
CS 412 Intro. to Data Mining
Chapter 7 : Advanced Frequent Pattern Mining
Qi Li, Computer Science, Univ. I llinois at Urbana -Champaign, 2018

1

2

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

3

Mining Diverse Patterns

❑ Mining Multiple-Level Associations

❑ Mining Multi-Dimensional Associations

❑ Mining Quantitative Associations

❑ Mining Negative Correlations

❑ Mining Compressed and Redundancy-Aware Patterns

4

Mining Multiple-Level Frequent Patterns

❑ Min-support thresholds for
hierarchy items

❑ Uniform min-support
across multiple levels
(reasonable?)

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk

[support = 6%]

Skim Milk

[support = 2%]

❑ Level-reduced min-support: Items at the lower level are expected to
have lower support

❑ Efficient mining: Shared multi-level mining

❑ Use the lowest min-support to pass down the set of candidates

5

Redundancy Filtering at Mining Multi-Level
Associations

❑ Redundancy filtering: redundant due to “ancestor” relationships

❑ milk wheat bread [support = 8%, confidence = 70%] (1)

❑ 2% milk wheat bread [support = 2%, confidence = 72%] (2)

❑ Suppose the 2% milk sold is about ¼ of milk sold in gallons

❑ (2) should be able to be “derived” from (1)

6

❑ milk wheat bread [support = 8%, confidence = 70%] (1)

❑ 2% milk wheat bread [support = 2%, confidence = 72%] (2)

❑ A rule is redundant if its support is close to the “expected” value,
according to its “ancestor” rule, and it has a similar confidence as its
“ancestor”

❑ Rule (1) is an ancestor of rule (2), which one to prune?

Redundancy Filtering at Mining Multi-Level
Associations

7

Customized Min-Supports for Different Kinds of
Items

❑ Same min-support threshold for all so far

❑ Diamonds, watches: valuable but less frequent

❑ One Method: Use group-based “individualized” min-support

❑ E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; …

❑ How to mine such rules efficiently?

❑ Existing scalable mining algorithms can be easily extended to cover such
cases

8

Mining Multi-Dimensional Associations
❑ Single-dimensional rules (e.g., items are all in “product” dimension)

❑ buys(X, “milk”) buys(X, “bread”)

❑ Multi-dimensional rules (i.e., items in 2 dimensions or predicates)

❑ Inter-dimension association rules (no repeated predicates)

❑ age(X, “18-25”) occupation(X, “student”) buys(X, “coke”)

❑ Hybrid-dimension association rules (repeated predicates)

❑ age(X, “18-25”) buys(X, “popcorn”) buys(X, “coke”)

❑ Attributes can be categorical or numerical

❑ Categorical Attributes (e.g., profession, product: no ordering among

values): Data cube for inter-dimension association

❑ Quantitative Attributes: Numeric, implicit ordering among values—

discretization, clustering, and gradient approaches

9

Mining Quantitative Associations

❑ Mining associations with numerical attributes

❑ E.g.: Numerical attributes: age and salary

❑ Methods

❑ Static discretization based on predefined concept hierarchies

❑ Discretization on each dimension with hierarchy

❑ age: {0-10, 10-20, …, 90-100} → {young, mid-aged, old}

❑ Dynamic discretization based on data distribution

❑ Clustering: Distance-based association

❑ First one-dimensional clustering, then association

❑ Deviation analysis:

❑ Gender = female Wage: mean=$7/hr (overall mean = $9)

10

Mining Extraordinary Phenomena in Quantitative
Association Mining

❑ Mining extraordinary (i.e., interesting) phenomena

❑ E.g.: Gender = female Wage: mean=$7/hr (overall mean = $9)

❑ LHS: a subset of the population

❑ RHS: an extraordinary behavior of this subset

❑ The rule is accepted only if a statistical test (e.g., Z-test) confirms the
inference with high confidence

❑ Subrule: Highlights the extraordinary behavior of a subset of the
population of the super rule

❑ E.g.: (Gender = female) ^ (South = yes) mean wage = $6.3/hr

❑ Rule condition can be categorical or numerical (quantitative rules)

❑ E.g.: Education in [14-18] (yrs) mean wage = $11.64/hr

11

Rare Patterns

❑ Rare patterns

❑ Very low support but interesting (e.g., buying Rolex watches)

❑ How to mine them? Setting individualized, group-based min-support

thresholds for different groups of items

12

Negative Patterns

❑ Negative patterns

❑ Negatively correlated: Unlikely to happen together

❑ Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV

car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford

Fusion are likely negatively correlated patterns

❑ How to define negative patterns?

❑ A support-based definition of negative correlated patterns

❑ If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) <<
sup (A) × sup(B)

Does this remind you the definition of lift?

