
CS 412 Intro. to Data Mining
Chapter 9. Classification: Advanced Methods

Qi Li, Computer Science, Univ. I llinois at Urbana -Champaign, 2018

1

2

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

3

Ensemble Methods: Increasing the Accuracy

 Ensemble methods

 Use a combination of models to increase accuracy

 Combine a series of k learned models, M1, M2, …, Mk,
with the aim of creating an improved model M*

4

Ensemble Methods: Increasing the Accuracy

 What are the requirements to generate an improved model?

 Example: majority voting
x1 x2 x3

M1 ✓ ✓ ✗

M2 ✗ ✓ ✓

M3 ✓ ✗ ✓

Voting
Ensemble

✓ ✓ ✓

x1 x2 x3

M1 ✓ ✓ ✗

M2 ✓ ✓ ✗

M3 ✓ ✓ ✗

Voting
Ensemble

✓ ✓ ✗

x1 x2 x3

M1 ✓ ✗ ✗

M2 ✗ ✓ ✗

M3 ✗ ✗ ✓

Voting
Ensemble

✗ ✗ ✗

Base model
performance

Ensemble
performance

Case 1:
Ensemble has positive effect

Case 2:
Ensemble has no effect

Case 3:
Ensemble has negative effect

 Base models should be

 Accurate

 Diverse

5

Ensemble Methods: Increasing the Accuracy

 Popular ensemble methods

 Bagging: Trains each model using a subset of the training set, and models
learned in parallel

 Boosting: Trains each new model instance to emphasize the training instances
that previous models mis-classified, and models learned in order

Bagging Boosting

6

Bagging: Bootstrap Aggregation
 Analogy: Diagnosis based on multiple doctors’ majority vote

 Training

 For i = 1 to k

 create bootstrap sample, Di, by sampling D with replacement;

 use Di and the learning scheme to derive a model, Mi ;

 Classification: classify an unknown sample X

 let each of the k models classify X and return the majority vote

 Prediction:

 To predict continuous variables, use average prediction instead of vote

7

Random Forest: Basic Concepts
 Random Forest (first proposed by L. Breiman in 2001)

 Bagging with decision trees as base models

 Data bagging

 Use a subset of training data by sampling with replacement for each tree

 Feature bagging

 At each node use a random selection of attributes as candidates and split by
the best attribute among them

 During classification, each tree votes and the most popular class is returned

Advantage of decision trees – more diversity

8

Random Forest
 Two Methods to construct Random Forest:

 Forest-RI (random input selection): Randomly select, at each node, F attributes
as candidates for the split at the node. The CART methodology is used to grow
the trees to maximum size

 Forest-RC (random linear combinations): Creates new attributes (or features)
that are a linear combination of the existing attributes (reduces the correlation
between individual classifiers)

 Comparable in accuracy to Adaboost, but more robust to errors and outliers

 Insensitive to the number of attributes selected for consideration at each split, and
faster than typical bagging or boosting

9

Boosting
 Analogy: Consult several doctors, based on a combination of weighted diagnoses—

weight assigned based on the previous diagnosis accuracy

 How boosting works?

 A series of k classifiers are iteratively learned

 After a classifier Mi is learned, set the subsequent classifier, Mi+1, to pay more
attention to the training tuples that were misclassified by Mi

 The final M* combines the votes of each individual classifier, where the weight
of each classifier's vote is a function of its accuracy

 Boosting algorithm can be extended for numeric prediction

10

Adaboost (Freund and Schapire, 1997)

{wn
(1)} {wn

(2)} {wn
(k)}

M1 M2 Mk

…

…

𝑀∗ 𝑥 = sign

𝑖=1

𝑘

𝛼𝑖𝑀𝑖 𝑥

1. Assign initial
weights to each
training tuple

2. Train base
classifier on
weighted dataset

3. Update weights
based on current
model

4. After base classifiers
are trained, they are
combined to give the
final classifier

Two ‘weighting’ strategy:
1. Assign weights to each training

example
2. Sample dataset based on weight

distribution

11

Adaboost (Freund and Schapire, 1997)

 Input: Training set 𝐷 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛

 Initialize all weights {𝑤𝑛
1
} to 1/N

 For round i = 1 to k,

 Fit a classifier 𝑀𝑖 based on weighted error function

𝐽𝑚 =

𝑛=1

𝑁

𝑤𝑛
𝑖
𝐼 𝑀𝑖 𝑥𝑛 ≠ 𝑦𝑛

 Evaluate error rate 𝜖𝑖 = 𝐽𝑚/σ𝑤𝑛
𝑖

(stop iteration if 𝜖𝑖 < threshold)

and the base model 𝑀𝑖’s vote 𝛼𝑖 =
1

2
ln

1−𝜖𝑖

𝜖𝑖

 Update weights

𝑤𝑛
(𝑖+1)

= 𝑤𝑛
(𝑖)
exp{𝛼𝑖 ⋅ 𝐼 𝑀𝑖 𝑥𝑛 ≠ 𝑦𝑛 }

 The final model is given by voting based on {𝛼𝑛}

12

Gradient Boosting

 Operates on:

 A differentiable loss function

 A weak learner to make predictions (usually trees)

 An additive model to add weak learners to minimize the loss function

 Each time adds an additional weak learner

 Scalable implementation: XGBoost

Previous model

New weak learner

13

Ensemble Methods Recap

 Random forest and XGBoost are the most commonly used algorithms for
tabular data

 Pros
 Good performance for tabular data, requires no data scaling

 Can scale to large datasets

 Can handle missing data to some extent

 Cons
 Can overfit to training data if not tuned properly

 Lack of interpretability (compared to decision trees)

14

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

15

From Naïve Bayes to Bayesian Networks
 Naïve Bayes classifiers assume that the value of a particular feature is independent

of the value of any other feature, given the class variable

 This assumption is often too simple to model the real world well

 Bayesian network (or Bayes network, belief network, Bayesian model or probabilistic
directed acyclic graphical model) is a probabilistic graphical model

 Represented by a set of random variables and
their conditional dependencies via a directed acyclic
graph (DAG)

 E.g. Given symptoms, the network can be used to
compute the probabilities of the presence of various
diseases

