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Supervised vs. Unsupervised Learning (1)
❑ Supervised learning (classification)

❑ Supervision: The training data such as observations or measurements are 

accompanied by labels indicating the classes which they belong to

❑ New data is classified based on the models built from the training set

Training Data with class label:

Model 

Learning

Positive

Negative

Training 

Instances

Test 

Instances

Prediction 

Model 

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No
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Supervised vs. Unsupervised Learning (2)

❑ Unsupervised learning (clustering)

❑ The class labels of training data are unknown

❑ Given a set of observations or measurements, establish the possible existence 

of classes or clusters in the data
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❑ Classification

❑ Predict categorical class labels (discrete or nominal)

❑ Construct a model based on the training set and the class labels (the values in a 
classifying attribute) and use it in classifying new data

❑ Numeric prediction

❑ Model continuous-valued functions (i.e., predict unknown or missing values)

Prediction Problems: Classification vs. Numeric 
Prediction
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❑ Typical applications of classification

❑ Credit/loan approval

❑ Medical diagnosis: if a tumor is cancerous or benign

❑ Fraud detection: if a transaction is fraudulent

❑ Web page categorization: which category it is

Prediction Problems: Classification vs. Numeric 
Prediction
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Classification—Model Construction, Validation and Testing
❑ Model Construction and Training

❑ Model: Represented as decision trees, rules, mathematical formulas, or other forms

❑ Assumption: Each sample belongs to a predefined class /class label

❑ Training Set: The set of samples used for model construction
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Classification—Model Construction, Validation and Testing
❑ Model Validation and Testing: 

❑ Test: Estimate accuracy of the model

❑ The known label of test sample VS. the classified result from the model

❑ Accuracy: % of test set samples that are correctly classified by the model

❑ Test set is independent of training set 

❑ Validation: If the test set is used to select or refine models, it is called validation (or 
development) (test) set

❑ Model Deployment: If the accuracy is acceptable, use the model to classify new data
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Decision Tree Induction: An Example

outlook?

windy? Humidity?

Sunny Rainy

Yes No No

Overcast

Yes

HighNormalTrueFalse

❑ Decision tree construction: 

❑ A top-down, recursive, divide-and-
conquer process

❑ Resulting tree:

Training data set: Play Golf?

Yes

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No

https://www.saedsayad.com/decision_tree.htm
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Decision Tree Induction: Algorithm

❑ Basic algorithm 

❑ Tree is constructed in a top-down, recursive, divide-and-conquer manner

❑ At start, all the training examples are at the root

❑ Examples are partitioned recursively based on selected attributes

❑ On each node, attributes are selected based on the training examples on that 
node, and a heuristic or statistical measure (e.g., information gain, Gini index)
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Decision Tree Induction: Algorithm

❑ Conditions for stopping partitioning

❑ All samples for a given node belong to the same class

❑ There are no remaining attributes for further partitioning 

❑ There are no samples left

❑ Prediction

❑ Majority voting is employed for classifying the leaf
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How to Handle Continuous-Valued Attributes?
❑ Method 1: Discretize continuous values and treat them as categorical values

❑ E.g., age: < 20, 20..30, 30..40, 40..50, > 50

❑ Method 2: Determine the best split point for continuous-valued attribute A

❑ Sort:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, …

❑ Possible split point: (ai+ai+1)/2 

❑ e.g., (15+18)/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, …

❑ The point with the maximum information gain for A is selected as the split-

point for A

❑ Split:  Based on split point P

❑ The set of tuples in D satisfying A ≤ P vs. those with A > P
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Pro’s and Con’s

❑ Pro’s

❑ Easy to explain (even for non-expert)

❑ Easy to implement (many software)

❑ Efficient

❑ Can tolerant missing data

❑ White box

❑ No need to normalize data

❑ Non-parametric: No assumption on data distribution, no assumption on 
attribute independency

❑ Can work on various attribute types
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Con’s

❑ Con’s

❑ Unstable. Sensitive to noise

❑ Accuracy may be not good enough (depending on your data)

❑ The optimal splitting is NP. Greedy algorithms are used

❑ Overfitting  
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Splitting Measures: Information Gain
❑ Entropy (Information Theory)

❑ A measure of uncertainty associated with a random number

❑ Calculation:  For a discrete random variable Y taking m distinct values {y1, y2, …, ym}

❑ Interpretation

❑ Higher entropy → higher uncertainty

❑ Lower entropy → lower uncertainty

❑ Conditional entropy

m = 2



17

Information Gain: An Attribute Selection Measure 

❑ Select the attribute with the highest information gain (used in typical 
decision tree induction algorithm: ID3/C4.5)

❑ Let pi be the probability that an arbitrary tuple in D belongs to class Ci, 
estimated by |Ci, D|/|D|

❑ Expected information (entropy) needed to classify a tuple in D:

❑ Information needed (after using A to split D into v partitions) to classify D:

❑ Information gained by branching on attribute A
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Example: Attribute Selection with Information Gain

5

14
𝐼(2,3)means “outlook=rainy” has 5 out of 14 samples, with 2 

yes’es and 3 no’s. Hence 246.0)()()( =−= DInfoDInfoageGain age

outlook?

Sunny Rainy
Overcast

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)5,9()( 22 =−−== IDInfo

outlook yes no I(yes, no)

rainy 2 3 0.971
overcast 4 0 0

sunny 3 2 0.971

𝐼𝑛𝑓𝑜𝑜𝑢𝑡𝑙𝑜𝑜𝑘 𝐷 =
5

14
𝐼 2,3 +

4

14
𝐼 4,0 +

5

14
𝐼 3,2 = 0.694

Outlook Temp Humidity Windy
Play 
Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No
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Example: Attribute Selection with Information Gain

Similarly, we can get

𝐺𝑎𝑖𝑛 𝑇𝑒𝑚𝑝 = 0.029,
𝐺𝑎𝑖𝑛 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.151,
𝐺𝑎𝑖𝑛 𝑊𝑖𝑛𝑑𝑦 = 0.048

Temp Yes No I(Yes, No)
Hot 2 2 ?
Mild 4 2 ?
Cool 3 1 ?