13

Defining Negative Correlated Patterns

❑ Ex.: Suppose a store sold two needle packages A and B 100 times each,
but only one transaction contained both A and B

❑ When there are in total 200 transactions, we have

❑ s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

❑ But when there are 105 transactions, we have

❑ s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

❑ What is the problem?—Null transactions: The support-based definition
is not null-invariant!

Is this a good definition for large transaction datasets?

14

Defining Negative Correlation: Need
Null-Invariance in Definition

❑ A Kulczynski measure-based definition

❑ If itemsets A and B are frequent but (s(A U B)/s(A) + s(A U B)/s(B))/2 < є,
then A and B are negatively correlated

❑ For the same needle package problem:

❑ No matter there are in total 200 or 105 transactions

❑ If є = 0.01, we have

(s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < є

negative
pattern
threshold

15

Mining Compressed Patterns

❑ Why mining compressed patterns? Too many
scattered patterns but not so meaningful

❑ Pattern distance measure

❑ δ-clustering: For each pattern P, find all patterns
which can be expressed by P and whose distance
to P is within δ (δ-cover)

❑ All patterns in the cluster can be represented by P

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

❑ Closed patterns
❑ P1, P2, P3, P4, P5
❑ Emphasizes too much on

support
❑ Max-patterns
❑ P3: information loss

❑ Desired output (a good balance):
❑ P2, P3, P4

16

Redundancy-Aware Top-k Patterns
❑ Desired patterns: high significance & low redundancy

❑ Method: Use MMS (Maximal Marginal Significance) for measuring the
combined significance of a pattern set

❑ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

17

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

18

Constraint-Based Pattern Mining
❑ Why Constraint-Based Mining?

❑ Different Kinds of Constraints: Different Pruning Strategies

❑ Constrained Mining with Pattern Anti-Monotonicity

❑ Constrained Mining with Pattern Monotonicity

❑ Constrained Mining with Convertible Constraints

❑ Constrained Mining with Data Anti-Monotonicity

❑ Constrained Mining with Succinct Constraints

❑ Handling Multiple Constraints

19

Why Constraint-Based Mining?
❑ Pattern mining in practice: Often a user-guided, interactive process

❑ User directs what to be mined using a data mining query language (or a
graphical user interface), specifying various kinds of constraints

❑ What is constraint-based mining?

❑ Mine together with user-provided constraints

❑ Why constraint-based mining?

❑ User flexibility: User provides constraints on what to be mined

❑ Optimization: System explores such constraints for mining efficiency

❑ E.g., Push constraints deeply into the mining process

20

Various Kinds of User-Specified Constraints in Data Mining

❑ Knowledge type constraint—Specifying what kinds of knowledge to mine

❑ E.g.: Classification, association, clustering, outlier finding, …

❑ Data constraint—using SQL-like queries

❑ E.g.: Find products sold together in NY stores this year

❑ Dimension/level constraint—similar to projection in relational database

❑ E.g.: In relevance to region, price, brand, customer category

❑ Interestingness constraint—various kinds of thresholds

❑ E.g.: Strong rules: min_sup 0.02, min_conf 0.6, min_correlation 0.7

❑ Rule (or pattern) constraint

❑ E.g.: Small sales (price < $10) triggers big sales (sum > $200)

The focus of this study

21

Pattern Space Pruning with Pattern Anti-Monotonicity

◼ A constraint c is anti-monotone

◼ If an itemset S violates constraint c, so does any of its superset

◼ That is, mining on itemset S can be terminated

◼ E.g. 1: c1: sum(S.price) v is anti-monotone

◼ Sum grows as you add more items

◼ E.g. 2: c2: range(S.profit) 15 is anti-monotone

◼ Itemset ab violates c2 (range(ab) = 40)

◼ So does every superset of ab

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative

22

◼ E.g. 3. c3: sum(S.Price) v is not anti-monotone

◼ E.g. 4. Is c4: support(S) σ anti-monotone?

◼ Yes! Apriori pruning is essentially pruning with an anti-
monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Pattern Space Pruning with Pattern Anti-Monotonicity

23

Pattern Monotonicity and Its Roles

◼ A constraint c is monotone: If an itemset S satisfies the constraint
c, so does any of its superset

◼ That is, we do not need to check c in subsequent mining

◼ Not as beneficial as anti-monotone

◼ E.g. 1: c1: sum(S.Price) v is monotone

◼ E.g. 2: c2: min(S.Price) v is monotone

◼ E.g. 3: c3: range(S.profit) 15 is monotone

◼ Itemset ab satisfies c3

◼ So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

24

Apriori for Pattern Anti-Monotone Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

F2

C2 C2

Scan D

C3 F3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Min_sup=2

Constraint:

Sum{S.price} < 5

Item Price

1 1

2 2

3 3

4 4

5 5

Can be
chopped
early

25

Convertible Constraints: Ordering Data in Transactions

◼ Convert tough constraints into (anti-)monotone by proper ordering
of items in transactions

◼ Examine c1: avg(S.profit) > 20

◼ Order items in (profit) value-descending order

◼ <a, g, h, b, f, d, c, e>

◼ An itemset ab violates c1 (avg(ab) = 20)

◼ So does ab* (i.e., ab-projected DB)

◼ C1: anti-monotone if patterns grow in the right order!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

26

Can item-reordering work for Apriori?

