows as you add more items

◼ E.g. 2: c2: range(S.profit)  15 is anti-monotone

◼ Itemset ab violates c2 (range(ab) = 40)

◼ So does every superset of ab

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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◼ E.g. 3. c3: sum(S.Price)  v is not anti-monotone

◼ E.g. 4. Is c4: support(S)  σ anti-monotone?

◼ Yes! Apriori pruning is essentially pruning with an anti-
monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Pattern Space Pruning with Pattern Anti-Monotonicity 
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Pattern Monotonicity and Its Roles

◼ A constraint c is monotone: If an itemset S satisfies the constraint 
c, so does any of its superset

◼ That is, we do not need to check c in subsequent mining

◼ Not as beneficial as anti-monotone

◼ E.g. 1: c1: sum(S.Price)  v is monotone

◼ E.g. 2: c2: min(S.Price)  v  is monotone

◼ E.g. 3: c3: range(S.profit)  15 is monotone

◼ Itemset ab satisfies c3

◼ So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
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Apriori for Pattern Anti-Monotone Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

F2

C2 C2

Scan D

C3 F3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Min_sup=2

Constraint: 

Sum{S.price} < 5

Item Price

1 1

2 2

3 3

4 4

5 5

Can be 
chopped 
early
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Convertible Constraints: Ordering Data in Transactions

◼ Convert tough constraints into (anti-)monotone by proper ordering 
of items in transactions

◼ Examine c1: avg(S.profit) > 20 

◼ Order items in (profit) value-descending order

◼ <a, g, h, b, f, d, c, e>

◼ An itemset ab violates c1 (avg(ab) = 20)

◼ So does ab* (i.e., ab-projected DB)

◼ C1: anti-monotone if patterns grow in the right order!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5
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Can item-reordering work for Apriori? 

◼ avg(gf) = 12.5 < 20, avg(af) = 17.5 < 20, avg(ag) = 35 > 20

◼ But avg(agf) = 21.7 > 20 

◼ Apriori will not generate “agf” as a candidate

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

itemset sup.

{a} 3

{f} 4

{g} 3

{d} 3

… …

Scan D

F1 F2 itemset sup.

{af} 3

{fg} 4

{ag} 2

{ad} 2

… …

Chopped too 
early

constraint: avg(S.profit) > 20 
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Data Space Pruning with Data Anti-Monotonicity
❑ A constraint c is data anti-monotone: In the mining process, if a 

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

❑ Data space pruning: Data entry t can be pruned 

❑ E.g. 1: c1: sum(S.Profit)  v is data anti-monotone

❑ Let constraint c1 be: sum(S.Profit) ≥ 25

❑ T30: {b, c, d, f, g} can be removed since none of their 
combinations can make an S whose sum of the profit is ≥ 25

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
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Data Space Pruning with Data Anti-Monotonicity
❑ A constraint c is data anti-monotone: In the mining process, if a 

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

❑ Data space pruning: Data entry t can be pruned 

❑ E.g. 2: c2: min(S.Price)  v  is data anti-monotone

❑ Consider v = 5 but every item in a transaction, say T50 , has a 
price higher than 10

❑ E.g. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
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Data Space Pruning Should Be Explored Recursively 

❑ Example. c3: range(S.Profit) > 25

❑ We check b’s projected database

❑ But item “a” is infrequent (sup = 1)

❑ After removing “a (40)” from T10

❑ T10 cannot satisfy c3 any more

❑ Since “b (0)” and “c (−20), d (−15), f (−10), h (5)”

❑ By removing T10, we can also prune “h” in T20

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Profit

a 40

b 0

c −20

d −15

e −30

f −10

g 20

h 5

b’s-proj. DB

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

b’s-proj. DB
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Data Space Pruning Should Be Explored Recursively 

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

Recursive
Data 

Pruning

b’s FP-tree

single branch: cdfg: 2 

Constraint:  
range{S.profit} > 25

Only a single branch “cdfg: 2” 
to be mined in b’s projected DB

❑ Note: c3 prunes T10 effectively only after “a” is pruned (by min-sup) in b’s projected DB

b’s-proj. DB



31

Succinctness: Pruning Both Data and Pattern Spaces

◼ Succinctness: If the constraint c can be enforced by directly manipulating the data

