

CS 412 Intro. to Data Mining Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Qi Li, Computer Science, Univ. Illinois at Urbana-Champaign, 2018

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- **Efficient Pattern Mining Methods**
- Pattern Evaluation

Pattern Discovery: Basic Concepts

□ What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

What are Patterns?

What are patterns?

- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
- Patterns represent intrinsic and important properties of datasets

Frequent item set

Frequent sequences

Frequent structures

What Is Pattern Discovery?

Pattern discovery: Uncovering patterns from massive data sets

- □ It can answer questions such as:
 - □ What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?

Pattern Discovery: Why Is It Important?

- **Foundation** for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - **Classification**: Discriminative pattern-based analysis
 - **Cluster** analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis
 - Many types of data: spatiotemporal, multimedia, time-series, and stream data

Basic Concepts: Transactional Database

- □ Transactional Database (TDB)
 - Each transaction is associated with an identifier, called a TID.
 - May also have counts associated with each item sold

Tid	Items bought		
1	Beer, Nuts, Diaper		
2	Beer, Coffee, Diaper		
3	Beer, Diaper, Eggs		
4	Nuts, Eggs, Milk		
5	Nuts, Coffee, Diaper, Eggs, Milk		

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items $I = \{ I_1, I_2, \cdots, I_m \}$
- k-itemset: An itemset containing k items:
 X = {x₁, ..., x_k}
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- Absolute support (count)
 - sup{X} = occurrences of an itemset X
 - **Ex.** sup{Beer} = 3
 - □ Ex. sup{Diaper} = 4
 - □ Ex. sup{Beer, Diaper} = 3
 - □ Ex. sup{Beer, Eggs} = 1

Tid	Items bought
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

Relative support

- s{X} = The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- □ Ex. s{Beer} = 3/5 = 60%
- □ Ex. s{Diaper} = 4/5 = 80%
- □ Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let σ = 50% (σ: minsup threshold) for the given 5-transaction dataset

- □ All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%);
 Diaper: 4/5 (80%); Eggs: 3/5 (60%)
- □ All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
- □ All the frequent 3-itemsets?
 - None

Tid	Items bought		
1	Beer, Nuts, Diaper		
2	Beer, Coffee, Diaper		
3	Beer, Diaper, Eggs		
4	Nuts, Eggs, Milk		
5	Nuts, Coffee, Diaper, Eggs, Milk		

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Compared with itemsets, association rules can be more telling
 - \Box Ex. Diaper \rightarrow Beer
 - Buying diapers may likely lead to buying beers

Note: X ∪ Y: the union of two itemsets ■ The set contains both X and Y

Association Rules

- □ How do we compute the strength of an association rule $X \rightarrow Y$ (Both X and Y are itemsets)?
- □ We first compute the following two metrics, s and c.
 - **Goldson** Support of $X \cup Y$

11

- □ Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- $\Box \quad Confidence of X \rightarrow Y$
- The conditional probability that a transaction containing X also contains Y:

 $c = \sup(X, Y) / \sup(X)$

- **Ex.** $c = \sup\{\text{Diaper, Beer}\}/\sup\{\text{Diaper}\} = \frac{3}{4} = 0.75$
- In pattern analysis, we are often interested in those rules that dominate the database, and these two metrics ensure the popularity and correlation of X and Y.

Tid	Items bought		
1	Beer, Nuts, Diaper		
2	Beer, Coffee, Diaper		
3	Beer, Diaper, Eggs		
4	Nuts, Eggs, Milk		
5	Nuts, Coffee, Diaper, Eggs, Milk		

Mining Frequent Itemsets and Association Rules

Association rule mining

- Given two thresholds: *minsup, minconf*
- □ Find all of the rules, $X \rightarrow Y$ (s, c) such that s ≥ minsup and c ≥ minconf
- □ Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3
- □ Let *minconf* = 50%
 - $\square \quad Beer \rightarrow Diaper \ (60\%, 100\%)$
 - $\Box \quad Diaper \rightarrow Beer \ (60\%, 75\%)$

(Q: Are these all rules?)