◼ avg(gf) = 12.5 < 20, avg(af) = 17.5 < 20, avg(ag) = 35 > 20

◼ But avg(agf) = 21.7 > 20

◼ Apriori will not generate “agf” as a candidate

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 a, b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −5

g 80 30

h 10 5

itemset sup.

{a} 3

{f} 4

{g} 3

{d} 3

… …

Scan D

F1 F2 itemset sup.

{af} 3

{fg} 4

{ag} 2

{ad} 2

… …

Chopped too
early

constraint: avg(S.profit) > 20

27

Data Space Pruning with Data Anti-Monotonicity
❑ A constraint c is data anti-monotone: In the mining process, if a

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

❑ Data space pruning: Data entry t can be pruned

❑ E.g. 1: c1: sum(S.Profit) v is data anti-monotone

❑ Let constraint c1 be: sum(S.Profit) ≥ 25

❑ T30: {b, c, d, f, g} can be removed since none of their
combinations can make an S whose sum of the profit is ≥ 25

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

28

Data Space Pruning with Data Anti-Monotonicity
❑ A constraint c is data anti-monotone: In the mining process, if a

data entry t cannot contribute to a pattern p satisfying c, t
cannot contribute to p’s superset either

❑ Data space pruning: Data entry t can be pruned

❑ E.g. 2: c2: min(S.Price) v is data anti-monotone

❑ Consider v = 5 but every item in a transaction, say T50 , has a
price higher than 10

❑ E.g. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

29

Data Space Pruning Should Be Explored Recursively

❑ Example. c3: range(S.Profit) > 25

❑ We check b’s projected database

❑ But item “a” is infrequent (sup = 1)

❑ After removing “a (40)” from T10

❑ T10 cannot satisfy c3 any more

❑ Since “b (0)” and “c (−20), d (−15), f (−10), h (5)”

❑ By removing T10, we can also prune “h” in T20

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Profit

a 40

b 0

c −20

d −15

e −30

f −10

g 20

h 5

b’s-proj. DB

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

b’s-proj. DB

30

Data Space Pruning Should Be Explored Recursively

TID Transaction

10 a, c, d, f, h

20 c, d, f, g, h

30 c, d, f, g

Recursive
Data

Pruning

b’s FP-tree

single branch: cdfg: 2

Constraint:
range{S.profit} > 25

Only a single branch “cdfg: 2”
to be mined in b’s projected DB

❑ Note: c3 prunes T10 effectively only after “a” is pruned (by min-sup) in b’s projected DB

b’s-proj. DB

31

Succinctness: Pruning Both Data and Pattern Spaces

◼ Succinctness: If the constraint c can be enforced by directly manipulating the data

◼ E.g. 1: To find those patterns containing item i

◼ Mine only i-projected DB (data space pruning)

◼ E.g. 2: To find those patterns without item i

◼ Remove i from DB and then mine (pattern space pruning)

◼ E.g. 3: c3: min(S.Price) v is succinct

◼ Start with only items whose price v and remove transactions with high-price

items only (pattern + data space pruning)

◼ E.g. 4: c4: sum(S.Price) v is not succinct

◼ It cannot be determined beforehand since sum of the price of itemset S keeps

increasing

32

Apriori + Succinct Constraint

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

F1

Min_sup=2

Constraint:

min{S.price} <= 1

Item Price

1 1

2 2

3 3

4 4

5 5

Min_sup=2

Constraint:

min{S.price} <= 2

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Database D itemset sup.

{1} 2

{2} 1

{3} 2

{4} 1

{5} 1

itemset sup.