◼ E.g. 1: To find those patterns containing item i

◼ Mine only i-projected DB (data space pruning)

◼ E.g. 2: To find those patterns without item i

◼ Remove i from DB and then mine (pattern space pruning)

◼ E.g. 3: c3: min(S.Price)  v is succinct

◼ Start with only items whose price  v and remove transactions with high-price 

items only (pattern + data space pruning)

◼ E.g. 4: c4: sum(S.Price)  v is not succinct

◼ It cannot be determined beforehand since sum of the price of itemset S keeps 

increasing
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Apriori + Succinct Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

Min_sup=2

Constraint: 

min{S.price} <= 1

Item Price

1 1

2 2

3 3

4 4

5 5

Min_sup=2

Constraint: 

min{S.price} <= 2

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 1

{3} 2

{4} 1

{5} 1

itemset sup.

{1} 2

{3} 2Scan D

C1

F1

Chopped too 
early
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Constrained FP-Growth: Push a Succinct Constraint Deep

TID Items

10 1 3

20 2 3 5

30 1 2 3 5

40 2 5

Remove 
infrequent
length 1

TID Items

10 3 4

30 2 3 5

1-Projected DB

No Need to project on 3 or 5

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Item Price

1 1

2 2

3 3

4 4

5 5

2-Projected DB

Min_sup=2

Constraint: 

min{S.price} <= 2

TID Items

20 3 5

30 1 3 5

40 5
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Different Kinds of Constraints Lead to Different 
Pruning Strategies

◼ In summary, constraints can be categorized as pattern space pruning constraints vs. 
data space pruning constraints 

Pattern space pruning constraints Data space pruning constraints

◼ Anti-monotonic: If constraint c is violated, its further 
mining can be terminated

◼ Monotonic: If c is satisfied, no need to check c again

◼ Convertible: c can be converted to monotonic or 
anti-monotonic if items can be properly ordered in 
processing

◼ Succinct: If the constraint c can be enforced by 
directly manipulating the data

◼ Data succinct: Data 
space can be pruned at 
the initial pattern 
mining process

◼ Data anti-monotonic: If 
a transaction t does not 
satisfy c, then t can be 
pruned to reduce data 
processing effort
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How to Handle Multiple Constraints?
◼ It is beneficial to use multiple constraints in pattern mining 

◼ But different constraints may require potentially conflicting item-ordering

◼ If there exists conflict ordering between c1 and c2

◼ Try to sort data and enforce one constraint first (which one?) 

◼ Then enforce the other constraint when mining the projected databases

◼ E.g. c1: avg(S.profit) > 20, and c2: avg(S.price) < 50

◼ Assum c1 has more pruning power

◼ Sort in profit descending order and use c1 first

◼ For each project DB, sort trans. in price ascending order and use c2 at 
mining 
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Sequential Pattern Mining

❑ Sequential Pattern and Sequential Pattern Mining 

❑ GSP: Apriori-Based Sequential Pattern Mining

❑ SPADE: Sequential Pattern Mining in Vertical Data Format

❑ PrefixSpan: Sequential Pattern Mining by Pattern-Growth

❑ CloSpan: Mining Closed Sequential Patterns

❑ Constraint-Based Sequential-Pattern Mining
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Sequential Pattern Mining

❑ What kind of patterns are sequential?

❑ Sequential – The order really matters.  You can not swap two items in a 
sequence and have the same sequence.

❑ Example: The English language is sequential : Subject -> Verb -> Object.

❑ Other points:

❑ For Sequential Pattern Mining, the time which the items occur is not
considered.

❑ Time Series Analysis does take into account the time in which an item 
occurred.
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Sequential Pattern Examples

❑ Application of Sequential pattern Mining

❑ Customer shopping → Purchase a laptop first, then a digital camera, and 
then a smartphone.

❑ Medical treatments → Go to the doctor, get drugs, doctor monitors 
progress, doctor reacts accordingly -> more/less drugs

❑ Natural disasters -> Before the disaster, during the disaster, after the 
disaster.

❑ Scientific Experiments → Step 1, Step 2, Step 3. 

❑ Stocks Markets → Stocks go up and down together.