Humidity Yes No I(Yes, No)
Normal 6 1 ?

High 3 4 ?

Windy Yes No I(Yes, No)

True ? ? ?
False ? ? ?

Outlook Temp Humidity Windy
Play 
Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No
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Gain Ratio: A Refined Measure for Attribute Selection
❑ Information gain measure is biased towards attributes with a large number of 

values (e.g. ID)

❑ Gain ratio: Overcomes the problem (as a normalization to information gain)

❑ GainRatio(A) = Gain(A)/SplitInfo(A)

❑ The attribute with the maximum gain ratio is selected as the splitting attribute

❑ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan

❑ Example

❑ SplitInfotemp D = −
4
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❑ GainRatio(temp) = 0.029/1.557 = 0.019
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Another Measure: Gini Index
❑ Gini index (or Gini impurity): Used in CART, and also in IBM IntelligentMiner

❑ CART is a binary tree

❑ If a data set 𝐷 contains examples from 𝑛 classes, gini index, 𝑔𝑖𝑛𝑖(𝐷) is defined as

❑ 𝑔𝑖𝑛𝑖 𝐷 = 1 − σ𝑗=1
𝑛 𝑝𝑗

2

❑ 𝑝𝑗 is the relative frequency of class 𝑗 in 𝐷

❑ What is the range of Gini index?

❑ The minimum= 0, meaning pure

❑ The maximum=?  What is the case that Gini index reach the maximum?
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Another Measure: Gini Index
❑ If a data set 𝐷 is split on 𝐴 into two subsets 𝐷1 and 𝐷2, the 𝑔𝑖𝑛𝑖 index 𝑔𝑖𝑛𝑖(𝐷) is 

defined as

❑ 𝑔𝑖𝑛𝑖𝐴 𝐷 =
𝐷1

𝐷
𝑔𝑖𝑛𝑖 𝐷1 +

𝐷2

𝐷
𝑔𝑖𝑛𝑖 𝐷2

❑ Reduction in Impurity:

❑ Δ𝑔𝑖𝑛𝑖 𝐴 = 𝑔𝑖𝑛𝑖 𝐷 − 𝑔𝑖𝑛𝑖𝐴(𝐷)

❑ The attribute provides the smallest 𝑔𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝐷) (or the largest reduction in 
impurity) is chosen to split the node (need to enumerate all the possible splitting 
points for each attribute)
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Computation of Gini Index 
❑ Example:  D has 9 tuples in play_golf= “yes” and 5 in “no”

❑ Suppose the attribute temp partitions D into 10 in D1: {cool, 
mild} and 4 in D2

❑ 𝑔𝑖𝑛𝑖𝑡𝑒𝑚𝑝∈ 𝑐𝑜𝑜𝑙,𝑚𝑖𝑙𝑑 𝐷 =
10

14
𝑔𝑖𝑛𝑖 𝐷1 +

4

14
𝑔𝑖𝑛𝑖 𝐷2

=
10

14
1 −

7

10

2

−
3

10

2

+
4

14
1 −

2

4

2

−
2

4

2

= 0.443

❑ Gini{cool,mild} is 0.458; Gini{mild,hot} is 0.450

❑ Thus, split on the {cool,mild} (and {hot}) since it has the 
lowest Gini index
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Outlook Temp Humidity Windy
Play 
Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No
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Comparing Three Attribute Selection Measures

❑ The three measures, in general, return good results but

❑ Information gain: 

❑ biased towards multivalued attributes

❑ Gain ratio: 

❑ tends to prefer unbalanced splits in which one partition is much smaller than 

the others

❑ Gini index: 

❑ biased to multivalued attributes

❑ has difficulty when # of classes is large

❑ tends to favor tests that result in equal-sized partitions and purity in both 

partitions
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Comparing Three Attribute Selection Measures

❑ In reality

❑ Theoretical comparison between the gini index and information gain 
criteria

❑ It only matters in 2% of the cases.

❑ Entropy might be a little slower to compute (because of the 
logarithm).

https://www.unine.ch/files/live/sites/imi/files/shared/documents/papers/Gini_index_fulltext.pdf
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Other Attribute Selection Measures
❑ Minimal Description Length (MDL) principle

❑ Philosophy: The simplest solution is preferred 

❑ The best tree as the one that requires the fewest # of bits to both (1) encode 
the tree, and (2) encode the exceptions to the tree

❑ CHAID: a popular decision tree algorithm, measure based on χ2 test for 
independence

❑ Multivariate splits (partition based on multiple variable combinations)

❑ CART: finds multivariate splits based on a linear combination of attributes

❑ There are many other measures proposed in research and applications

❑ E.g., G-statistics, C-SEP

❑ Which attribute selection measure is the best?

❑ Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

❑ Overfitting:

❑ Too many branches, some may reflect anomalies due to noise or 
outliers

❑ Poor accuracy for unseen samples
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Overfitting and Tree Pruning

❑ Two approaches to avoid overfitting 

❑ Errors: use a cross-validation to compute

❑ Pre-pruning (Early stop):  Error does not decrease significantly -> stop 
splitting 

❑ Efficient but prone to under-fit (stop too early)

❑ Post-pruning: After the full tree is constructed, prune back to the 
point where the cross-validation error is minimum

❑ Extra computations but mathematically rigorous

❑ Can be used alone, in combination, or not at all

❑ For different purposes (accuracy, efficiency, interpretability)
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Classification in Large Databases
❑ Scalability: Classifying data sets with millions of examples and hundreds of 

attributes with reasonable speed

❑ Why is decision tree induction popular?