{1} 2

{3} 2Scan D

C1

F1

Chopped too
early

33

Constrained FP-Growth: Push a Succinct Constraint Deep

TID Items

10 1 3

20 2 3 5

30 1 2 3 5

40 2 5

Remove
infrequent
length 1

TID Items

10 3 4

30 2 3 5

1-Projected DB

No Need to project on 3 or 5

TID Items

10 1 3 4

20 2 3 5

30 1 2 3 5

40 2 5

Item Price

1 1

2 2

3 3

4 4

5 5

2-Projected DB

Min_sup=2

Constraint:

min{S.price} <= 2

TID Items

20 3 5

30 1 3 5

40 5

34

Different Kinds of Constraints Lead to Different
Pruning Strategies

◼ In summary, constraints can be categorized as pattern space pruning constraints vs.
data space pruning constraints

Pattern space pruning constraints Data space pruning constraints

◼ Anti-monotonic: If constraint c is violated, its further
mining can be terminated

◼ Monotonic: If c is satisfied, no need to check c again

◼ Convertible: c can be converted to monotonic or
anti-monotonic if items can be properly ordered in
processing

◼ Succinct: If the constraint c can be enforced by
directly manipulating the data

◼ Data succinct: Data
space can be pruned at
the initial pattern
mining process

◼ Data anti-monotonic: If
a transaction t does not
satisfy c, then t can be
pruned to reduce data
processing effort

35

How to Handle Multiple Constraints?
◼ It is beneficial to use multiple constraints in pattern mining

◼ But different constraints may require potentially conflicting item-ordering

◼ If there exists conflict ordering between c1 and c2

◼ Try to sort data and enforce one constraint first (which one?)

◼ Then enforce the other constraint when mining the projected databases

◼ E.g. c1: avg(S.profit) > 20, and c2: avg(S.price) < 50

◼ Assum c1 has more pruning power

◼ Sort in profit descending order and use c1 first

◼ For each project DB, sort trans. in price ascending order and use c2 at
mining

37

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

38

Sequential Pattern Mining

❑ Sequential Pattern and Sequential Pattern Mining

❑ GSP: Apriori-Based Sequential Pattern Mining

❑ SPADE: Sequential Pattern Mining in Vertical Data Format

❑ PrefixSpan: Sequential Pattern Mining by Pattern-Growth

❑ CloSpan: Mining Closed Sequential Patterns

❑ Constraint-Based Sequential-Pattern Mining

39

Sequential Pattern Mining

❑ What kind of patterns are sequential?

❑ Sequential – The order really matters. You can not swap two items in a
sequence and have the same sequence.

❑ Example: The English language is sequential : Subject -> Verb -> Object.

❑ Other points:

❑ For Sequential Pattern Mining, the time which the items occur is not
considered.

❑ Time Series Analysis does take into account the time in which an item
occurred.

40

Sequential Pattern Examples

❑ Application of Sequential pattern Mining

❑ Customer shopping → Purchase a laptop first, then a digital camera, and
then a smartphone.

❑ Medical treatments → Go to the doctor, get drugs, doctor monitors
progress, doctor reacts accordingly -> more/less drugs

❑ Natural disasters -> Before the disaster, during the disaster, after the
disaster.

❑ Scientific Experiments → Step 1, Step 2, Step 3.

❑ Stocks Markets → Stocks go up and down together.

❑ Biological sequences, DNA /Protein→ If you change the order of proteins, it
is a different gene.

41

Sequential Pattern and Sequential Pattern Mining

❑ Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

❑ An element may contain a set of items (also called
events)

* Items within an element are unordered and we list
them alphabetically

A sequence: < (ef) (ab) (df) c b >

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

element (unordered within “(..)”)

42

Sequential Pattern and Sequential Pattern Mining

❑ Sequential pattern mining: Given a set of sequences, find the complete set of
frequent subsequences (i.e., satisfying the min_sup threshold)

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

❑ Given support threshold min_sup = 2, <(ab)c>
is a sequential pattern

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

A sequence database

43

Sequential Pattern Mining Algorithms

❑ Algorithm requirement: Efficient, scalable, finding complete set, incorporating
various kinds of user-specific constraints

❑ The Apriori property still holds: If a subsequence s1 is infrequent, none of s1’s
super-sequences can be frequent

❑ Representative algorithms

❑ GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT’96)

❑ Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

❑ Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE’04)

❑ Mining closed sequential patterns: CloSpan (Yan, et al. @SDM’03)

❑ Constraint-based sequential pattern mining (to be covered in the constraint
mining section)

44

GSP: Apriori-Based Sequential Pattern Mining
❑ Initial candidates: All 8-singleton sequences

❑ <a>, , <c>, <d>, <e>, <f>, <g>, <h>

❑ Scan DB once, count support for each candidate

SID Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

Cand. sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

x

45

GSP: Apriori-Based Sequential Pattern Mining
❑ Example: Generate length-2 candidate sequences

min_sup = 2

Cand. sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

 <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

 <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

❑ w/o pruning
(includes g and h):

8*8 + 8*7/2 = 92

length-2 candidates

❑ w/ pruning:

6*6 + 6*5/2 = 51

length-2 candidates

singleton * singleton – Total: (6 * 6)

Sets (unordered) – Total: (6*5) / 2

Apriori Pruning

46

GSP Mining and Pruning

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat.
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat.