❑ Biological sequences, DNA /Protein→ If you change the order of proteins, it 
is a different gene.
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Sequential Pattern and Sequential Pattern Mining 

❑ Sequential pattern mining: Given a set of sequences, find the complete set of 
frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

❑ An element may contain a set of items (also called 
events)

* Items within an element are unordered and we list 
them alphabetically

A sequence: < (ef) (ab)  (df)  c   b >

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

element (unordered within “(..)”)
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Sequential Pattern and Sequential Pattern Mining 

❑ Sequential pattern mining: Given a set of sequences, find the complete set of 
frequent subsequences (i.e., satisfying the min_sup threshold)

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

❑ Given support threshold min_sup = 2, <(ab)c> 
is a sequential pattern

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

A sequence database
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Sequential Pattern Mining Algorithms

❑ Algorithm requirement: Efficient, scalable, finding complete set, incorporating 
various kinds of user-specific constraints 

❑ The Apriori property still holds:  If a subsequence s1 is infrequent, none of s1’s 
super-sequences can be frequent

❑ Representative algorithms

❑ GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)

❑ Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

❑ Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)

❑ Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)

❑ Constraint-based sequential pattern mining (to be covered in the constraint 
mining section)
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GSP: Apriori-Based Sequential Pattern Mining
❑ Initial candidates: All 8-singleton sequences

❑ <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

❑ Scan DB once, count support for each candidate

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

x
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GSP: Apriori-Based Sequential Pattern Mining
❑ Example: Generate length-2 candidate sequences

min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

❑ w/o pruning 
(includes g and h):

8*8 + 8*7/2 = 92 

length-2 candidates

❑ w/ pruning:

6*6 + 6*5/2 = 51

length-2 candidates

singleton * singleton – Total: (6 * 6)

Sets (unordered) – Total: (6*5) / 2

Apriori Pruning
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. 

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

❑ Remove

❑ Candidates not in DB

❑ Candidates < min_sup
6*6 + 6*5/2 = 51

length

5

4

3

2

1
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GSP Mining and Pruning
❑ Repeat, starting at k=1 until k<=length

❑ Scan DB to find “length-k” frequent sequences

❑ Generate “length-(k+1)” candidate sequences from “length-k” 
frequent sequences using Apriori

❑ set k = k+1

❑ Until no frequent sequence or no candidate can be found

GSP (Generalized Sequential 
Patterns): Srikant & Agrawal 
@ EDBT’96)
-NOTE: Same team which 
developed Apriori
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Sequential Pattern Mining in Vertical Data 
Format: The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential 

PAttern Discovery 

using Equivalent Class) 

[M. Zaki 2001]

min_sup = 2

❑ A sequence database is mapped to: <SID, EID>
❑ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

EID (b) < EID (a):
Corresponds to:
<a(abc)(ac)d(cf)>
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PrefixSpan: A Pattern-Growth Approach

❑ PrefixSpan Mining: Prefix Projections

❑ Step 1: Find length-1 sequential patterns

❑ <a>, <b>, <c>, <d>, <e>, <f>

❑ Step 2: Divide search space and mine each projected DB

❑ <a>-projected DB,

❑ <b>-projected DB,

❑ …

❑ <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

❑ Prefix and suffix

❑ Given <a(abc)(ac)d(cf)>

❑ Prefixes: <a>, <aa>, 
<a(ab)>, <a(abc)>, …

❑ Suffix: Prefixes-based 
projection

PrefixSpan (Prefix-projected 
Sequential pattern mining) 
Pei, et al. @TKDE’04

min_sup = 2

“_” is placeholder for prefix
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prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

prefix <aa>

…

prefix <af>

…

prefix <b> prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

◼ No candidate subseqs. to be generated

◼ Projected DBs keep shrinking

min_sup = 2

<b>-projected DB

<(_c)(ac)d(cf)>

<(_c)(ae)>

<(df)cb>

<c>
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Implementation Consideration: Pseudo-Projection vs. 
Physical Projection

❑ Major cost of PrefixSpan: Constructing projected DBs

❑ Suffixes largely repeating in recursive projected DBs 

❑ When DB can be held in main memory, use pseudo projection 

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 5)

❑ No physically copying suffixes

❑ Pointer to the sequence

❑ Offset of the suffix

❑ But if it does not fit in memory

❑ Physical projection

❑ Suggested approach:

❑ Integration of physical and pseudo-projection

❑ Swapping to pseudo-projection when the data fits in memory

2      5
Pointers save memory usage
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CloSpan: Mining Closed Sequential Patterns

❑ A closed sequential pattern s:  There exists no superpattern s’ such that s’ כ s, and s’

and s have the same support 

❑ Which ones are closed?  <abc>: 20, <abcd>:20, <abcde>: 15 
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CloSpan: Mining Closed Sequential Patterns

❑ Why directly mine closed sequential patterns?