TidItems bought1Beer, Nuts, Diaper2Beer, Coffee, Diaper3Beer, Diaper, Eggs4Nuts, Eggs, Milk5Nuts, Coffee, Diaper, Eggs, Milk

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- \Box How many frequent itemsets does the following TDB₁ contain (minsup = 1)?
 - **D** $\mathsf{TDB}_{1:}$ $\mathsf{T}_1: \{\mathsf{a}_1, ..., \mathsf{a}_{50}\}; \mathsf{T}_2: \{\mathsf{a}_1, ..., \mathsf{a}_{100}\}$
 - Let's have a try
 - 1-itemsets: {a₁}: 2, {a₂}: 2, ..., {a₅₀}: 2, {a₅₁}: 1, ..., {a₁₀₀}: 1,
 - 2-itemsets: {a₁, a₂}: 2, ..., {a₁, a₅₀}: 2, {a₁, a₅₁}: 1 ..., ..., {a₉₉, a₁₀₀}: 1,

••••, ••••, ••••, •••

- 99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1 100-itemset: {a₁, a₂, ..., a₁₀₀}: 1
- □ The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

A too huge set for any one to compute or store!

Expressing Patterns in Compressed Form

- □ How to reduce the redundancy of the list of all the frequent itemsets?
 - If $\{a_1, ..., a_{99}\}$ and $\{a_1, ..., a_{100}\}$ have the same support in the database, then we don't need to list both of them
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y ⊃ X, *with the same support* as X
 - **Ex.** TDB_1 : T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - Suppose *minsup* = 1. How many closed patterns does TDB_1 contain?

Two:
$$P_1$$
: "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

Expressing Patterns in Compressed Form: Closed Patterns

- **Closed pattern** is a **lossless compression** of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - Given P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"
 - Or You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose *minsup* = 1. How many max-patterns does TDB_1 contain?

Expressing Patterns in Compressed Form: Max-Patterns

□ Max-pattern is a lossy compression!

- U We only know a subset of the max-pattern P, $\{a_1, ..., a_{40}\}$, is frequent
- But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- Thus in many applications, mining closed-patterns is more desirable than mining max-patterns

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Pattern Evaluation

Efficient Pattern Mining Methods

- □ The Downward Closure Property of Frequent Patterns
 - The Apriori Algorithm
 - **Extensions or Improvements of Apriori**
- Mining Frequent Patterns by Exploring Vertical Data Format
- **FPGrowth:** A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- **Frequent** itemset: $\{a_1, ..., a_{50}\}$
 - **u** Subsets are all **frequent**: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, ..., a_{49}\}$, ...
- Downward closure (Apriori): Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - If any subset of an itemset S is infrequent, then there is no chance for S to be frequent.
 A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - **Scan** DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - □ Test the candidates against DB to find frequent (k+1)-itemsets

□ Set k := k +1

- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

C_k: Candidate itemset of size k

```
F_k: Frequent itemset of size k
```

$$\begin{split} &\mathsf{K}:=1;\\ &F_k:=\{\text{frequent items}\}; \ \ // \ \text{frequent 1-itemset}\\ &\text{While }(F_k \mathrel{!=} \varnothing) \ \text{do }\{ \ \ \ // \ \text{when } F_k \text{ is non-empty}\\ &C_{k+1}:= \ \text{candidates generated from } F_k; \ \ // \ \text{candidate generation}\\ &\text{Derive } F_{k+1} \ \text{by counting candidates in } C_{k+1} \ \text{with respect to } TDB \ \text{at minsup};\\ &k:=k+1\\ & \\ & \\ & \\ &\text{return } \cup_k F_k \ \ \ \ // \ \text{return } F_k \ \text{generated at each level} \end{split}$$

The Apriori Algorithm—An Example

Apriori: Implementation Tricks

- □ How to generate candidates?
 - **Step 1**: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - $\square \quad F_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $F_3 * F_3$
 - □ *abcd* from *abc* and *abd*
 - □ *acde* from *acd* and *ace*
 - Pruning:
 - \Box acde is removed because ade is not in F_3
 - $\Box \quad C_4 = \{abcd\}$