5th scan: 1 cand. 1 length-5 seq. pat.

SID Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

❑ Remove

❑ Candidates not in DB

❑ Candidates < min_sup
6*6 + 6*5/2 = 51

length

5

4

3

2

1

47

GSP Mining and Pruning
❑ Repeat, starting at k=1 until k<=length

❑ Scan DB to find “length-k” frequent sequences

❑ Generate “length-(k+1)” candidate sequences from “length-k”
frequent sequences using Apriori

❑ set k = k+1

❑ Until no frequent sequence or no candidate can be found

GSP (Generalized Sequential
Patterns): Srikant & Agrawal
@ EDBT’96)
-NOTE: Same team which
developed Apriori

48

Sequential Pattern Mining in Vertical Data
Format: The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential

PAttern Discovery

using Equivalent Class)

[M. Zaki 2001]

min_sup = 2

❑ A sequence database is mapped to: <SID, EID>
❑ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

EID (b) < EID (a):
Corresponds to:
<a(abc)(ac)d(cf)>

49

PrefixSpan: A Pattern-Growth Approach

❑ PrefixSpan Mining: Prefix Projections

❑ Step 1: Find length-1 sequential patterns

❑ <a>, , <c>, <d>, <e>, <f>

❑ Step 2: Divide search space and mine each projected DB

❑ <a>-projected DB,

❑ -projected DB,

❑ …

❑ <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

❑ Prefix and suffix

❑ Given <a(abc)(ac)d(cf)>

❑ Prefixes: <a>, <aa>,
<a(ab)>, <a(abc)>, …

❑ Suffix: Prefixes-based
projection

PrefixSpan (Prefix-projected
Sequential pattern mining)
Pei, et al. @TKDE’04

min_sup = 2

“_” is placeholder for prefix

50

prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, , <c>, <d>, <e>, <f>

prefix <aa>

…

prefix <af>

…

prefix prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

◼ No candidate subseqs. to be generated

◼ Projected DBs keep shrinking

min_sup = 2

-projected DB

<(_c)(ac)d(cf)>

<(_c)(ae)>

<(df)cb>

<c>

51

Implementation Consideration: Pseudo-Projection vs.
Physical Projection

❑ Major cost of PrefixSpan: Constructing projected DBs

❑ Suffixes largely repeating in recursive projected DBs

❑ When DB can be held in main memory, use pseudo projection

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: (, 2)

s|<ab>: (, 5)

❑ No physically copying suffixes

❑ Pointer to the sequence

❑ Offset of the suffix

❑ But if it does not fit in memory

❑ Physical projection

❑ Suggested approach:

❑ Integration of physical and pseudo-projection

❑ Swapping to pseudo-projection when the data fits in memory

2 5
Pointers save memory usage

52

CloSpan: Mining Closed Sequential Patterns

❑ A closed sequential pattern s: There exists no superpattern s’ such that s’ כ s, and s’

and s have the same support

❑ Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

53

CloSpan: Mining Closed Sequential Patterns

❑ Why directly mine closed sequential patterns?

❑ Reduce # of (redundant) patterns

❑ Attain the same expressive power

❑ Property P1: If s כ s1, s is closed iff two project
DBs have the same size

❑ Explore Backward Subpattern and Backward
Superpattern pruning to prune redundant
search space

❑ Greatly enhances efficiency (Yan, et al., SDM’03)

54

<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

❑ If s כ s1, s is closed iff two project DBs have the same size

❑ When two projected sequence DBs have the same size?

❑ Here is one example:

Only need to keep
size = 12 (including
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2

55

Constraint-Based Sequential-Pattern Mining
❑ Share many similarities with constraint-based itemset mining

❑ Anti-monotonic: If S violates c, the super-sequences of S also violate c

❑ sum(S.price) < 150; min(S.value) > 10

❑ Monotonic: If S satisfies c, the super-sequences of S also do so

❑ element_count (S) > 5; S {PC, digital_camera}

❑ Data anti-monotonic: If a sequence s1 with respect to S violates c3, s1

can be removed

❑ c3: sum(S.price) ≥ v

❑ Succinct: Enforce constraint c by explicitly manipulating data

❑ S {i-phone, MacAir}

❑ Convertible: Projection based on the sorted value not sequence order

❑ value_avg(S) < 25; profit_sum (S) > 160

❑ max(S)/avg(S) < 2; median(S) – min(S) > 5

56

Timing-Based Constraints in Seq.-Pattern Mining

❑ Order constraint: Some items must happen before the other

❑ {algebra, geometry} → {calculus} (where “→” indicates ordering)