❑ Relatively fast learning speed 

❑ Convertible to simple and easy to understand classification rules

❑ Easy to be adapted to database system implementations (e.g., using SQL)

❑ Comparable classification accuracy with other methods

❑ Easy to ensemble, i.e., random forests, xgboost
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RainForest: A Scalable Classification Framework 
❑ The criteria that determine the quality of the tree can be computed separately 

❑ Builds an AVC-list: AVC (Attribute, Value, Class_label) 

❑ AVC-set  (of an attribute X )

❑ Projection of training dataset onto the attribute X and class label where counts 
of individual class label are aggregated

Its AVC Sets

outlook Play Golf

yes no

rainy 2 3

overcast 4 0

sunny 3 2

temp Play Golf

yes no

hot 2 2

mild 4 2

cool 3 1

AVC-set on outlook AVC-set on Temp

humidity Play Golf

yes no

Normal 6 1

High 3 4

AVC-set on Humidity

windy Play Golf

yes no

False 6 2

True 3 3

AVC-set on Windy

❑ AVC-group  (of a 
node n )

❑ Set of AVC-
sets of all 
predictor 
attributes at 
the node n

The Training Data
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Visualization of a Decision Tree (in scikit-learn)
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Visualization of a Decision Tree
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Bayes’ Theorem: Basics

❑ Total probability Theorem:

p B =

i

p B Ai p(Ai)

❑ Bayes’ Theorem:

p H|𝐗 =
p 𝐗 H P H

p(𝐗)
∝ p 𝐗 H P H

❑ X: a data sample (“evidence”)

❑ H: X belongs to class C

posteriori probability prior probabilitylikelihood

What we should choose What we knew previouslyWhat we just see

Prediction can be done based on Bayes’ Theorem:

Classification is to derive the maximum posteriori
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Bayes’ Theorem Example 1: Cancer 
Tests

❑ Only 1% people have cancer

❑ How accurate is the test? 

❑ 80%? 99%? 1%?

❑ P(XH) = P(X|H)P(H)

❑ Chance of true positive is thus 

1%*80% = 0.008

❑ According to Bayes’ Theorem, P(H|X) = P(X|H)P(H)/P(X), the chance of having 
a cancer given positive test results is

True pos / (True pos + False pos) = 0.008 / (0.008+0.09504) = 7.76%

❑ The Theorem lets us correct for the skewness introduced by false positives
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Bayes’ Theorem Example 2: Picnic Day

❑ The morning is cloudy 

❑ What is the chance of rain?

❑ 50% of all rainy days start off cloudy.

❑ Cloudy mornings are common (40% of days start cloudy)

❑ This is usually a dry month (only 3 of 30 days tend to be rainy)

❑ Again, the chance of rain is probably not as high as expected ☺

❑ Bayes’ Theorem allows us to tell back and forth between posterior and likelihood

(e.g., P(Rain | Cloud) and P(Cloud | Rain)), tests and reality, which is the most 
important trick in Bayesian Inference

P(Cloud) = 40%

P(Rain) = 10%

P(Cloud | Rain) = 50%

P(Rain | Cloud) = P(Rain) P(Cloud | Rain) / P(Cloud) = 10% * 50% / 40% = 12.5%

P(Rain | Cloud) = ?
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Naïve Bayes Classifier: Making a Naïve Assumption

❑ Based on the Bayes’ Theorem, we can derive a Bayes Classifier to compute the 
posterior probability of classifying an object X to a class C

❑ P (C|X) ∝ P(X|C)P(C) = P(x1|C)P(x2|x1,C)...P(xn|x1,...,C)P(C)

❑ A naïve assumption to simplify the complex dependencies: features are 
conditionally independent!

❑ P (C|X) ∝ P(X|C)P(C) ≈ P(x1|C)P(x2|C)...P(xn|C)P(C)

❑ Super efficient: each feature only conditions on the class (boils down to sample 
counting)

❑ Achieves surprisingly comparable performance



38

Naïve Bayes Classifier: Categorical vs. Continuous 
Valued Features 

❑ If feature xk is categorical,  p(xk = vk|Ci) is the # of tuples in Ci with xk = vk, 
divided by |Ci, D| (# of tuples of Ci in D)

❑ If feature xk is continuous-valued, p(xk = vk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

p xk = vk Ci = 𝑁 xk μCi , σCi =
1

2πσCi
𝑒
−

𝑥−𝜇𝐶𝑖

2

2𝜎2

p X|𝐶𝑖 = ςkp xk Ci) = p x1 Ci) ∙ p x2 Ci) ∙∙∙∙∙ p xn Ci)
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Naïve Bayes Classifier Example 1: Training Dataset

Class:

play golf= ‘yes’

play golf = ‘no’
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Naïve Bayes Classifier Example P(Yes | Sunny)
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Naïve Bayes Classifier Example: P(No | Sunny)
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Naïve Bayes Classifier Example: Likelihood Tables
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Naïve Bayes Classifier Example: Likelihood Tables
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Naïve Bayes Classifier: Example 2

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified: 

X = (age <=30, Income = medium,

Student = yes, Credit_rating = Fair)

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31..40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31..40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31..40 medium no excellent yes

31..40 high yes fair yes

>40 medium no excellent no
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Naïve Bayes Classifier: Example 2

Compute P(X|Ci) for each class:
P(age = “<=30”|buys_computer = “yes”)
P(age = “<= 30”|buys_computer = “no”)

P(income = “medium” | buys_computer = “yes”) 
P(income = “medium” | buys_computer = “no”)