16

Bayesian Belief Networks
 Bayesian belief network (or Bayesian network, probabilistic network):

 Allows class conditional independencies between subsets of variables

 Two components:

 A directed acyclic graph (called a structure)

 A set of conditional probability tables (CPTs)
Family
History

Smoker

Lung
Cancer

Emphysema

Positive
X-Ray

Dyspnea

directed acyclic graphical model

A

B

C

p A, B, C = p(B)∙ p(A|B) ∙p(C|A, B)

A

B

C

directed cyclic graphical model

Not Bayesian
networks

Nodes: random variables Links: dependency

17

A Bayesian Network and Its CPTs
Conditional Probability Tables (CPT)

CPT shows the conditional probability for
each possible combination of its parents:

Fire (F)

Smoke (S)

Tampering (T)

Alarm (A)

Fire Smoke Θs|f

True True .90

False True .01

Fire Tampering Alarm Θa|f,t

True True True .5

True False True .99

False True True .85

False False True .0001

p X =ෑ

𝑘

p xk Parents(xk))

p F, S , A, T = p(F)∙ p(T) ∙p(S|F) ∙ p(A|F, T)

18

Training Bayesian Networks: Several Scenarios

 Scenario 1: Given both the network structure and all variables observable:
compute only the CPT entries

 Scenario 2: Network structure known, some variables hidden: gradient descent
(greedy hill-climbing) method, i.e., search for a solution along the steepest descent
of a criterion function

 Weights are initialized to random probability values

 At each iteration, it moves towards what appears to be the best solution at the moment,
without backtracking

 Weights are updated at each iteration & converge to local optimum

19

Training Bayesian Networks: Several Scenarios

 Scenario 3: Network structure unknown, all variables observable: search through
the model space to reconstruct network topology

 Scenario 4: Unknown structure, all hidden variables: No good algorithms known for
this purpose

 D. Heckerman. A Tutorial on Learning with Bayesian Networks. In Learning in
Graphical Models, M. Jordan, ed. MIT Press, 1999

http://research.microsoft.com/en-us/um/people/heckerman/tutorial.pdf

20

Probabilistic Graphic Model: Plate Notations

 Represent variables that repeat in a graphical model

 Variables

 A solid (or shaded) circle means the corresponding variable is
observed; otherwise it is hidden

 Dependency among variables:

 A Directed Acyclic Graphical (DAG) model

 Using plate notation instead of flat notation

A

B

𝑦2

𝐱

𝑦1 𝑦𝑁⋯

Flat notation

𝐱

𝒚
𝑁

Plate notation

21

An Example of Plate Notation

Difficulty

#Courses

Intelligence

#Students

Grade

#Grades

Plate notation

Difficulty for
Course 1

Intelligence
for student b

Grade for (course0,
student b)

Difficulty for
Course 0

Intelligence
for student c

Intelligence
for student a

Grade for (course0,
student a)

Grade for (course1,
student a)

Grade for (course1,
student b)

Grade for (course1,
student c)

Flat notation

22

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

23

Classification: A Mathematical Mapping
 The binary classification problem:

 E.g., Movie review classification

 xi = (x1, x2, x3, …), yi = +1 or –1 (positive, negative)

 x1 : # of word “awesome”

 x2 : # of word “disappointing”

 Mathematically, 𝒙 ∈ 𝑋 = ℜ𝑛, 𝑦 ∈ 𝑌 = +1,−1

 We want to derive a function 𝑓: 𝑋 → 𝑌

 which maps input examples to their correct labels

24

SVM—Support Vector Machines

 linear and nonlinear

 Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis’

statistical learning theory in 1960s

 It uses a nonlinear mapping to transform the original training data into a higher

dimension

 With the new dimension, it searches for the linear optimal separating hyperplane

(i.e., “decision boundary”)

 With an appropriate nonlinear mapping to a sufficiently high dimension, data from

two classes can always be separated by a hyperplane

 SVM finds this hyperplane using support vectors (“essential” training tuples) and

margins (defined by the support vectors)

25

SVM—General Philosophy

 Learning a max-margin classifier

 From the infinite set of lines (hyperplanes)

separating two classes

 Find the one which separates two classes

with the largest margin

 i.e. a maximum marginal hyperplane (MMH)

26

SVM—When Data Is Linearly Separable

 The simplest case: When data is linearly separable

 Data sets whose classes can be separated exactly by linear decision surfaces are
said to be linearly separable

Linearly Separable Linearly Inseparable

27

Linear SVM for Linearly Separable Data
 A separating hyperplane can be written as

𝒘𝑇𝒙 + 𝑏 = 0

where 𝑤 = 𝑤1, 𝑤2, … , 𝑤𝑛
𝑇is a weight vector and 𝑏 a scalar (bias)

 For 2-D, it can be written as: 𝑤1 𝑥1 + 𝑤2 𝑥2+ 𝑏 = 0

 The hyperplane defining the sides of the margin:

H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the sides defining the

margin) are support vectors

Model parameters
to learn

28

Linear SVM for Linearly Separable Data
 The distance from any data point 𝒙 to the separating hyperplane is

𝑟 =
|𝑓 𝒙 |

𝒘
=

𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏)

𝒘

 Our objective is to maximize the distance of the closest data point to the hyperplane

argmax
𝑤,𝑏

1

𝒘
min 𝑦𝑖 𝒘

𝑇𝒙𝑖 + 𝑏

 This is hard to solve, we shall convert it to an easier problem

 This is the basic form of SVM, and it can be solved by using quadratic programming

argmin
𝑤,𝑏

𝒘 2

s. t. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1, 𝑖 = 1,2,… , 𝑛

29

Linear SVM for Linearly Separable Data

𝒘𝑇𝒙𝑖 + 𝑏 = 0

0 𝑥1

𝑥2
𝒘𝑇𝒙𝑖 + 𝑏 = 1

𝒘𝑇𝒙𝑖 + 𝑏 = −1

 The data points closest to the separating
hyperplane are called support vectors

𝛾 =
2

𝒘
“Margin”

30

SVM for Linearly Inseparable Data

 We allow data points to be on the “wrong
side” of the margin boundary

 Penalize points on the wrong side according
to its distance to the margin boundary