❑ Anti-monotonic: Constraint-violating sub-patterns pruned

❑ Min-gap/max-gap constraint: Confines two elements in a pattern

❑ E.g., mingap = 1, maxgap = 4

❑ Succinct: Enforced directly during pattern growth

❑ Max-span constraint: Maximum allowed time difference between the
1st and the last elements in the pattern

❑ E.g., maxspan (S) = 60 (days)

❑ Succinct: Enforced directly when the 1st element is determined

❑ Window size constraint: Events in an element do not have to occur at
the same time: Enforce max allowed time difference

❑ E.g., window-size = 2: Various ways to merge events into elements

57

Episodes and Episode Pattern Mining

❑ Episodes and regular expressions: Alternative to seq. patterns

❑ Serial episodes: AB

❑ Parallel episodes: A|B

❑ Regular expressions: (A|B)C*(DE)

❑ E.g. Given a large shopping sequence database, one may like to find

❑ Suppose the pattern order follows the template (A|B)C*(D E), and

❑ Sum of the prices of A, B, C*, D, and E is greater than $100, where C*

means C appears *-times

❑ How to efficiently mine such episode patterns?

a partial order relationship: A and B can be in any order

a total order relationship: first A then B

(DE) means D, E happen in the same time window

58

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

59

What Is Graph Pattern Mining?

❑ Chem-informatics:

❑ Mining frequent chemical compound structures

❑ Social networks, web communities, tweets, …

❑ Finding frequent research collaboration subgraphs

60

Frequent (Sub)Graph Patterns

❑ Given a labeled graph dataset D = {G1, G2, …, Gn), the supporting graph set of a
subgraph g is Dg = {Gi | g Gi, Gi D}

❑ support(g) = |Dg|/ |D|

❑ A (sub)graph g is frequent if support(g) ≥ min_sup

❑ Ex.: Chemical structures
Graph Dataset

Frequent Graph Patterns

(A) (B) (C)

(1) (2)

min_sup = 2

support = 67%

❑ Alternative:

❑ Mining frequent subgraph
patterns from a single large
graph or network

61

Applications of Graph Pattern Mining

❑ Bioinformatics

❑ Gene networks, protein interactions, metabolic pathways

❑ Chem-informatics: Mining chemical compound structures

❑ Social networks, web communities, tweets, …

❑ Cell phone networks, computer networks, …

❑ Web graphs, XML structures, Semantic Web, information networks

❑ Software engineering: Program execution flow analysis

❑ Building blocks for graph classification, clustering, compression, comparison,
and correlation analysis

❑ Graph indexing and graph similarity search

62

Graph Pattern Mining Algorithms: Different
Methodologies

❑ Generation of candidate subgraphs

❑ Apriori vs. pattern growth (e.g., FSG vs. gSpan)

❑ Search order

❑ Breadth vs. depth

❑ Elimination of duplicate subgraphs

❑ Passive vs. active (e.g., gSpan [Yan & Han, 2002])

❑ Support calculation

❑ Store embeddings (e.g., GASTON [Nijssen & Kok, 2004], FFSM [Huan, Wang,
& Prins, 2003], MoFa [Borgelt & Berthold, ICDM’02])

❑ Order of pattern discovery

❑ Path → tree → graph (e.g., GASTON [Nijssen & Kok, 2004])

63

Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’
Join

❑ The Apriori property (anti-monotonicity): A size-k
subgraph is frequent if and only if all of its
subgraphs are frequent

❑ A candidate size-(k+1) edge/vertex subgraph is
generated if its corresponding two k-edge/vertex
subgraphs are frequent

❑ Iterative mining process:

❑ Candidate-generation → candidate pruning →
support counting → candidate elimination

64

Candidate Generation:
Vertex Growing vs. Edge Growing

❑ Generating new graphs with one more vertex

❑ AGM (Inokuchi, Washio, & Motoda, PKDD’00)

❑ Generating new graphs with one more edge

❑ FSG (Kuramochi & Karypis, ICDM’01)

❑ Performance shows via edge growing is more efficient

❑ Methodology: Breadth-search, Apriori joining two size-k graphs

❑ Many possibilities at generating size-(k+1) candidate graphs

65

Pattern-Growth Approach

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate
graphs

❑ Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge
subgraphs

❑ Major challenge

❑ Generating many duplicate subgraphs

❑ Major idea to solve the problem

❑ Define an order to generate
subgraphs

❑ DFS spanning tree: Flatten a graph
into a sequence using depth-first
search

❑ gSpan (Yan & Han, ICDM’02)

66

gSPAN: Graph Pattern Growth in Order

❑ Right-most path extension in subgraph
pattern growth

❑ Right-most path: The path from root to the
right-most leaf (choose the vertex with the
smallest index at each step)

❑ Reduce generation of duplicate subgraphs

❑ Completeness: The enumeration of graphs

using right-most path extension is complete

❑ DFS code: Flatten a graph into a sequence

using depth-first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,3)

e3: (3,0)

e4: (2,4)

67

Why Mine Closed Graph Patterns?