P(student = “yes” | buys_computer = “yes) 
P(student = “yes” | buys_computer = “no”)

P(credit_rating = “fair” | buys_computer = “yes”) 
P(credit_rating = “fair” | buys_computer = “no”) 

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31..40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31..40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31..40 medium no excellent yes

31..40 high yes fair yes

>40 medium no excellent no

= 2/9 = 0.222 
= 3/5 = 0.6

= 4/9 = 0.444
= 2/5 = 0.4

= 6/9 = 0.667
= 1/5 = 0.2

= 6/9 = 0.667
= 2/5 = 0.4
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Naïve Bayes Classifier: Example 2

X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) :

P(X|buys_computer = “yes”) = 

P(age = “<=30”|buys_computer = “yes”)

P(income = “medium” | buys_computer = “yes”)

P(student = “yes” | buys_computer = “yes)

P(credit_rating = “fair” | buys_computer = “yes”)

= 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 

P(age = “<= 30”|buys_computer = “no”)
P(income = “medium” | buys_computer = “no”)
P(student = “yes” | buys_computer = “no”)
P(credit_rating = “fair” | buys_computer = “no”)

= 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci) C1 = yes C2 = no

age <= 30 0.222 0.6

Inc. = med. 0.444 0.4

Stu. = yes 0.667 0.2

Credit = fair 0.667 0.4

Conditional probability
P(X|Ci)*P(Ci) : 

P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X is classified to class (“buys_computer = yes”)
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Avoiding the Zero-Probability Problem

❑ Naïve Bayesian prediction requires each conditional probability be non-zero

❑ Otherwise, the predicted probability will be zero

❑ Example.  Suppose a dataset with 1000 tuples:

income = low (0), income= medium (990), and income = high (10)

❑ Use Laplacian correction (or Laplacian estimator)

❑ Adding 1 to each case  

Prob(income = low) = 1/(1000 + 3)

Prob(income = medium) = (990 + 1)/(1000 + 3)

Prob(income = high) = (10 + 1)/(1000 + 3)

❑ The “corrected” probability estimates are close to their “uncorrected” 
counterparts

p X|𝐶𝑖 = ς𝑘 𝑝 𝑥𝑘 𝐶𝑖) = 𝑝 𝑥1 𝐶𝑖) ∙ 𝑝 𝑥2 𝐶𝑖) ∙∙∙∙∙ 𝑝 𝑥𝑛 𝐶𝑖)
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Naïve Bayes Classifier: Strength vs. Weakness
❑ Strength 

❑ Performance:  A naïve Bayesian classifier, has comparable performance with 
decision tree and selected neural network classifiers

❑ Incremental:   Each training example can incrementally increase/decrease the 
probability that a hypothesis is correct—prior knowledge can be combined with 
observed data
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Naïve Bayes Classifier: Strength vs. Weakness
❑ Weakness

❑ Assumption: attributes conditional independence, therefore loss of accuracy

❑ E.g., Patient’s Profile: (age, family history),

❑ Patient’s Symptoms:  (fever, cough),  

❑ Patient’s Disease: (lung cancer, diabetes). 

❑ Dependencies among these cannot be modeled by Naïve Bayes Classifier

❑ How to deal with these dependencies? 

Use Bayesian Belief Networks (to be covered in the next chapter)
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Linear Regression Problem: Example

❑ Mapping from independent attributes to continuous value: x => y

❑ {living area} => Price of the house

❑ {college; major; GPA} => Future Income

P
ri

ce
 o

f 
h

o
u

se
s

Living Area
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Linear Regression Problem: Model

❑ Linear regression

❑ Data: n independent objects

❑ Observed Value: 𝑦𝑖 , 𝑖 = 1,2,3,⋯ , 𝑛

❑ p-dimensional attributes:  𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑝
𝑇
, 𝑖 = 1,2,3⋯ , 𝑛

❑ Model:

❑ Weight vector: 𝑤 = 𝑤1, 𝑤2, ⋯ ,𝑤𝑝

❑ 𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏

❑ The weight vector w and bias b is the model parameter learnt by data
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Linear Regression Model: Solution

❑ Least Square Method

❑ Cost / Loss Function:  L 𝑤, 𝑏 = Σ𝑖=1
𝑚 𝑦𝑖 −𝑤𝑥𝑖 − 𝑏 2

❑ Optimization Goal:       argmin  L 𝑤, 𝑏 = Σ𝑖=1
𝑚 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 2

❑ Closed-form solution:

❑ 𝑤 =
Σ𝑖=1
𝑚 𝑦𝑖(𝑥𝑖− ҧ𝑥)

Σ𝑖=1
𝑚 𝑥𝑖

2−
1

𝑚
Σ𝑖=1
𝑚 𝑥𝑖

2 𝑏 =
1

𝑚
Σ𝑖=1
𝑚 (𝑦𝑖 −𝑤𝑥𝑖)

(w,b)
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Logistic Regression: General Ideas

❑ How to solve “classification” problems by regression?