❑ Reduce # of (redundant) patterns

❑ Attain the same expressive power

❑ Property P1: If s כ s1, s is closed iff two project 
DBs have the same size

❑ Explore Backward Subpattern and Backward 
Superpattern pruning to prune redundant 
search space

❑ Greatly enhances efficiency (Yan, et al., SDM’03)
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<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

<b>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<b>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

❑ If s כ s1, s is closed iff two project DBs have the same size

❑ When two projected sequence DBs have the same size?

❑ Here is one example: 

Only need to keep 
size = 12 (including 
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2



55

Constraint-Based Sequential-Pattern Mining
❑ Share many similarities with constraint-based itemset mining

❑ Anti-monotonic:  If S violates c, the super-sequences of S also violate c

❑ sum(S.price) < 150; min(S.value) > 10 

❑ Monotonic: If S satisfies c, the super-sequences of S also do so

❑ element_count (S) > 5; S  {PC, digital_camera}

❑ Data anti-monotonic: If a sequence s1 with respect to S violates c3,  s1

can be removed  

❑ c3: sum(S.price) ≥ v

❑ Succinct:  Enforce constraint c by explicitly manipulating data

❑ S   {i-phone, MacAir} 

❑ Convertible:  Projection based on the sorted value not sequence order

❑ value_avg(S) < 25; profit_sum (S) > 160

❑ max(S)/avg(S) < 2; median(S) – min(S) > 5
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Timing-Based Constraints in Seq.-Pattern Mining

❑ Order constraint: Some items must happen before the other

❑ {algebra, geometry} → {calculus} (where “→” indicates ordering)

❑ Anti-monotonic: Constraint-violating sub-patterns pruned

❑ Min-gap/max-gap constraint: Confines two elements in a pattern

❑ E.g., mingap = 1, maxgap = 4

❑ Succinct: Enforced directly during pattern growth

❑ Max-span constraint: Maximum allowed time difference between the 
1st and the last elements in the pattern

❑ E.g., maxspan (S) = 60 (days)

❑ Succinct: Enforced directly when the 1st element is determined

❑ Window size constraint: Events in an element do not have to occur at 
the same time: Enforce max allowed time difference

❑ E.g., window-size = 2: Various ways to merge events into elements
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Episodes and Episode Pattern Mining

❑ Episodes and regular expressions: Alternative to seq. patterns 

❑ Serial episodes:  AB

❑ Parallel episodes: A|B

❑ Regular expressions: (A|B)C*(DE)

❑ E.g.   Given a large shopping sequence database, one may like to find

❑ Suppose the pattern order follows the template (A|B)C*(D E), and

❑ Sum of the prices of A, B, C*, D, and E is greater than $100, where C* 

means C appears *-times

❑ How to efficiently mine such episode patterns?

a partial order relationship: A and B can be in any order

a total order relationship: first A then B

(DE) means D, E happen in the same time window
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Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary
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What Is Graph Pattern Mining?

❑ Chem-informatics: 

❑ Mining frequent chemical compound structures

❑ Social networks, web communities, tweets, …

❑ Finding frequent research collaboration subgraphs
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Frequent (Sub)Graph Patterns

❑ Given a labeled graph dataset D = {G1, G2, …, Gn), the supporting graph set of a 
subgraph g is Dg = {Gi | g  Gi, Gi D}

❑ support(g) = |Dg|/ |D|

❑ A (sub)graph g is frequent if support(g) ≥ min_sup

❑ Ex.: Chemical structures
Graph Dataset

Frequent Graph Patterns

(A) (B) (C)