❑ 2n subgraphs -> closed frequent subgraphs

❑ A frequent graph G is closed if there exists no supergraph of G that
carries the same support as G

❑ Lossless compression: Does not contain non-closed graphs, but still
ensures that the mining result is complete

❑ Algorithm CloseGraph: Mines closed graph patterns directly

If this subgraph is closed in the
graph dataset, it implies that
none of its frequent super-graphs
carries the same support

68

CloseGraph: Directly Mining Closed Graph
Patterns

…

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition can we
stop searching their children,

i.e., early termination?

❑ CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD’03)

❑ Suppose G and G1 are frequent, and G is a
subgraph of G1

❑ If in any part of the graph in the dataset
where G occurs, G1 also occurs, then we
need not grow G (except some special, subtle
cases), since none of G’s children will be
closed except those of G1

69

Experiment and Performance Comparison

❑ The AIDS antiviral screen compound dataset from NCI/NIH

❑ The dataset contains 43,905 chemical compounds

❑ Discovered patterns: The smaller minimum support, the bigger and more
interesting subgraph patterns discovered

20% 10% 5%

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0.05 0.06 0.07 0.08 0.1

frequent graphs
closed frequent graphs

Minimum support

N
u

m
b

e
r

o
f

p
at

te
rn

s

of Patterns: Frequent vs. Closed

1

10

100

1000

10000

0.05 0.06 0.07 0.08 0.1

FSG

Gspan

CloseGraph

R
u

n
 t

im
e

 (
se

c)

Runtime: Frequent vs. Closed

Minimum support

70

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

71

Pattern Mining Application: Software Bug Detection
❑ Mining rules from source code

❑ Bugs as deviant behavior (e.g., by statistical analysis)

❑ Mining programming rules (e.g., by frequent itemset mining)

❑ Mining function precedence protocols (e.g., by frequent subsequence mining)

❑ Revealing neglected conditions (e.g., by frequent itemset/subgraph mining)

❑ Mining rules from revision histories

❑ By frequent itemset mining

❑ Mining copy-paste patterns from source code

❑ Find copy-paste bugs (e.g., CP-Miner [Li et al., OSDI’04]) (to be discussed here)

❑ Reference: Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, OSDI’04

https://pdfs.semanticscholar.org/05c1/06bb1a21a8d8d99b76953231f1476ec73df2.pdf

72

Application Example: Mining Copy-and-Paste Bugs

❑ Copy-pasting is common

❑ 12% in Linux file system

❑ 19% in X Window system

❑ Copy-pasted code is error-prone

❑ Mine “forget-to-change” bugs by
sequential pattern mining

❑ Build a sequence database from source
code

❑ Mining sequential patterns

❑ Finding mismatched identifier names &
bugs

void __init prom_meminit(void)
{

……
for (i=0; i<n; i++) {

total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

(Simplified example from linux-
2.6.6/arch/sparc/prom/memory.c)

Code copy-and-
pasted but forget
to change “id”!

Courtesy of Yuanyuan Zhou@UCSD

73

Building Sequence Database from Source Code
❑ Statement → number

❑ Tokenize each component

❑ Different operators, constants, key words
→ different tokens

❑ Same type of identifiers → same token

❑ Program → A long sequence

❑ Cut the long sequence by blocks

old = 3;

5 61 20

Tokenize

Hash
16

new = 3;

5 61 20

16

Map a statement
to a number

Final sequence DB:

(65)

(16, 16, 71)

…

(65)

(16, 16, 71)

for (i=0; i<n; i++) {
total[i].adr = list[i].addr;
total[i].bytes = list[i].size;
total[i].more = &total[i+1];

}
……

for (i=0; i<n; i++) {
taken[i].adr = list[i].addr;
taken[i].bytes = list[i].size;
taken[i].more = &total[i+1];

}

65
16
16
71

…

65
16
16
71

Hash values

Courtesy of Yuanyuan Zhou@UCSD

(mapped to)

74

Sequential Pattern Mining & Detecting
“Forget-to-Change” Bugs

❑ Modification to the sequence pattern mining algorithm

❑ Constrain the max gap

❑ Composing Larger Copy-Pasted Segments

❑ Combine the neighboring copy-pasted segments
repeatedly

❑ Find conflicts: Identify names that cannot be mapped to the
corresponding ones

❑ E.g., 1 out of 4 “total” is unchanged, unchanged ratio =
0.25

❑ If 0 < unchanged ratio < threshold, then report it as a bug

❑ CP-Miner reported many C-P bugs in Linux, Apache, … out of
millions of LOC (lines of code)