❑ Key idea of Logistic Regression

❑ We need to transform the real value Y into a probability value ∈ [0,1]

❑ Sigmoid function (differentiable function) :

❑ 𝜎 𝑦 =
1

1+𝑒−𝑦
=

𝑒𝑦

𝑒𝑦+1

❑ Projects (−∞,+∞) to [0, 1]

❑ Not only LR uses this function, but also 
neural network, deep learning

❑ The projected value change sharply 

around zero point

❑ Notice that ln
y

1−𝑦
= 𝑤𝑇𝑥 + 𝑏

Sigmoid 
Function
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Logistic Regression: An Example

❑ Suppose we only consider the year as feature

❑ Data points are converted by sigmoid function (“activation” function)

year
6

1 (Tenured)
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Logistic Regression: Model

❑ The prediction function to learn

❑ Probability that Y=1:

❑ 𝑝 𝑌 = 1 𝑋 = 𝑥;𝒘) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑤0 +σ𝑖=1
𝑛 𝑤𝑖 ⋅ 𝑥𝑖

❑ 𝒘 = 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑛 are the parameters

❑ A single data object with attributes 𝑥𝑖 and class label 𝑦𝑖
❑ Suppose the probability of 𝑝 ෝ𝑦𝑖 = 1 𝑥𝑖 , 𝑤 = 𝑝𝑖, then 𝑝 ෝ𝑦𝑖 = 0 𝑥𝑖 , 𝑤 = 1 − 𝑝𝑖

❑ 𝑝 ෝ𝑦𝑖 = 𝑦𝑖 = 𝑝𝑖
𝑦𝑖 1 − 𝑝𝑖

1−𝑦𝑖

❑ Maximum Likelihood Estimation

❑ 𝐿 = Π𝑖𝑝𝑖
𝑦𝑖 1 − 𝑝𝑖

1−𝑦𝑖 = Π𝑖
exp 𝑤𝑇𝑥𝑖

1+exp 𝑤𝑇𝑥𝑖

𝑦𝑖 1

1+exp 𝑤𝑇𝑥𝑖

1−𝑦𝑖
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Logistic Regression: Optimization

❑ Maximum Likelihood Estimation

❑ 𝐿 = Π𝑖𝑝𝑖
𝑦𝑖 1 − 𝑝𝑖

1−𝑦𝑖 = Π𝑖
exp 𝑤𝑇𝑥𝑖

1+exp 𝑤𝑇𝑥𝑖

𝑦𝑖 1

1+exp 𝑤𝑇𝑥𝑖

1−𝑦𝑖

❑ Log likelihood:

𝑙 𝑤 =

𝑖=1

𝑁

𝑦𝑖 log 𝑝 𝑌 = 1 𝑋 = 𝑥𝑖; 𝒘 + 1 − 𝑦𝑖 log 1 − 𝑝 𝑌 = 1 𝑋 = 𝑥𝑖; 𝒘

=

𝑖=1

𝑁

𝑦𝑖𝑥𝑖
𝑇𝒘− log(1 + exp 𝒘𝑇𝑥𝑖 )

❑ There’s no closed form solution

❑ Gradient Descent
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Gradient Descent
❑ Gradient Descent is an iterative optimization algorithm for finding the minimum 

of a function (e.g., the negative log likelihood)

❑ For a function F(x) at a point a, F(x) decreases fastest if we go in the direction of
the negative gradient of a

When the gradient is zero, we
arrive at the local minimum

Step size
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Linear Regression VS. Logistic Regression

❑ Linear Regression

❑ Y: Continuous Value ∈ [−∞,+∞]

❑ 𝑌 = 𝑊𝑇𝑋 + 𝑏

❑ Often used in value prediction problems

❑ Logistic Regression

❑ Y: A discrete value from m classes

❑ 𝑃 𝑌 = 𝐶𝑖 ∈ 0,1 𝑎𝑛𝑑 Σ𝑖=1
𝑚 𝑃 𝑌 = 𝐶𝑖 = 1

❑ Often used in classification problems
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Comments on Logistic Regression
❑ Pros

❑ Can handle multiple types of features

❑ Fast and easy

❑ Generally speaking, more robust and better performance than tree

❑ Interpretable: both weights and predicted value 

❑ Predicted value: probability

❑ Weights: effect of the feature. Unit change of log odds

❑ Cons

❑ Linear model: if the decision boundary is not linear, then LR is not good
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Linear Classifier: General Ideas

❑ Binary Classification

❑ 𝑓(𝑥) is a linear function based on the example’s attribute values

❑ The prediction is based on the value of 𝑓(𝑥)

❑ Data above the blue line belongs to class ‘x’ (i.e., 𝑓 𝑥 > 0)

❑ Data below blue line belongs to class ‘o’ (i.e., 𝑓 𝑥 < 0)

❑ Classical Linear Classifiers

❑ Logistic Regression

❑ Linear Discriminant Analysis (LDA)

❑ Perceptron

❑ SVM

x

xx

x

xx

x

x

x

x oo
o

o
o
o

o

o

o o

o
o

o



62

Linear Classifier: An Example
❑ A toy rule to determine whether a faculty member has tenure

❑ Year >= 6 or Title = “Professor”   Tenure

❑ How to express the rule as a linear classifier?

❑ Features

❑ x1(𝑥1 ≥ 0) is an integer denoting the year

❑ x2 is a Boolean denoting whether the title is “Professor”

❑ A feasible linear classifier: 𝑓 𝑥 = 𝑥1 − 5 + 6 ⋅ 𝑥2
❑ When 𝑥2 is True, because 𝑥1 ≥ 0, 𝑓(𝑥) is always greater than 0

❑ When 𝑥2 is False, because 𝑓 𝑥 > 0𝑥1 ≥ 6

❑ There are many more feasible classifiers

❑ 𝑓 𝑥 = 𝑥1 − 5.5 + 6 ⋅ 𝑥2
❑ 𝑓 𝑥 = 2 ⋅ 𝑥1 − 5 + 11 ⋅ 𝑥2
❑ …...
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Key Question: Which Line Is Better?

❑ There might be many feasible linear 
functions

❑ Both H1 and H2 will work

❑ Which one is better?