Candidate Generation (Pseudo-Code)

- Suppose the items in F_{k-1} are listed in an order
- self-join self-join □ // Step 1: Joining zabc zabd acd bcd ace for each p in F_{k-1} acde zabcd for each q in F_{k-1} if $p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$ $c = \mathbf{join}(p, q)$ // Step 2: pruning if has_infrequent_subset(c, F_{k-1}) **continue** // prune else add c to C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - Partitioning (e.g., Savasere, et al., 1995)
 - Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)
 - Pruning by support lower bounding (e.g., Bayardo 1998)
 - Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - Tree projection (Agarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

Partitioning: Scan Database Only Twice

- □ Method: Scan DB **twice** (A. Savasere, E. Omiecinski and S. Navathe, *VLDB'95*)
 - Scan 1: Partition database so that each partition can fit in main memory (why?)
 - Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - □ Find global frequent itemset candidates (those frequent in at least one partition)
 - □ Find the true frequency of those candidates, by scanning TDB_i one more time

Direct Hashing and Pruning (DHP)

- Hashing: v = hash(itemset)
- 1st scan: When counting the 1-itemset, hash 2itemset to calculate the bucket count
- Example: At the 1st scan of TDB, count 1-itemset, differe and hash 2-itemsets in the transaction to its bucket
 - □ {ab, ad, ce}
 - □ {bd, be, de}
 - **_** ...
 - At the end of the first scan,
 - if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80</p>

Exploring Vertical Data Format: ECLAT

t

t

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- Vertical format
- Properties of Tid-Lists
 - □ t(X) = t(Y): X and Y always happen together (e.g., t(ac} = t(d})
 - □ $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Frequent patterns: vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - □ t(e) = { T_{10} , T_{20} , T_{30} }, t(ce) = { T_{10} , T_{30} } → Diffset (ce, e) = { T_{20} }

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

$(e) = \{T_{10}, T_{20}, T_{30}\};$	Item	TidList
$(a) = \{T_{10}, T_{20}\};$	а	10, 20
$(ae) = \{T_{10}, T_{20}\}$	b	20, 30
, 10, 20,	С	10, 30
-∫T \	d	10
- (' ₂₀)	е	10, 20, 30

Why Mining Frequent Patterns by Pattern Growth?

- □ Apriori: A *breadth-first search* mining algorithm
 - □ First find the complete set of frequent k-itemsets
 - □ Then derive frequent (k+1)-itemset candidates
 - □ Scan DB again to find true frequent (k+1)-itemsets

Why Mining Frequent Patterns by Pattern Growth?

- Motivation for a different mining methodology
 - **Can we develop a** *depth-first search* mining algorithm?
 - For a frequent itemset ρ, can subsequent search be confined to only those transactions that containing ρ?
- Such thinking leads to a frequent pattern growth approach:
 - **FPGrowth** (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

Prerequisite: Find frequent 1-itemset

TID	Items in the Transaction
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

- 1. Scan DB once, find single item frequent pattern: Let min_support = 3 f:4, a:3, c:4, b:3, m:3, p:3
- 2. Sort frequent items in frequency descending order, f-listF-list = f-c-a-b-m-p

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	<i>f</i> , <i>b</i>
400	$\{b, c, k, s, p\}$	<i>c</i> , <i>b</i> , <i>p</i>
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

3. Scan DB again, find the ordered frequent itemlist for each transaction

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>
200	$\{a, b, c, f, l, m, o\}$	<u>f</u> , c, a, b, m
300	$\{b, f, h, j, o, w\}$	<i>f</i> , <i>b</i>
400	$\{b, c, k, s, p\}$	<i>c</i> , <i>b</i> , <i>p</i>
500	$\{a, f, c, e, l, p, m, n\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>

4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared sub-branches merged, counts accumulated

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	<i>f</i> , <i>b</i>
400	$\{b, c, k, s, p\}$	<i>c</i> , <i>b</i> , <i>p</i>
500	$\{a, f, c, e, l, p, m, n\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>