Courtesy of Yuanyuan Zhou@UCSD

f (a1);
f (a2);
f (a3);

f1 (b1);
f1 (b2);
f2 (b3);

conflict

(16, 16, 71)
……
(16, 16, 10, 71)

Allow a maximal gap:
inserting statements
in copy-and-paste

75

Chapter 7 : Advanced Frequent Pattern Mining

❑ Mining Diverse Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Sequential Pattern Mining

❑ Graph Pattern Mining

❑ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

❑ Summary

76

Summary: Advanced Frequent Pattern Mining
❑ Mining Diverse Patterns

❑ Mining Multiple-Level Associations

❑ Mining Multi-Dimensional Associations

❑ Mining Quantitative Associations

❑ Mining Negative Correlations

❑ Mining Compressed and Redundancy-Aware
Patterns

❑ Sequential Pattern Mining

❑ Sequential Pattern and Sequential Pattern Mining

❑ GSP: Apriori-Based Sequential Pattern Mining

❑ SPADE: Sequential Pattern Mining in Vertical Data
Format

❑ PrefixSpan: Sequential Pattern Mining by Pattern-
Growth

❑ CloSpan: Mining Closed Sequential Patterns

❑ Constraint-Based Frequent Pattern Mining

❑ Why Constraint-Based Mining?

❑ Constrained Mining with Pattern Anti-Monotonicity

❑ Constrained Mining with Pattern Monotonicity

❑ Constrained Mining with Data Anti-Monotonicity

❑ Constrained Mining with Succinct Constraints

❑ Constrained Mining with Convertible Constraints

❑ Handling Multiple Constraints

❑ Constraint-Based Sequential-Pattern Mining

❑ Graph Pattern Mining

❑ Graph Pattern and Graph Pattern Mining

❑ Apriori-Based Graph Pattern Mining Methods

❑ gSpan: A Pattern-Growth-Based Method

❑ CloseGraph: Mining Closed Graph Patterns

❑ Pattern Mining Application: Mining Software Copy-
and-Paste Bugs

77

References: Mining Diverse Patterns
❑ R. Srikant and R. Agrawal, “Mining generalized association rules”, VLDB'95

❑ Y. Aumann and Y. Lindell, “A Statistical Theory for Quantitative Association Rules”,
KDD'99

❑ K. Wang, Y. He, J. Han, “Pushing Support Constraints Into Association Rules Mining”,
IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003

❑ D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns",
Knowledge and Data Engineering, 60(1): 5-29, 2007

❑ D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns",
KDD'06

❑ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and
Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

❑ F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, “Mining Colossal Frequent Patterns by
Core Pattern Fusion”, ICDE'07

78

References: Constraint-Based Frequent Pattern Mining

❑ R. Srikant, Q. Vu, and R. Agrawal, “Mining association rules with item constraints”,
KDD'97

❑ R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, “Exploratory mining and pruning
optimizations of constrained association rules”, SIGMOD’98

❑ G. Grahne, L. Lakshmanan, and X. Wang, “Efficient mining of constrained correlated
sets”, ICDE'00

❑ J. Pei, J. Han, and L. V. S. Lakshmanan, “Mining Frequent Itemsets with Convertible
Constraints”, ICDE'01

❑ J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in Large
Databases”, CIKM'02

❑ F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: Anticipated Data
Reduction in Constrained Pattern Mining”, PKDD'03

❑ F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing Framework for Graph
Pattern Mining”, PAKDD'07

79

References: Sequential Pattern Mining
❑ R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance

improvements”, EDBT’96

❑ M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences”, Machine
Learning, 2001

❑ J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
"Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE,
16(10), 2004

❑ X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large
Datasets”, SDM'03

❑ J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the pattern-
growth methods", J. Int. Inf. Sys., 28(2), 2007

❑ M. N. Garofalakis, R. Rastogi, K. Shim: Mining Sequential Patterns with Regular Expression
Constraints. IEEE Trans. Knowl. Data Eng. 14(3), 2002

❑ H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes in event
sequences”, Data Mining and Knowledge Discovery, 1997

80

References: Graph Pattern Mining
❑ C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of

molecules, ICDM'02

❑ J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism, ICDM'03

❑ A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data, PKDD'00

❑ M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01

❑ S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference.
KDD'04

❑ N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from
semistructured data, ICDM'02

❑ X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02

❑ X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03

❑ X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04

❑ X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05

81
81