❑ H2 looks “better” in the sense that it is 
also furthest from both groups

❑ We will introduce more in the SVM section
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Generative vs. Discriminative Classifiers
❑ X: observed variables (features)

❑ Y: target variables (class labels)

❑ A generative classifier models p(Y, X)

❑ It models how the data was "generated"? "what is the likelihood this or that 
class generated this instance?" and pick the one with higher probability 

❑ Naïve Bayes

❑ Bayesian Networks

❑ A discriminative classifier models p(Y|X)

❑ It uses the data to create a decision boundary

❑ Logistic Regression

❑ Support Vector Machines
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Further Comments on Discriminative Classifiers
❑ Strength

❑ Prediction accuracy is generally high 

❑ As compared to generative models

❑ Robust, works when training examples contain errors

❑ Fast evaluation of the learned target function

❑ Comparing to (covered in future) Bayesian networks (which are normally slow) 

❑ Criticism

❑ Long training time

❑ Difficult to understand the learned function (weights)

❑ Bayesian networks can be used easily for pattern discovery

❑ Not easy to incorporate domain knowledge

❑ Easy in the form of priors on the data or distributions
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Model Evaluation and Selection

❑ Evaluation metrics

❑ How can we measure accuracy?

❑ Other metrics to consider?

❑ Use validation test set of class-labeled tuples instead of training set when assessing 

accuracy

❑ Methods for estimating a classifier’s accuracy 

❑ Holdout method 

❑ Cross-validation

❑ Bootstrap

❑ Comparing classifiers:

❑ ROC Curves
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Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted class play_golf =  yes play_golf = no Total

play_golf = yes 6954 46 7000

play_golf = no 412 2588 3000

Total 7366 2634 10000

❑ Confusion Matrix:

❑ In a confusion matrix w. m classes, CMi,j indicates # of tuples in class i that 
were labeled by the classifier as class j

❑ May have extra rows/columns to provide totals

❑ Example of Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)
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Classifier Evaluation Metrics: Accuracy, Error Rate, 
Sensitivity and Specificity

❑ Classifier accuracy, or 
recognition rate

❑ Percentage of test set tuples 
that are correctly classified

Accuracy = (TP + TN)/All

❑ Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

❑ Class imbalance problem

❑ One class may be rare

❑ E.g., fraud, or HIV-positive

❑ Significant majority of the negative class and 
minority of the positive class

❑ Measures handle the class imbalance problem

❑ Sensitivity (recall): True positive recognition 
rate

❑ Sensitivity = TP/P

❑ Specificity: True negative recognition rate

❑ Specificity = TN/N

Real-world 
truth

Predictions
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

❑ Precision: Exactness: what % of tuples that the 
classifier labeled as positive are actually positive?

❑ Recall: Completeness: what % of positive tuples did 
the classifier label as positive?

❑ Range: [0, 1]

P = Precision =
TP

TP + FP

R = Recall =
TP

TP + FN

https://en.wikipedia.org/wiki/Precision_and_recall

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

❑ The “inverse” relationship between precision & recall
❑ We want one number to say if a classifier is good or not
❑ F measure (or F-score): harmonic mean of precision and recall
❑ In general, it is the weighted measure of precision & recall

❑ F1-measure (balanced F-measure) 
❑ That is,  when β = 1,

Assigning β times as much 
weight to recall as to precision)

F𝛽 =
1

𝛼 ∙
1
P
+ (1 − 𝛼) ∙

1
R

=
β2 + 1 P ∗ R

β2P + R

F1 =
2P ∗ R

P + R
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Classifier Evaluation Metrics: Example

Actual Class\Predicted class cancer = yes cancer = no Total

cancer = yes 90 210 300

cancer = no 140 9560 9700

Total 230 9770 10000

❑ Use the same confusion matrix, calculate the measure just introduced

❑ Sensitivity =

❑ Specificity =

❑ Accuracy = 

❑ Error rate = 

❑ Precision = 

❑ Recall = 

❑ F1 =  
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Classifier Evaluation Metrics: Example

Actual Class\Predicted class cancer = yes cancer = no Total

cancer = yes 90 210 300

cancer = no 140 9560 9700

Total 230 9770 10000

❑ Use the same confusion matrix, calculate the measure just introduced

❑ Sensitivity = TP/P = 90/300 = 30%

❑ Specificity = TN/N = 9560/9700 = 98.56%

❑ Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%

❑ Error rate = (FP + FN)/All = (140 + 210)/10000 = 3.50%

❑ Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%          

❑ Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%

❑ F1 = 2 P × R /(P + R) = 2 × 39.13% × 30.00%/(39.13% + 30%) = 33.96% 



74

Training Error VS Testing Error

74

overfitting

underfitting
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Classifier Evaluation: Holdout

❑ Holdout method

❑ Given data is randomly partitioned into two independent sets

❑ Training set (e.g., 2/3) for model construction

❑ Test set (e.g., 1/3) for accuracy estimation

❑ Repeated random sub-sampling validation: a variation of holdout

❑ Repeat holdout k times, accuracy = avg. of the accuracies obtained
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Classifier Evaluation: Cross-Validation

❑ Cross-validation (k-fold, where k = 10 is most popular)

❑ Randomly partition the data into k mutually exclusive subsets, each 
approximately equal size

❑ At i-th iteration, use Di as test set and others as training set

❑ Leave-one-out: k folds where k = # of tuples, for small sized data

❑ *Stratified cross-validation*: folds are stratified so that class 
distribution, in each fold is approximately the same as that in the 
initial data
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Classifier Evaluation: Bootstrap
❑ Bootstrap

❑ Works well with small data sets

❑ Samples the given training tuples uniformly with replacement

❑ Each time a tuple is selected, it is equally likely to be selected again and re-added 

to the training set

❑ Several bootstrap methods, and a common one is .632 bootstrap

❑ A data set with d tuples is sampled d times, with replacement, resulting in a training 

set of d samples.  The data tuples that did not make it into the training set end up 

forming the test set.  About 63.2% of the original data end up in the bootstrap, and 

the remaining 36.8% form the test set (since (1 – 1/d)d ≈ e-1 = 0.368)