 𝜉 : slack variable

 C (> 0): Controls the trade-off between the

penalty and the margin

 Smaller C: allow more mistake

 Larger C: allow less mistake

 This is the widely used soft-margin SVM

𝜉 = 0

𝜉 < 1

𝜉 = 1

𝜉 > 1

31

Effect of slack variable

https://www.quora.com/What-is-the-purpose-for-using-slack-variable-in-SVM

32

SVM for Linearly Inseparable Data
 Alternatively, for linearly inseparable data, we can map them to a higher

dimensional space

 We search for a linear separating hyperplane in the new space

 Example: The XOR problem

𝒙 ⟼ 𝜙(𝒙)

33

Kernel Functions for Nonlinear Classification
 Instead of computing the dot product on the transformed data, it is mathematically

equivalent to applying a kernel function 𝐾(𝒙𝑖, 𝒙𝑗) to the original data, i.e.,

 𝐾(𝒙𝑖, 𝒙𝑗) = 𝜙(𝒙𝑖) 𝜙(𝒙𝑗)

 Typical Kernel Functions

 SVMs can efficiently perform a non-linear classification using kernel functions,
implicitly mapping their inputs into high-dimensional feature spaces

https://www.youtube.com/watch?time_continue=42&v=3liCbRZPrZA

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

34

Multi-class Classification with SVM

One-vs-Rest

One-vs-One

N classes

Requires N classifiers

Requires N(N - 1)/2
classifiers

35

Is SVM Scalable on Massive Data?
 SVM is effective on high dimensional data

 The complexity of trained classifier is characterized by the # of support
vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples—they lie
closest to the decision boundary (MMH)

 Thus, an SVM with a small number of support vectors can have good
generalization, even when the dimensionality of the data is high

 SVM is not scalable to the # of data objects in terms of training time and

memory usage

 Scaling SVM by a hierarchical micro-clustering approach

 H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with

Hierarchical Clusters”, KDD'03

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf

36

SVM: Applications

 Features: training can be slow but accuracy is high owing to their ability to model

complex nonlinear decision boundaries (margin maximization)

 Used for: classification and numeric prediction

 SVM can also be used for classifying multiple (> 2) classes and for regression

analysis (with additional parameters)

 Applications:

 handwritten digit recognition, object recognition, speaker identification,

benchmarking time-series prediction tests

37

SVM Recap

 Pros

 Elegant mathematical formulation, guaranteed global optimal with optimization

 Trains well on small data sets

 Flexibility through kernel functions

 Conformity with semi-supervised training

 Cons

 Not naturally scalable to large data sets

38

SVM Related Links

 SVM Website: http://www.kernel-machines.org/

 Representative implementations

 LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-

SVM, one-class SVM, including also various interfaces with java, python, etc.

 SVM-light: simpler but performance is not better than LIBSVM, support only

binary classification and only in C

 SVM-torch: another recent implementation also written in C

http://www.kernel-machines.org/

39

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

41

Neural Network for Classification
 A neural network: A set of connected input/output units where each connection

has a weight associated with it

 During the learning phase, the network learns by adjusting the weights so as to

be able to predict the correct class label of the input tuples

Artificial Neural Networks as an analogy of Biological

Neural Networks
Learning by adjusting weights

(https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/)

42

Perceptron: Predecessor of a Neural Network

 Computes a weighted sum of inputs

 1957 by Frank Rosenblatt - doesn’t have a non-linear activation function

ො𝑦 = 𝑓 𝑾𝑇𝒙 = 𝑓(σ𝑊𝑖𝑥𝑖 + 𝑏)

Weights Bias
A measure of how easy it is to get the
perceptron to output a 1

Activation Function
Adding non-linearity to
the model

43

Perceptron: Predecessor of a Neural Network
 Examples of activation functions

45

Multilayer Perceptron (MLP)
 Multilayer perceptron (MLP)

 MLP can engage in sophisticated
decision making, where perceptrons
fail

 E.g. XOR problem

Stacking multiple layers of perceptrons (adding hidden layers)

Play with neural network:
http://playground.tensorf
low.org

http://playground.tensorflow.org/

46

Learning NN Parameters

Input 𝒙𝑖

Multilayer Network

Predicted output
ෝ𝒚𝑖

Ground truth
𝒚𝑖

𝐽𝜃(.)

Loss (error) function

Loss 𝐸
Update Parameters

 Gradient Descent Algorithm

 Input: Training sample 𝒙𝑖 and its label 𝒚𝑖

1. Feed Forward: Get prediction ෝ𝒚𝑖 = MLP(𝑥𝑖), and loss 𝐸 = 𝐽(ෝ𝒚𝑖 , 𝒚𝑖)

2. Compute Gradient: For each parameter 𝜃𝑖 (weights, bias), compute its gradient
𝜕

𝜕𝜃𝑖
𝐽𝜃

3. Update Parameter: 𝜃𝑖 = 𝜃𝑖 − 𝛼 ⋅
𝜕

𝜕𝜃𝑖
𝐽𝜃 Explained later

47

Empirical Explanation of Gradient Descent

 The loss function J – a function of the
model parameters

 Objective – Minimize J

 Gradient – Measures how much the
output of a function changes if you
change the inputs a little bit

 We update the parameters, based on
their gradients, so that the loss
function is going ‘downhill’

𝜃𝑖 = 𝜃𝑖 − 𝛼 ⋅
𝜕

𝜕𝜃𝑖
𝐽𝜃

learning rate - ’step size’ of the
optimization

48

Gradient Computation: Backpropagation
𝛿1
(𝑙+1)

𝛿2
(𝑙+1)

𝛿3
(𝑙+1)

…

… …

…

𝛿𝑗
(𝑙)

𝑜𝑖

 The gradient of 𝑤𝑖𝑗 in the 𝑙th layer (corresponding to unit j in layer l, connected to unit i

in layer l-1) is a function of

 All ‘error’ terms from layer l+1 𝛿𝑘
(𝑙+1)

-- An auxiliary term for computation, not to be

confused with gradients

 Output from unit i in layer l-1 (input to unit j in layer l) -- Can be stored at the feed
forward phase of computation

49

Gradient Computation: Backpropagation
𝛿1
(𝑙+1)

𝛿2
(𝑙+1)