(1) (2)

min_sup = 2

support = 67%

❑ Alternative:

❑ Mining frequent subgraph 
patterns from a single large 
graph or network
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Applications of Graph Pattern Mining

❑ Bioinformatics

❑ Gene networks, protein interactions, metabolic pathways

❑ Chem-informatics: Mining chemical compound structures

❑ Social networks, web communities, tweets, …

❑ Cell phone networks, computer networks, …

❑ Web graphs, XML structures, Semantic Web, information networks 

❑ Software engineering: Program execution flow analysis

❑ Building blocks for graph classification, clustering, compression, comparison, 
and correlation analysis

❑ Graph indexing and graph similarity search
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Graph Pattern Mining Algorithms: Different 
Methodologies

❑ Generation of candidate subgraphs

❑ Apriori vs. pattern growth (e.g., FSG vs. gSpan)

❑ Search order

❑ Breadth vs. depth

❑ Elimination of duplicate subgraphs

❑ Passive vs. active (e.g., gSpan [Yan & Han, 2002])

❑ Support calculation

❑ Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang, 
& Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])

❑ Order of pattern discovery

❑ Path → tree → graph (e.g., GASTON [Nijssen & Kok, 2004]) 
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Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’
Join

❑ The Apriori property (anti-monotonicity): A size-k
subgraph is frequent if and only if all of its 
subgraphs are frequent

❑ A candidate size-(k+1) edge/vertex subgraph is 
generated if its corresponding two k-edge/vertex 
subgraphs are frequent

❑ Iterative mining process:  

❑ Candidate-generation → candidate pruning →
support counting → candidate elimination
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Candidate Generation:  
Vertex Growing vs. Edge Growing

❑ Generating new graphs with one more vertex

❑ AGM (Inokuchi, Washio, & Motoda, PKDD’00) 

❑ Generating new graphs with one more edge

❑ FSG (Kuramochi & Karypis, ICDM’01)

❑ Performance shows via edge growing is more efficient

❑ Methodology: Breadth-search, Apriori joining two size-k graphs

❑ Many possibilities at generating size-(k+1) candidate graphs 
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Pattern-Growth Approach

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate 
graphs

❑ Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge 
subgraphs

❑ Major challenge

❑ Generating many duplicate subgraphs

❑ Major idea to solve the problem

❑ Define an order to generate 
subgraphs

❑ DFS spanning tree: Flatten a graph 
into a sequence using depth-first 
search

❑ gSpan (Yan & Han, ICDM’02)
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gSPAN: Graph Pattern Growth in Order

❑ Right-most path extension in subgraph 
pattern growth

❑ Right-most path: The path from root to the 
right-most leaf (choose the vertex with the 
smallest index at each step)

❑ Reduce generation of duplicate subgraphs

❑ Completeness: The enumeration of graphs 

using right-most path extension is complete

❑ DFS code: Flatten a graph into a sequence 

using depth-first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,3)

e3: (3,0)

e4: (2,4)
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Why Mine Closed Graph Patterns?

❑ 2n subgraphs -> closed frequent subgraphs

❑ A frequent graph G is closed if there exists no supergraph of G that 
carries the same support as G

❑ Lossless compression: Does not contain non-closed graphs, but still 
ensures that the mining result is complete

❑ Algorithm CloseGraph: Mines closed graph patterns directly

If this subgraph is closed in the 
graph dataset, it implies that 
none of its frequent super-graphs 
carries the same support
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CloseGraph: Directly Mining Closed Graph 
Patterns

…

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition can we
stop searching their children,

i.e., early termination?

❑ CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

❑ Suppose G and G1 are frequent, and G is a 
subgraph of G1

❑ If in any part of the graph in the dataset 
where G occurs, G1 also occurs, then we 
need not grow G (except some special, subtle 
cases), since none of G’s children will be 
closed except those of G1
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Experiment and Performance Comparison

❑ The AIDS antiviral screen compound dataset from NCI/NIH

❑ The dataset contains 43,905 chemical compounds

❑ Discovered patterns: The smaller minimum support, the bigger and more 
interesting subgraph patterns discovered
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Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary
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Pattern Mining Application: Software Bug Detection
❑ Mining rules from source code

❑ Bugs as deviant behavior (e.g., by statistical analysis)