❑ Repeat the sampling procedure k times, overall accuracy of the model:
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Model Selection: ROC Curves

❑ ROC (Receiver Operating Characteristics) curves: 
for visual comparison of classification models

❑ Originated from signal detection theory

❑ Shows the trade-off between the true positive 
rate and the false positive rate

❑ The area under the ROC curve (AUC: Area Under 
Curve) is a measure of the accuracy of the model

❑ Rank the test tuples in decreasing order: the one 
that is most likely to belong to the positive class 
appears at the top of the list

❑ The closer to the diagonal line (i.e., the closer the 
area is to 0.5), the less accurate is the model

❑ Vertical axis represents the 
true positive rate (TP/P)

❑ Horizontal axis rep. the false 
positive rate (FP/N)

❑ The plot also shows a diagonal 
line

❑ A model with perfect accuracy 
will have an area of 1.0



79

Issues Affecting Model Selection

❑ Accuracy

❑ classifier accuracy: predicting class label

❑ Speed

❑ time to construct the model (training time)

❑ time to use the model (classification/prediction time)

❑ Robustness: handling noise and missing values

❑ Scalability: efficiency in disk-resident databases 

❑ Interpretability

❑ understanding and insight provided by the model

❑ Other measures, e.g., goodness of rules, such as decision tree size or compactness 

of classification rules
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Classification of Class-Imbalanced Data Sets
❑ Traditional methods assume a balanced distribution of classes and equal error 

costs. But in real world situations, we may face imbalanced data sets, which has 
rare positive examples but numerous negative ones.

❑ Medical diagnosis: Medical screening for a condition

is usually performed on a large population of people

without the condition, to detect a small minority 

with it (e.g., HIV prevalence in the USA is ~0.4%) 

❑ Fraud detection: About 2% of credit card accounts 

are defrauded per year. (Most fraud detection domains are heavily imbalanced.)

❑ Product defect, accident (oil-spill), disk drive failures, etc.
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Classification of Class-Imbalanced Data Sets

❑ Typical methods on imbalanced data (Balance the training set)

❑ Oversampling: Oversample the minority class.

❑ Under-sampling: Randomly eliminate tuples from majority class

❑ Synthesizing: Synthesize new minority classes
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Classification of Class-Imbalanced Data Sets
❑ Typical methods on imbalanced data (At the algorithm level)

❑ Threshold-moving: Move the decision threshold, t, so that the rare class tuples 
are easier to classify, and hence, less chance of costly false negative errors

❑ Class weight adjusting: Since false negative costs more than false positive, we 
can give larger weight to false negative 

❑ Ensemble techniques: Ensemble multiple classifiers introduced in the following 
chapter

Threshold-
moving
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Evaluate imbalanced data classifier

❑ Can we use Accuracy to evaluate imbalanced data classifier?

❑ Accuracy simply counts the number of errors. If a data set has 2% positive 
labels and 98% negative labels, a classifier that map all inputs to negative 
class will get an accuracy of 98%!

❑ ROC Curve
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Multiclass Classification

❑ Classification involving more than two classes (i.e., > 2 Classes) 

❑ Methodology: Reducing the multi-class problem into multiple binary problems

❑ Method 1. One-vs.-rest (or one-vs.-all)

❑ Given m classes, train m classifiers: one for each class

❑ Classifier j: treat tuples in class j as positive & all the rest as negative

❑ To classify a tuple X, the set of classifiers vote as an ensemble 
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Multiclass Classification

❑ Method 2. one-vs.-one (or all-vs.-all): Learn a classifier for each pair of classes

❑ Given m classes, construct m(m − 1)/2 binary classifiers

❑ A classifier is trained using tuples of the two classes

❑ To classify a tuple X, each classifier votes

❑ X is assigned to the class with maximal vote

❑ Comparison:  One-vs.-one tends to perform better than one-vs.-rest

❑ Many new algorithms have been developed to go beyond binary classifier method
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Semi-Supervised Classification
❑ Semi-supervised: Uses labeled and unlabeled data to build a classifier

❑ Self-training 

❑ 1. Build a classifier using the labeled data

❑ 2. Use it to label the unlabeled data, and those with the most confident 
label prediction are added to the set of labeled data

❑ 3. Repeat the step 1 and 2

❑ Adv.: easy to understand; Disadv.: may reinforce errors

Confident by 
classifier1

Labeled
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Semi-Supervised Classification
❑ Semi-supervised: Uses labeled and unlabeled data to build a classifier

❑ Co-training: Use two or more classifiers to teach each other

❑ Each learner uses a mutually independent set of features of each tuple to 
train a good classifier, say f1 and f2

❑ Then f1 and f2 are used to predict the class label for unlabeled data X

❑ Teach each other: The tuple having the most confident prediction from f1

is added to the set of labeled data for f2 & vice versa 

❑ Other methods include joint probability distribution of features and labels

Confident by 
classifier1

Labeled

Confident by 
classifier2
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Active Learning

❑ A special case of semi-supervised learning

❑ Active learner: Interactively query teachers (oracle) for labels of “informative” 
data
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Active Learning

❑ Pool-based approach: Uses a pool of unlabeled data

❑ L: a small subset of D is labeled, U: a pool of unlabeled data in D

❑ Use a query function to carefully select one or more tuples from U and 
request labels from an oracle (a human annotator)

❑ The newly labeled samples are added to L, and learn a model

❑ Goal: Achieve high accuracy using as few labeled data as possible

One good choice: 
unlabeled point closest to 

the current decision 
boundary
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Active Learning

❑ Evaluated using learning curves: Accuracy as a function of the number of 
instances queried (# of tuples to be queried should be small)
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Transfer Learning