𝛿3
(𝑙+1)

…

… …

…

𝛿𝑗
(𝑙)

𝑜𝑖

 The ’error’ terms 𝛿𝑗
(𝑙)

is a function of

 All 𝛿𝑘
(𝑙+1)

in the layer l+1, if layer l is a hidden layer

 The overall loss value, if layer l is the output layer

 We can compute the error at the output, and distributed backwards throughout the
network’s layers (backpropagation)

50

From Neural Networks to Deep Learning
 Deep Learning – Training (deep) neural networks with

 More neurons, more layers

 More complex ways to connect layers

 Advantages

 Tremendous improvement of performance in

 Image recognition, natural language processing, AI game playing…

 Requires no (or less) feature engineering, making end-to-end models possible

 Several factors lead to deep learning’s success

 Very large data sets

 Massive amounts of computation power (GPU acceleration)

 Advanced neural network structures and tricks

 Convolutional neural networks, recurrent neural networks, …

 Dropout, ReLU, residual connection, … (not covered)

51

Convolutional Neural Networks (CNN)
 What is convolution?

1D Convolution 2D Convolution

 The outputs are computed by sliding a kernel (of weights) on the inputs, and
computing weighted sum locally

52

CNN Motivation
 Why not deep MLP?

 Computationally expensive (Long training time)

 Hard to train (slow convergence, local minima).

 Motivations of convolution

 Sparse interactions

 Parameter sharing

 Equivariant representations

 The properties of CNNs are well aligned with properties of many forms of data (e.g.
images, text), making them very successful

53

CNN Motivation
 Motivations of convolution

 Sparse interactions

 E.g. 1D convolution with kernel size 3

 Units in deeper layers still connect to a wide range of inputs

MLP
CNN

54

CNN Motivation
 Motivations of convolution

 Parameter sharing

 Each kernel is used on all locations of input

 Reduce # of parameters

 Equivariance

 Same input at different location gives same output

 E.g. a cat at the upper right corner and at the lower left corner of an image, will
produce the same outputs

 E.g. “University of Illinois” at the start of the sentence and at the end of the
sentence produce the same outputs

55

CNN: Pooling Layer
 Pooling (Subsampling)

 Pool hidden units in the same neighborhood

 Introduces invariance to local translations

 Reduces the number of hidden units in hidden layer

56

CNN for Image Recognition: Example

An example CNN for hand written digit recognition

57

Recurrent Neural Networks
 Handling sequences with Recurrent Neural Networks (RNN)

 At each time step, the input and the previous hidden state are fed into the
network

58

Recurrent Neural Networks: General Concepts
 Modeling the time dimension:

 Feedback loops connected to past decisions

 Long-term dependencies: Use hidden states to preserve sequential information

 RNNs are trained to generate sequences: Output at each timestamp is based on ALL
inputs (current and previous)

 Compute a gradient with the algorithm BPTT (backpropagation through time)

 Major obstacles of RNN: Vanishing and Exploding Gradients

 When the gradient becomes too large or too small, it is difficult to model long-
range dependencies (10 timestamps or more)

 Solution: Use a variant of RNN: LSTM (1997, by Hochreiter and Schmidthuber)

59

RNN for Machine Translation: Example

60

Deep Learning Recap

 Pros

 Very good performance on certain tasks, for certain types of data

 Images: image recognition, segmentation, …

 Text (sometimes): machine translation, language modeling,…

 …

 Requires very little feature engineering

 Good generalization

 E.g. models trained on ImageNet dataset for classification can help tasks such as
segmentation

 Cons

 Requires huge amounts of computation power

 Black box model

 Hard to tune the architecture and hyperparameters for new tasks

61

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

62

Using IF-THEN Rules for Classification
 Represent the knowledge in the form of IF-THEN rules

R1: IF age = youth AND student = yes THEN buys_computer = yes

 Assessment of a rule: coverage and accuracy

 coverage(R1) = ratio of tuples covered by the condition of R1 (THEN-part is not
important for this)

 accuracy(R1) = ratio of tuples correctly classified by R1 in the covered ones (both IF-part
and THEN-part counts)

 If more than one rule are triggered, need conflict resolution

 Size ordering: assign the highest priority to the triggering rules that has the “toughest”
requirement (i.e., with the most attribute tests)

 Class-based ordering: decreasing order of prevalence or misclassification cost per class

 Rule-based ordering (decision list): rules are organized into one long priority list,
according to some measure of rule quality or by experts

63

age?

student? credit rating?

<=30
>40

no yes yes

yes

31..40

fairexcellentyesno

 Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from a Decision Tree

 Rules are easier to understand than large trees

 One rule is created for each path from the root
to a leaf

 Each attribute-value pair along a path forms a
conjunction: the leaf holds the class prediction

 Rules are mutually exclusive and exhaustive

64

Rule Induction: Sequential Covering Method
 Sequential covering algorithm: Extracts rules directly from training data

 Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci

but none (or few) of the tuples of other classes

 Comp. w. decision-tree induction: learning a set of rules simultaneously

 Step 0: Start with an empty list of rules.

65

Rule Induction: Sequential Covering Method
 Sequential covering algorithm: Extracts rules directly from training data

 Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci

but none (or few) of the tuples of other classes

 Comp. w. decision-tree induction: learning a set of rules simultaneously

 Step 1: Learn a rule r.

66

Rule Induction: Sequential Covering Method
 Sequential covering algorithm: Extracts rules directly from training data

 Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci

but none (or few) of the tuples of other classes

 Comp. w. decision-tree induction: learning a set of rules simultaneously

 Step 2: The tuples covered by the rules are

removed.

67

Rule Induction: Sequential Covering Method
 Sequential covering algorithm: Extracts rules directly from training data

 Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci

but none (or few) of the tuples of other classes

 Comp. w. decision-tree induction: learning a set of rules simultaneously

 Step 3: Repeat the process on the remaining

tuples until termination condition, e.g., when

no more training examples or when the quality

of a rule returned is below a threshold.

68

Pattern-Based Classification, Why?

 Pattern-based classification: An integration of both themes

 Why pattern-based classification?