4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared sub-branches merged, counts accumulated

TID	Items in the Transaction	Ordered, frequent itemlist		After inser	ting all t	he frequent itemlists
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p				{}
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m		Hoador Tak		
300	$\{b, f, h, j, o, w\}$	<i>f</i> , <i>b</i>				$f \cdot A$
400	$\{b, c, k, s, p\}$	<i>c</i> , <i>b</i> , <i>p</i>	ltem	Frequency	header	
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p	f	4		$-\frac{1}{c\cdot 3}$ $h\cdot 1 \rightarrow h\cdot$

4. For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared sub-branches merged, counts accumulated

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

Conditional database

fcam:2, cb:1

- Pattern mining can be partitioned according to current patterns
 - We start to calculate the conditional database from bottom to top (from the least frequent item)
 - Conditional database: the database under the condition that *p* exists
 - p's conditional database (Patterns containing p): fcam:2, cb:1

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- □ p's conditional database (Patterns containing p): fcam:2, cb:1
- After calculating p's conditional database, we calculate m's conditional database

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- **Repeat and calculate the conditional database of b, a, and c**
- Since f is the most frequent item, we don't need to compute its conditional dataset

Mine Each Conditional Database Recursively

min_support = 3Conditional Data Basesitem cond. data basecf:3afc:3bfca:1, f:1, c:1mfca:2, fcab:1pfcam:2, cb:1

For each conditional database Mine single-item patterns Construct its FP-tree & mine it e.g., mining m's FP-tree { } { } *f*:3 *f*:3 *f*:3 *f*:3 cam's FP-tree cm's FP-tree *c*:3 *c*:3 am's FP-tree a:3 m's FP-tree

Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

m: 3 fm: 3, cm: 3, am: 3 fcm: 3, fam:3, cam: 3 fcam: 3

A Special Case: Single Prefix Path in FP-tree

- **u** Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node

Concatenation of the mining results of the two parts

{ }

 $a_1:n_1$

FPGrowth: Mining Frequent Patterns by Pattern Growth

- **Essence of frequent pattern growth (FPGrowth) methodology**
 - Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by Item-Based Data Projection

- □ What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection

47

- Parallel projection: Project the DB on each frequent item
 - □ Space costly, all partitions can be processed in parallel
- Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

CLOSET+: Mining Closed Itemsets by Pattern-Growth

{ }	Efficient, direct mining of closed itemsets	TID	Items	
	Intuition:	1	acdef	
$a_1:n_1$	If an FP-tree contains a single branch as	2	abe	
$a_2:n_1$	shown left	3	cefg	
$a_3:n_1$	"a1.a2" should be merged	4	acdf	
	\square Itemset merging: If V annears in every	Let minsupport = 2		
	occurrence of X then Y is merged with X	a:3, c:3, c	l:2, e:3, f:3	
$b_1:m_1$	□ <i>d</i> -proj. db: { <u>ac</u> e <u>f</u> , <u>acf</u> } → <i>acfd</i> -proj. db: {e}	F-List:	a-c-e-f-d	
$C_{2}:k_{2}$ $C_{3}:k_{3}$	Final closed itemset: acfd:2			

- **There are many other tricks developed**
 - For details, see J. Wang, et al,, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Pattern Evaluation

- □ Limitation of the Support-Confidence Framework
- **\Box** Interestingness Measures: Lift and χ^2

Null-Invariant Measures

Comparison of Interestingness Measures

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- □ Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - □ Support, confidence, correlation, ...
 - Subjective interestingness measures:
 - Different users may judge interestingness differently
 - Let a user specify
 - Query-based: Relevant to a user's particular request
 - Judge against one's knowledge-base
 - unexpected, freshness, timeliness

Limitation of the Support-Confidence Framework

□ Are *s* and *c* interesting in association rules: "A \Rightarrow B" [*s*, *c*]? Be careful!

Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750 2-	Way Cont.
not eat-cereal	200	50	250	y contingency table
sum(col.)	600	400	1000	

- □ Association rule mining may generate the following:
 - \Box play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - □ ¬ play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

□ Measure of dependent/correlated events: lift $lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$

□ Lift(B, C) may tell how B and C are correlated

- □ Lift(B, C) = 1: B and C are independent
- □ > 1: positively correlated
- < 1: negatively correlated</pre>

□ For our example, $lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$ $lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$

□ Thus, B and C are negatively correlated since lift(B, C) < 1;

■ B and ¬C are positively correlated since lift(B, ¬C) > 1

Lift is more telling than s & c

	В	⊐B	Σ _{row}
С	400	350	750
¬C	200	50	250
Σ _{col.}	600	400	1000

Interestingness Measure: χ^2

 \Box Another measure to test correlated events: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

□ For the table on the right,

$$C^{2} = \frac{(400 - 450)^{2}}{450} + \frac{(350 - 300)^{2}}{300} + \frac{(200 - 150)^{2}}{150} + \frac{(50 - 100)^{2}}{100} = 55.56$$

- **Lookup** χ^2 distribution table => B, C are correlated
- χ²-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- **Thus**, χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the new dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- $\Box \chi^2 = 670$: Observed(BC) >> expected value (11.85)
- **Too many null transactions may "spoil the soup"!**

	В	⊐B	Σ _{row}			
С	100	1000	1100			
٦C	1000	100000	101000			
$\Sigma_{col.}$	1100 🧳	101000	102100			
null transactions						

Contingency table with expected values added								
	В	⊐B	Σ _{row}					
С	100 (11.85)	1000	1100					
٦C	1000 (988.15)	100000	101000					
$\Sigma_{col.}$	1100	101000	102100					

Interestingness Measures & Null-Invariance

Null invariance means: The number of null transactions does not matter.
 Does not change the measure value.

□ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant?
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i, b_j) - o(a_i, b_j))^2}{e(a_i, b_j)}$	$[0, \infty]$	No
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0,1]	Yes
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0,1]	Yes
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
$\mathit{Kulczynski}(A,B)$	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0,1]	Yes
MaxConf(A, B)	$\max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$	[0,1]	Yes

Let $p = \frac{s(A \cup B)}{s(A)} = P(B|A)$ $q = \frac{s(A \cup B)}{s(B)} = P(A|B)$ p, q are null invariant

Essentially min, max, mean variants of *p*, *q*

Null Invariance: An Important Property

□ Why is null invariance crucial for the analysis of massive transaction data?

Many transactions may contain neither milk nor coffee!

	milk	$\neg milk$	$\sum_{i=1}^{n}$
coffee	mc	$\neg mc$	270w
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

milk vs. coffee contingency table

Lift and χ² are not null-invariant: not good to evaluate data that contain too many or too few null transactions!

Many measures are not null-invariant!

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	$1,\!000$	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - \Box D₄—D₆ differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
$co\!f\!fee$	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf		
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91		
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91		
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09		
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5		
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91		
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99		

All 5 are null-invariant

Imbalance Ratio with Kulczynski Measure

- □ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: $IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$
- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - **D**₄ is neutral & balanced; D_5 is neutral but imbalanced
 - \Box D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	≤ 0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	$\bigcirc 0.5$	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	$\bigcirc 0.5$	0.99

Example: Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
 - □ > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123~(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	$\triangleleft 2$	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related? Is A the advisor, or the advisee?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- □ *Null-invariance* is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

What Measures to Choose for Effective Pattern Evaluation?

- **Exercise:** Mining research collaborations from research bibliographic data
 - □ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Summary

- Basic Concepts
 - □ What Is Pattern Discovery? Why Is It Important?
 - Basic Concepts: Frequent Patterns and Association Rules
 - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
 - **The Downward Closure Property of Frequent Patterns**
 - **The Apriori Algorithm**
 - **Extensions or Improvements of Apriori**
 - Mining Frequent Patterns by Exploring Vertical Data Format
 - **FPGrowth:** A Frequent Pattern-Growth Approach
 - Mining Closed Patterns
- Pattern Evaluation
 - Interestingness Measures in Pattern Mining
 - $\hfill\square$ Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- **E.** Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010