❑ Traditional learning: Build a new classifier 

for each new task

❑ Transfer learning:  Extract knowledge from 

one or more source tasks (e.g., recognizing 

cars) and apply the knowledge to a target 

task (e.g., recognizing trucks)

❑ Example: Cross-platform friend 

recommendation [1]

❑ Users’ social relation and behavior in one 

platform(flickr) offers important 

knowledge about social interest in another 

platform(Twitter)

[1]http://nlpr-web.ia.ac.cn/mmc/homepage/myan/Project_YanMing/ming_ICME2013/material/ICME2013Final.pdf
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Weak Supervision: A New Programming Paradigm for 
Machine Learning

❑ Overcome the training data bottleneck

❑ Leverage higher-level and/or noisier input from experts

❑ Sources of cheaply and efficiently provided weak labels:

❑ Higher-level, less precise supervision (e.g., heuristic rules, expected label 

distributions)

❑ Cheaper, lower-quality supervision (e.g. crowdsourcing) 

❑ Existing resources (e.g. knowledge bases, pre-trained models)
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Summary

❑ Classification: Model construction from a set of training data

❑ Effective and scalable methods  

❑ Decision tree induction, Bayes classification methods, linear classifier, … 

❑ No single method has been found to be superior over all others for all data sets

❑ Evaluation metrics: Accuracy, sensitivity, specificity, precision, recall, F measure 

❑ Model evaluation: Holdout, cross-validation, bootstrapping, ROC curves (AUC)

❑ Improve Classification Accuracy: Bagging, boosting

❑ Additional concepts on classification: Multiclass classification, semi-supervised 

classification, active learning, transfer learning, weak supervision
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Prepare for Exam

❑ Do calculations Step by step

❑ Decision tree, Naive Bayes classification methods

❑ Accuracy, sensitivity, specificity, precision, recall, F measure

❑ Prediction for logistic regression (with provided parameters)

❑ Concepts

❑ What does a term mean

❑ Describe the procedure

❑ Pros and cons for the classification methods

❑ Interpret the results
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Bayes’ Theorem: Basics

❑ Total probability Theorem:

❑ Bayes’ Theorem:

❑ Let X be a data sample (“evidence”): class label is unknown

❑ Let H be a hypothesis that X belongs to class C 

❑ Classification is to determine P(H|X), (i.e., posteriori probability): the probability 
that the hypothesis holds given the observed data sample X

❑ P(H) (prior probability): the initial probability

❑ E.g., X will buy computer, regardless of age, income, …

❑ P(X): probability that sample data is observed

❑ P(X|H) (likelihood): the probability of observing the sample X, given that the 
hypothesis holds

❑ E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

)()
1

|()(
i

AP
M

i
i

ABPBP 

=
=

)(/)()|(
)(

)()|()|( XX
X

XX PHPHP
P

HPHPHP ==



108

Classification Is to Derive the Maximum Posteriori

❑ Let D be a training set of tuples and their associated class labels, and each tuple is 
represented by an n-D attribute vector X = (x1, x2, …, xn)

❑ Suppose there are m classes C1, C2, …, Cm.

❑ Classification is to derive the maximum posteriori, i.e., the maximal P(Ci|X)

❑ This can be derived from Bayes’ theorem

❑ Since P(X) is constant for all classes, only                                        

needs to be maximized
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Linear Discriminant Analysis (LDA)
❑ Linear Discriminant Analysis (LDA) works when the attributes are all continuous

❑ For the categorical attributes, discriminant correspondence analysis is the 
equivalent technique

❑ Basic Ideas: Project all samples on a line such that different classes are well separated

❑ Example: Suppose we have 2 classes and 2-dimensional samples 𝑥1, … , 𝑥𝑛
❑ 𝑛1 samples come from class 1

❑ 𝑛2 samples come from class 2

❑ Let the line direction be given by unit vector 𝒗

❑ There are two candidates of projections

❑ Vertical: 𝒗 = (0,1)

❑ Horizontal: 𝒗 = (1,0)

❑ Which one looks better?

❑ How to mathematically measure it?
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Fisher’s LDA (Linear Discriminant Analysis)

❑ 𝒗𝑻𝒙𝒊 is the distance of projection of 𝒙𝒊 from the origin

❑ Let 𝝁𝟏 and 𝝁𝟐 be the means of class 1 and class 2 in the original 
space

❑ 𝝁𝟏 =
1

𝑛1
σ𝑖∈class 1𝒙𝒊

❑ 𝝁𝟐 =
1

𝑛2
σ𝑖∈class 2𝒙𝒊

❑ The distance between the means of the projected points

❑ |𝒗𝑻𝝁𝟏 − 𝒗𝑻𝝁𝟐|

❑ Good?  No. Horizontal one may have larger distance
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Fisher’s LDA (con’t)

❑ Normalization needed

❑ Scatter: Sample variance multiplied by 𝑛

❑ 𝑠1 = σ𝑖∈class 1 𝒗𝑻𝒙𝒊 − 𝒗𝑻𝝁𝟏
2

❑ 𝑠2 = σ𝑖∈class 2 𝒗𝑻𝒙𝒊 − 𝒗𝑻𝝁𝟐
2

❑ Fisher’s LDA

❑ Maximize 𝐽 𝒗 =
𝒗𝑻𝝁𝟏−𝒗

𝑻𝝁𝟐
2

𝑠1+𝑠2

❑ Closed-form optimal solution

Smaller 
Scatter

Bigger
Scatter
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Fisher’s LDA: Summary

❑ Advantages

❑ Useful for dimension reduction

❑ Easy to extend to multi-classes

❑ Fisher’s LDA will fail

❑ When 𝝁𝟏 = 𝝁𝟐, 𝐽 𝒗 is always 0.

❑ When classes have large overlap when projected to any line