 Feature construction

 Higher order; compact; discriminative

 E.g., single word → phrase (Apple pie, Apple i-pad)

 Complex data modeling

 Graphs (no predefined feature vectors)

 Sequences

 Semi-structured/unstructured Data

Frequent Pattern
Mining

ClassificationPattern-Based
Classification

69

CBA: Classification Based on Associations
 CBA [Liu, Hsu and Ma, KDD’98]

 Method

 Mine high-confidence, high-support class association rules

 LHS: conjunctions of attribute-value pairs); RHS: class labels
p1 ^ p2 … ^ pl “Aclass-label = C” (confidence, support)

 Rank rules in descending order of confidence and support

 Classification: Apply the first rule that matches a test case; o.w. apply the default
rule

 Effectiveness: Often found more accurate than some traditional classification
methods, such as C4.5

 Why? — Exploring high confident associations among multiple attributes may
overcome some constraints introduced by some classifiers that consider only
one attribute at a time

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

71

Lazy vs. Eager Learning

 Lazy vs. eager learning

 Lazy learning (e.g., instance-based learning): Simply stores training data (or only
minor processing) and waits until it is given a test tuple

 Eager learning (the above discussed methods): Given a set of training tuples,
constructs a classification model before receiving new (e.g., test) data to classify

 Lazy: less time in training but more time in predicting

 Accuracy

 Lazy method effectively uses a richer hypothesis space since it uses many local
linear functions to form an implicit global approximation to the target function

 Eager: must commit to a single hypothesis that covers the entire instance space

72

Lazy Learner: Instance-Based Methods

 Instance-based learning:

 Store training examples and delay the processing (“lazy evaluation”) until a
new instance must be classified

 Typical approaches

 k-nearest neighbor approach

 Instances represented as points in a Euclidean space.

 Locally weighted regression

 Constructs local approximation

 Case-based reasoning

 Uses symbolic representations and knowledge-based inference

73

The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space

 The nearest neighbor are defined in terms of Euclidean distance, dist(X1, X2)

 Target function could be discrete- or real- valued

 For discrete-valued, k-NN returns the most common value among the k training
examples nearest to xq

 Vonoroi diagram: the decision surface induced by 1-NN for a typical set of
training examples

.

_
+

_ xq

+

_ _
+

_

_

+

.

.
.

. .

74

Discussion on the k-NN Algorithm
 k-NN for real-valued prediction for a given unknown tuple

 Returns the mean values of the k nearest neighbors

 Distance-weighted nearest neighbor algorithm

 Weight the contribution of each of the k neighbors according to their distance
to the query xq

 Give greater weight to closer neighbors

 Pro: Robust to noisy data by averaging k-nearest neighbors

 Cons:

 Curse of dimensionality- distance between neighbors could be dominated by
irrelevant attributes

 To overcome it, axes stretch or elimination of the least relevant attributes

 How to measure similarity?

𝑤 =
1

𝑑(𝑥𝑞 , 𝑥𝑖)
2

75

Selection of k for kNN

 The number of neighbors k

 Small k: overfitting (high var., low bias)

 Big k: bringing too many irrelevant points (high bias, low var.)

http://scott.fortmann-roe.com/docs/BiasVariance.html

76

Case-Based Reasoning (CBR)

 CBR: Uses a database of problem solutions to solve new problems

 Store symbolic description (tuples or cases)—not points in a Euclidean space

 Applications: Customer-service (product-related diagnosis), legal ruling

 Methodology

 Instances represented by rich symbolic descriptions (e.g., function graphs)

 Search for similar cases, multiple retrieved cases may be combined

 Tight coupling between case retrieval, knowledge-based reasoning, and problem
solving

 Challenges

 Find a good similarity metric

 Indexing based on syntactic similarity measure, and when failure, backtracking,
and adapting to additional cases

77

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

78

Genetic Algorithms (GA)
 Genetic Algorithm: (biological evolution)

 An initial population is created consisting of randomly generated rules

 Each rule is represented by a string of bits

 E.g., if A1 and ¬A2 then C2 can be encoded as 100

 If an attribute has k > 2 values, k bits can be used

 Fitness: classification accuracy on a set of training examples

 Survival of the fittest ->a new population (the fittest rules and their offspring)

 Offspring are generated by crossover and mutation

 The process continues until a population P evolves when each rule in P satisfies a
pre-specified threshold

 Slow but easily parallelizable

79

Gaussian Process

 Lazy learning

 Probabilistic prediction

80

Chapter 9. Classification: Advanced Methods

 Ensemble Methods: Increasing the Accuracy

 Bayesian Belief Networks

 Support Vector Machines

 Neural Networks and Deep Learning

 Pattern-Based Classification

 Lazy Learners and K-Nearest Neighbors

 Other Classification Methods

 Summary

81

Summary

 Bayesian belief network (probabilistic networks)

 Support Vector Machine (SVM)

 Neural networks and Deep Learning

 Pattern-Based classification

 Other classification methods

 lazy learners (KNN, case-based reasoning)

82

References (1)
 C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995

 C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006

 L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
International Group, 1984

 C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and
Knowledge Discovery, 2(2): 121-168, 1998

 N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines and Other Kernel-Based
Learning Methods, Cambridge University Press, 2000

 H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. KDD'03

 A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990

 R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001

 T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer-Verlag, 2001

 S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2008

 D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 1995

83

References (2): Rule and Pattern-Based Classification
 H. Cheng, X. Yan, J. Han & C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, ICDE'07

 H. Cheng, X. Yan, J. Han & P. S. Yu, Direct Discriminative Pattern Mining for Effective Classification, ICDE’08

 W. Cohen. Fast effective rule induction. ICML'95

 G. Cong, K. Tan, A. Tung & X. Xu. Mining Top-k Covering Rule Groups for Gene Expression Data, SIGMOD’05

 M. Deshpande, M. Kuramochi, N. Wale & G. Karypis. Frequent Substructure-based Approaches for Classifying
Chemical Compounds, TKDE’05

 G. Dong & J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences, KDD’99

 W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu & O. Verscheure. Direct Mining of Discriminative and
Essential Graphical and Itemset Features via Model-based Search Tree, KDD’08