❑ Mining programming rules (e.g., by frequent itemset mining)

❑ Mining function precedence protocols (e.g., by frequent subsequence mining)

❑ Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)

❑ Mining rules from revision histories

❑ By frequent itemset mining

❑ Mining copy-paste patterns from source code

❑ Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04])  (to be discussed here)

❑ Reference: Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding 
Copy-paste and Related Bugs in Operating System Code”, OSDI’04

https://pdfs.semanticscholar.org/05c1/06bb1a21a8d8d99b76953231f1476ec73df2.pdf
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Application Example: Mining Copy-and-Paste Bugs

❑ Copy-pasting is common

❑ 12% in Linux file system 

❑ 19% in X Window system 

❑ Copy-pasted code is error-prone

❑ Mine “forget-to-change” bugs by 
sequential pattern mining

❑ Build a sequence database from source 
code

❑ Mining sequential patterns

❑ Finding mismatched identifier names & 
bugs

void __init prom_meminit(void)
{

……
for (i=0; i<n; i++) {

total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

(Simplified example from linux-
2.6.6/arch/sparc/prom/memory.c)

Code copy-and-
pasted but forget 
to change “id”!

Courtesy of Yuanyuan Zhou@UCSD
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Building Sequence Database from Source Code
❑ Statement      → number

❑ Tokenize each component

❑ Different operators, constants, key words 
→ different tokens

❑ Same type of identifiers → same token

❑ Program → A long sequence

❑ Cut the long sequence by blocks

old = 3;

5 61 20

Tokenize

Hash
16

new = 3;

5 61 20

16

Map a statement 
to a number

Final sequence DB:

(65)

(16, 16, 71)

…

(65)

(16, 16, 71)

for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

65
16
16
71

…

65
16
16
71

Hash values

Courtesy of Yuanyuan Zhou@UCSD

(mapped to)
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Sequential Pattern Mining & Detecting 
“Forget-to-Change” Bugs

❑ Modification to the sequence pattern mining algorithm

❑ Constrain the max gap

❑ Composing Larger Copy-Pasted Segments

❑ Combine the neighboring copy-pasted segments 
repeatedly

❑ Find conflicts:  Identify names that cannot be mapped to the 
corresponding ones

❑ E.g., 1 out of 4 “total” is unchanged, unchanged ratio = 
0.25

❑ If 0 < unchanged ratio < threshold,  then report it as a bug 

❑ CP-Miner reported many C-P bugs in Linux, Apache, … out of 
millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD

f (a1);
f (a2);
f (a3);

f1 (b1);
f1 (b2);
f2 (b3);

conflict

(16, 16, 71)
……
(16, 16, 10, 71)

Allow a maximal gap: 
inserting statements 
in copy-and-paste
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Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary
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Summary: Advanced Frequent Pattern Mining
❑ Mining Diverse Patterns

❑ Mining Multiple-Level Associations

❑ Mining Multi-Dimensional Associations

❑ Mining Quantitative Associations

❑ Mining Negative Correlations

❑ Mining Compressed and Redundancy-Aware 
Patterns

❑ Sequential Pattern Mining

❑ Sequential Pattern and Sequential Pattern Mining 

❑ GSP: Apriori-Based Sequential Pattern Mining

❑ SPADE: Sequential Pattern Mining in Vertical Data 
Format

❑ PrefixSpan: Sequential Pattern Mining by Pattern-
Growth

❑ CloSpan: Mining Closed Sequential Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Why Constraint-Based Mining? 

❑ Constrained Mining with Pattern Anti-Monotonicity

❑ Constrained Mining with Pattern Monotonicity

❑ Constrained Mining with Data Anti-Monotonicity

❑ Constrained Mining with Succinct Constraints

❑ Constrained Mining with Convertible Constraints

❑ Handling Multiple Constraints

❑ Constraint-Based Sequential-Pattern Mining

❑ Graph Pattern Mining

❑ Graph Pattern and Graph Pattern Mining

❑ Apriori-Based Graph Pattern Mining Methods

❑ gSpan: A Pattern-Growth-Based Method

❑ CloseGraph: Mining Closed Graph Patterns

❑ Pattern Mining Application: Mining Software Copy-
and-Paste Bugs
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