 W. Li, J. Han & J. Pei. CMAR: Accurate and Efficient Classification based on Multiple Class-association Rules,
ICDM’01

 B. Liu, W. Hsu & Y. Ma. Integrating Classification and Association Rule Mining, KDD’98

 J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML’93

 Jingbo Shang, Wenzhu Tong, Jian Peng, and Jiawei Han, "DPClass: An Effective but Concise Discriminative
Patterns-Based Classification Framework", SDM’16

 J. Wang and G. Karypis. HARMONY: Efficiently Mining the Best Rules for Classification, SDM’05

 X. Yin & J. Han. CPAR: Classification Based on Predictive Association Rules, SDM’03

http://hanj.cs.illinois.edu/pdf/sdm16_jshang-dpclass.pdf

84

94

How Are Bayesian Networks Constructed?
 Subjective construction: Identification of (direct) causal structure

 People are quite good at identifying direct causes from a given set of variables &
whether the set contains all relevant direct causes

 Markovian assumption: Each variable becomes independent of its non-effects
once its direct causes are known

 E.g., S ← F → A ← T, path S → A is blocked once we know F → A

 HMM (Hidden Markov Model): often used to model dynamic systems whose
states are not observable, yet their outputs are

F

S

T

A

95

How Are Bayesian Networks Constructed?
 Synthesis from other specifications

 E.g., from a formal system design: block diagrams & info flow

 Learning from data (e.g., from medical records or student admission record)

 Learn parameters give its structure or learn both structure and params

 Maximum likelihood principle: favors Bayesian networks that maximize the
probability of observing the given data set

F

S

T

A

96

Linear SVM for Linearly Separable Data
 A separating hyperplane can be written as

𝒘𝑇𝒙 + 𝑏 = 0

where 𝑤 = 𝑤1, 𝑤2, … , 𝑤𝑛
𝑇is a weight vector and 𝑏 a scalar (bias)

 For 2-D, it can be written as: 𝑤1 𝑥1 + 𝑤2 𝑥2+ 𝑏 = 0

 The distance from any data point 𝒙 to the separating hyperplane is

𝑟 =
|𝑓 𝒙 |

𝒘
=
𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏)

𝒘

 Our objective is to maximize the distance of the closest data point to the hyperplane

argmax
𝑤,𝑏

1

𝒘
min 𝑦𝑖 𝒘

𝑇𝒙𝑖 + 𝑏

 This is hard to solve, we shall convert it to an easier problem

Model parameters
to learn

97

Linear SVM for Linearly Separable Data
 If we rescale the model parameters 𝒘 → 𝜅𝒘, 𝑏 → 𝜅𝑏, the distance from any data

point to the hyperplane is not going to change

 We can set 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 = 1 for the closest data point to the hyperplane, then all

the data points will satisfy the constraint

𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1

 We will then maximize 𝒘 −1 subject to this constraint. This is equivalent to

minimizing 𝒘 2

 This is the basic form of SVM, and it can be solved by using quadratic programming

argmin
𝑤,𝑏

𝒘 2

s. t. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1, 𝑖 = 1,2,… , 𝑛

98

Linear SVM for Linearly Separable Data

𝒘𝑇𝒙𝑖 + 𝑏 = 0

0 𝑥1

𝑥2
𝒘𝑇𝒙𝑖 + 𝑏 = 1

𝒘𝑇𝒙𝑖 + 𝑏 = −1

 The data points closest to the separating
hyperplane are called support vectors

𝛾 =
2

𝒘
“Margin”

99

SVM for Linearly Inseparable Data

 We allow data points to be on the “wrong
side” of the margin boundary

 Penalize points on the wrong side according
to its distance to the margin boundary

 We define slack variables

𝜉𝑖 = ቊ
0, correct side
𝑦𝑖 − 𝑓 𝒙𝑖 , wrong side

= max 0, 1 − 𝑦𝑖 𝒘
𝑇𝑥𝑖 + 𝑏

𝜉 = 0

𝜉 < 1

𝜉 = 1

𝜉 > 1

 Original constraint: 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1

 Updated constraint: 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖

100

SVM for Linearly Inseparable Data
 Using the updated constraint, our objective becomes

 C > 0 controls the trade-off between the slack variable penalty and the margin

 Limit C → ∞, we will recover the earlier support vector machine for separable data.

 This is the widely used soft-margin SVM

argmin
𝑤,𝑏

𝒘 2 + 𝐶 σ𝜉𝑖

s. t. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 ,

𝜉𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑛

101

Scaling SVM by Hierarchical Micro-Clustering

 Construct two CF-trees (i.e., statistical summary of the data) from positive
and negative data sets independently (with one scan of the data set)

 Micro-clustering: Hierarchical indexing structure

 Provide finer samples closer to the boundary and coarser samples

farther from the boundary

102

Selective Declustering: Ensure High Accuracy
 De-cluster only the cluster Ei such that

 Di – Ri < Ds, where Di is the distance from the boundary to the center point of Ei

and Ri is the radius of Ei

 Decluster only the cluster whose subclusters have possibilities to be the support
cluster of the boundary

 “Support cluster”: The cluster whose centroid is a support vector

103

Accuracy and Scalability on Synthetic Dataset

 Experiments on large synthetic data sets shows better accuracy than random
sampling approaches and far more scalable than the original SVM algorithm

104

Sigmoid Neurons
 A many-layer network of perceptrons can engage

in sophisticated decision making

 Instead of assigning weights of the edges by a
person, we can devise learning algorithms that
can automatically tune the weights and biases of a
network of artificial neurons

 Use sigmoid neuron instead of perceptron: Output
is not 0/1 but a sigmoid function: σ(w●x + b) , i.e.,

 The smoothness of σ means that small changes in
the Δwj weights and in the Δb bias will produce a
small change Δoutput in the output from the neuron

Sigmoid function:

This shape is a
smoothed out version
of a step function

i.e., Δoutput is a linear function of the changes Δwj and Δb

105

Architecture of a (Feed-Forward) Neural Network (NN)

 Input layer

 The inputs to NN correspond to the attributes
measured for each training tuple

 Inputs are fed simultaneously into the units
making up the input layer

 Hidden layer(s)

 Inputs are weighted and fed simultaneously to a
hidden layer

 The number of hidden layers is arbitrary

 Output layer

 The weighted outputs of the last hidden layer are input to units making up the
output layer, which emits the network's prediction

106

Neural Network Architecture: Feed-Forward vs. Recurrent

 Feed-Forward Neural Network: Typical neural network architecture

 The output from one layer is used as input to the next layer (no loops)

 Information is always fed forward, never fed back

 From a statistical point of view, networks perform nonlinear regression

 Given enough hidden units and enough training samples, they can closely
approximate any function

 Recurrent neural network: Feedback loops are possible (cascade of neurons firing)

 Some neurons fire for some limited duration of time, before becoming quiescent

 That firing can stimulate other neurons, which may fire a little while later, also for a
limited duration, which causes still more neurons to fire, and so on

 Loops do not cause problems since a neuron's output only affects its input at some
later time, not instantaneously

107

Learning with Gradient Descent
 A quadratic cost (objective) function C (or mean square error, MSE)

where w: the collection of all weights in the network, b: all the biases, n: the total #
of training inputs, a: the vector of outputs from the network when x is input

 Goal of training a network: Find weights and biases which minimize the cost C(w, b)

 That is, choose Δv1 and Δv2 to make ΔC negative; i.e., the ball
is rolling down into the valley:

 The change ΔC in C by a small change in v, Δv:

where C is the gradient vector:

108

Stochastic Gradient Descent
 Gradient descent can be viewed as a way of taking small steps in the direction which

does the most to immediately decrease C

 To compute gradient ∇C, we need to compute the gradients ∇Cx separately for each
training input, x, and then average them: slow when the # of training inputs is large

 Stochastic gradient descent (SGD): Speed up learning

 Computing for a small sample of randomly chosen training inputs and averaging
over them, we can quickly get a good estimate of the true gradient

 Method: Randomly pick out a small number (mini-batch) m of randomly chosen
training inputs. Provided the sample size is large enough, we expect that the
average value will be roughly equal to the average over all, that is,

 Stochastic gradient descent in neural networks:

 Pick out a randomly chosen minibatch of training inputs and train with them; then
pick out another minibatch, until inputs exhausted—complete an epoch of training

 Then we start over with a new training epoch

109

Backpropagation for Fast Gradient Computation
 Backpropagation: Reset weights on the “front” neural units and this is

sometimes done in combination with training where the correct result is known

 Iteratively process a set of training tuples & compare the network’s prediction
with the actual known target value

 For each training tuple, the weights are modified to minimize the mean squared
error between the network's prediction and the actual target value

 Modifications are made in the “backwards” direction

 From the output layer, through each hidden layer

back to the first hidden layer, hence “backpropagation”

 Steps

 Initialize weights to small random numbers, associated with biases

 Propagate the inputs forward (by applying activation function)

 Backpropagate the error (by updating weights and biases)

 Terminating condition (when error is very small, etc.)

110

More on Backpropagation
 With backpropagation, we distribute the “blame” backward through the network

 Each hidden node sending input to the current node is somewhat “responsible”
for some portion of the error in each neuron to which it has forward connection

 Local minima and backpropagation

 Backpropagation can be stuck at local minima

 But in practice it generally performs well

 Is backpropagation too slow?

 Historically, backpropagation has been considered slow

 Recent advances in computer power through parallelism and GPUs (graphics
processing units) have reduced time substantially for training neural networks

111

From Neural Networks to Deep Learning
 Train networks with many layers (vs. shallow nets with just a couple of layers)

 More neurons than previous networks

 More complex ways to connect layers

 Tremendous computing power to train networks

 Automatic feature extraction

 Multiple layers work to build an improved feature space

 Analogy: Signals passing through regions of the visual cortex

 Example: For face recognition: edge → nose → face, layer-by-layer

 Popular Deep Learning Frameworks for Classification

 Deep Feedforward Neural Networks

 Convolutional Neural Networks

 Recurrent Neural Networks

112

Deep (Feed Forward) Neural Networks
 How multiple layers work to build an improved feature space?

 First layer learns 1st order features (e.g., edges, …)

 2nd layer learns higher order features (combinations of first layer features,
combinations of edges, etc.)

 In Deep Belief Networks (DBNs), layers often learn in an unsupervised mode and
discover general features of the input space—serving multiple tasks related to
the unsupervised instances (image recognition, etc.)

 Then final layer features are fed into supervised layer(s)

 And entire network is often subsequently tuned using supervised training of the
entire net, using the initial weightings learned in the unsupervised phase

 Could also do fully supervised versions (back-propagation)

113

ReLU: Rectified Linear Unit

Convolutional Neural Networks: General Architecture

 Learn high-order features in the data via convolutions

 Well suited to object recognition with images (e.g., computer vision)

 Build position- and (somewhat) rotation-invariant features from raw image data

 CNN leverages learnable visual filters and globally shared local features

 Specifics: high dimensional, 2D topology of pixels, invariance to translations, etc.

 High-level general CNN architecture

 Input layer

 Feature-extraction layers
(Convolution—ReLU—Pool)

 Classification layers

 CNN properties

 Local connectivity

 Parameter sharing

 Subsampling

114

Convolutional Neural Networks: Local Connectivity

 Local Connectivity

 Receptive fields: Each hidden unit is connected only to a sub-region of the image

 Manageable number of parameters

 Efficient computation of pre-activation

 Spatial arrangements

 Depth: Number of filters

 Stride: how to slide the filter

 Zero-padding: deal with the border

115

Convolutional Neural Networks: Parameter Sharing

 Parameter sharing

 Discrete convolution: share matrix of parameters across certain units

 Reduces even more the number of parameters

 Extract the same feature at every position

116

Convolutional Neural Networks: Subsampling

 Subsampling

 Pooling: pool hidden units in the same neighborhood

 Introduces invariance to local translations

 Reduces the number of hidden units in hidden layer

117

Recurrent Neural Networks: General Concepts
 Modeling the time dimension: by creating cycles in the network (thus “recurrent”)

 Adding feedback loops connected to past decisions

 Long-term dependencies: Use hidden states to preserve sequential information

 RNNs are trained to generate sequences: Output at each timestamp is based on
both the current input and the inputs at all previous timestamps

 Compute a gradient with the algorithm BPTT (backpropagation through time)

 Major obstacles of RNN: Vanishing and Exploding Gradients

 When the gradient becomes too large or too small, it is difficult to model long-
range dependencies (10 timestamps or more)

 Solution: Use a variant of RNN: LSTM (1997, by Hochreiter and Schmidthuber)

118

LSTM: One Variant of Recurrent Neural Network

 Critical components of LSTM

 Memory cells

 3 Gates (input, forget, output)

 Use gated cells to

 Write, store, forget information

 When both gates are closed

 The contents of the memory cell will remain unmodified

 The gating structure allows information to be retained across many timestamps

 Also allows gradient to flow across many timestampls

 By back-propagating errors and adjusting weights, to learn what to store, and when to
allow reads, writes and erasures

 Applications: Handling sequence and time series data

 E.g., NLP, video analysis, image captioning, robotics control

119

Difficulties of Training and Improvements

 Vanishing gradient problem: Saturated units block gradient propagation

 Need better optimization (than SGD)

 Overfitting: high variance/low bias situation

 Better regularization (than L1, L2 norm)

 Unsupervised pre-training

 Statistical dropout

 Other popular approaches

 Batch normalization, residual networks, highway networks, attention, etc.

Pre-training of stacked autoencoders

120

Pattern-Based Classification on Graphs

Inactive

Active Mining Transform
g1 g2 Class

1 1 0

0 0 1

1 1 0

Frequent subgraphs

g1

g2

min_sup=2

Inactive

Use frequent patterns as
features for classification

Inactive

123

Discriminative Pattern-Based Classification
 Discriminative patterns as features for classification [Cheng et al., ICDE’07]

 Principle: Mining discriminative frequent patterns as high-quality
features and then apply any classifier

 Framework (PatClass)

 Feature construction by frequent itemset mining

 Feature selection (e.g., using Maximal Marginal Relevance (MMR))

 Select discriminative features (i.e., that are relevant but minimally
similar to the previously selected ones)

 Remove redundant or closely correlated features

 Model learning

 Apply a general classifier, such as SVM or C4.5, to build a classification
model

124

On the Power of Discriminative Patterns
 K-itemsets are often more informative than single features (1-itemsets) in

classification

 Computation on real datasets shows: The discriminative power of k-itemsets
(for k > 1 but often ≤ 10) is higher than that of single features

(a) Austral (c) Sonar(b) Cleve

Information Gain vs. Pattern Length

125

Information Gain vs. Pattern Frequency

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

InfoGain
IG_UpperBnd

Support

In
fo

rm
at

io
n

 G
ai

n

(a) Austral (c) Sonar(b) Breast

Frequency

In
fo

 G
ai

n

Low support,
low info gain

Frequency Frequency

In
fo

 G
ai

n

In
fo

 G
ai

n

 Computation on real datasets shows: Pattern frequency (but not too frequent) is
strongly tied with the discriminative power (information gain)

 Information gain upper bound monotonically increases with pattern frequency

126

Mining Concise Set of Discriminative Patterns

Frequent pattern mining, then getting discriminative patterns: Expensive, large model

Data

Frequent Patterns

104~106
Discriminative

Patterns

Mining Filtering

DDPMine [Cheng et al., ICDE’08]: Direct mining of discriminative patterns: Efficient

Data

Discriminative
Patterns

Direct MiningTransform FP-tree

Still generates 102~103 patterns

DPClass [Shang et al, SDM’16]: A better solution—Efficient, effective, and generating
a very limited number of (such as only 20 or so) patterns

127

DPClass: Discriminative Pattern-based Classification

Input: A feature table for training data

 Adopt every prefix path in an (extremely) random forest as a candidate pattern

 The split points of continuous variables are automatically chosen by random
forest No discretization!

 Run top-k (e.g., top-20) pattern selection based on training data

 Train a generalized linear model (e.g., logistic regression) based on “bag-of-patterns”
representations of training data

128

Explanatory Discriminative Patterns: Generation
 Example: For each patient, we have several uniformly sampled features as follows

 The positive label of the hypo-disease will be given when at least one of the
following rules holds

 Training: 105 random patients + 0.1% noise

 Flip the binary labels with 0.1% probability

 Testing: 5 × 104 random patients in test

Features Age Gender Lab Test 1 (LT1) Lab Test 2(LT2)

Values Positive
Integers

Male or
Female

A, B, O, AB Real value in
[0, 1]

Features Age Gender Lab Test 1 (LT1) Lab Test 2(LT2)

Rule 1 > 18 Male AB >= 0.6

Rule 2 > 18 Female O >= 0.5

Rule 3 <= 18 >= 0.9

129

Explanatory Discriminative Patterns: Evaluation

 Ground Truth:

 Top-3 Discriminative Patterns for each model:

 DPClass (perfect):

 (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.496)

 (age ≤ 18) and (LT2 ≥ 0.900)

 (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.601)

 DDPMine (poor):

 (LT2 > 0.8)

 (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.6) and (LT2 < 0.8)

 (gender = Female) and (LT1 = O) and (LT2 ≥ 0.6) and (LT2 < 0.8)

Features Age Gender Lab Test 1 (LT1) Lab Test 2(LT2)

Rule 1 > 18 Male AB >= 0.6

Rule 2 > 18 Female O >= 0.5

Rule 3 <= 18 >= 0.9

130

A Comparison on Classification Accuracy
 DPClass: Discriminative &

frequent at the same time,
then select top-k

 Two methods on pattern
selection

 Forward vs. LASSO

 In comparison with
DDPMine and Random
Forest, DPClass maintains
high accuracy

Dataset DPClass
(Forward)

DPClass
(LASSO)

DDPMine Random
Forest

low-
dimensional
data

adult 85.66% 84.33% 83.42% 85.45%

hypo 99.58% 99.28% 92.69% 97.22%

sick 98.35% 98.87% 93.82% 94.03%

crx 89.35% 87.96% 87.96% 89.35%

sonar 85.29% 83.82% 73.53% 83.82%

chess 92.25% 92.05% 90.04% 94.22%

high-
dimensional
data

namao 97.17% 96.94% 96.83% 97.86%

musk 95.92% 95.71% 93.29% 96.60%

madelon 74.50% 76.00% 59.84% 56.50%

