

CS 412 Intro. to Data Mining Chapter 9. Classification: Advanced Methods Qi Li, Computer Science, Univ. Illinois at Urbana-Champaign, 2018

Chapter 9. Classification: Advanced Methods

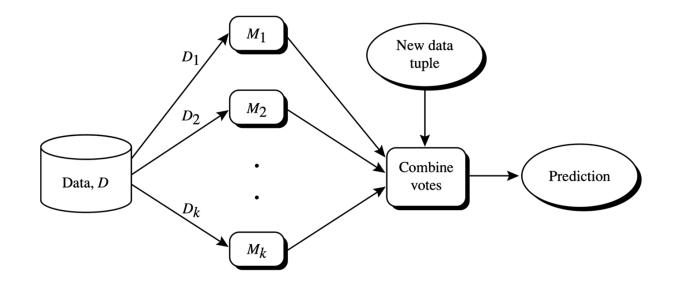
Ensemble Methods: Increasing the Accuracy

- Bayesian Belief Networks
- **G** Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods
- Summary

2

Ensemble Methods: Increasing the Accuracy

- **Ensemble methods**
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an **improved** model M*



Ensemble Methods: Increasing the Accuracy

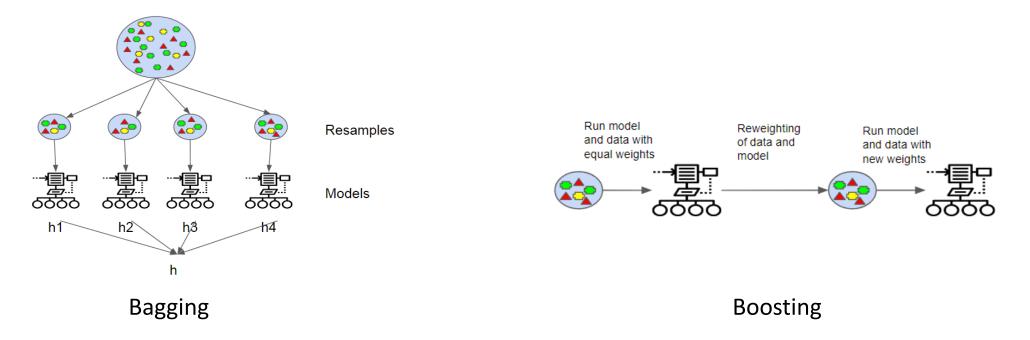
- □ What are the requirements to generate an improved model?
 - **Example:** majority voting

		x_1	x ₂	X ₃		x_1	x ₂	x ₃		x ₁	x ₂	х ₃
Base model	M_1	\checkmark	\checkmark	Х	M ₁	\checkmark	\checkmark	Х	M ₁	\checkmark	Х	X
performance	• M ₂	Х	\checkmark	\checkmark	M_2	\checkmark	\checkmark	Х	M ₂	Х	\checkmark	Х
	M ₃	\checkmark	Х	\checkmark	M ₃	\checkmark	\checkmark	X	M ₃	Х	Х	\checkmark
Ensemble	Voting Ensemble	\checkmark	\checkmark	\checkmark	Voting Ensemble	\checkmark	\checkmark	X	Voting Ensemble	Х	Х	X
	Case 1: Ensemble has positive effect				Case 2: Ensemble has no effect				Case 3: Ensemble has negative effect			

- Base models should be
 - Accurate
 - Diverse

Ensemble Methods: Increasing the Accuracy

- Popular ensemble methods
 - Bagging: Trains each model using a subset of the training set, and models learned in parallel
 - Boosting: Trains each new model instance to emphasize the training instances that previous models mis-classified, and models learned in order



Bagging: Bootstrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- **Training**
 - **G** For i = 1 to k
 - □ create bootstrap sample, D_i, by sampling D with replacement;
 - □ use D_i and the learning scheme to derive a model, M_i;
- Classification: classify an unknown sample **X**
 - let each of the k models classify X and return the majority vote
- Prediction:
 - To predict continuous variables, use average prediction instead of vote

Random Forest: Basic Concepts

- Random Forest (first proposed by L. Breiman in 2001)
 - Bagging with **decision trees** as base models
 - Data bagging
 - Use a **subset of training data** by sampling with replacement for each tree
 - - At each node use a random selection of attributes as candidates and split by the best attribute among them

During classification, each tree votes and the most popular class is returned

Random Forest

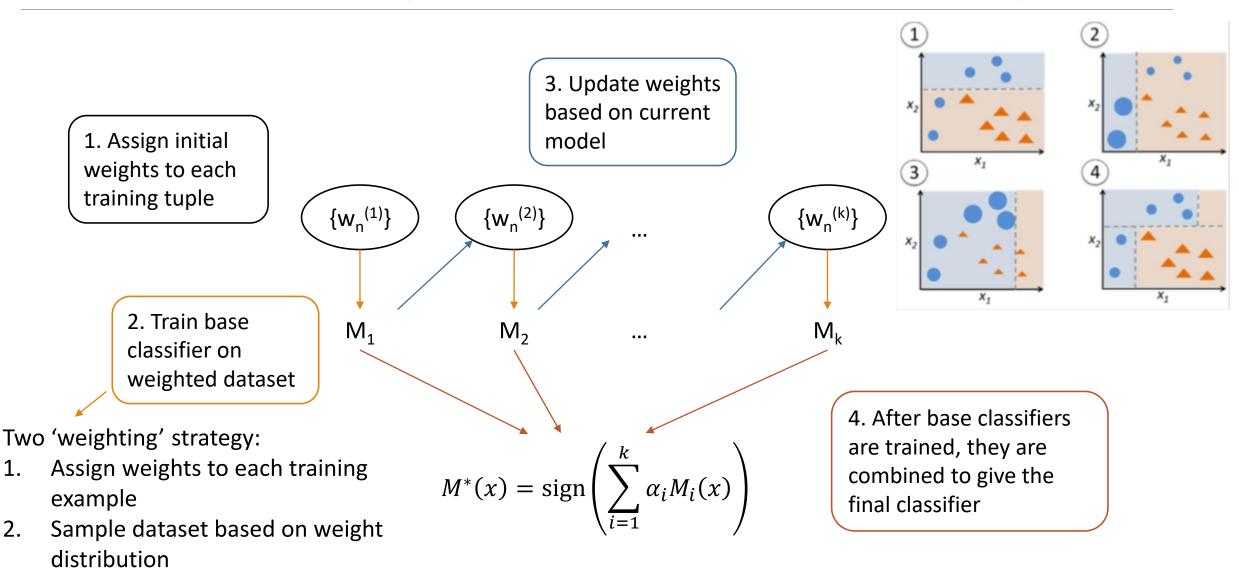
Two Methods to construct Random Forest:

- Forest-RI (random input selection): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
- Forest-RC (*random linear combinations*): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than typical bagging or boosting

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - A series of k classifiers are iteratively learned
 - After a classifier M_i is learned, set the subsequent classifier, M_{i+1}, to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction

Adaboost (Freund and Schapire, 1997)



Adaboost (Freund and Schapire, 1997)

- **Input**: Training set $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- □ Initialize all weights $\{w_n^{(1)}\}$ to 1/N
- For round i = 1 to k,
 - \Box Fit a classifier M_i based on weighted error function

$$J_m = \sum_{n=1}^N w_n^{(i)} I(M_i(x_n) \neq y_n)$$

□ Evaluate error rate $\epsilon_i = J_m / \sum w_n^{(i)}$ (stop iteration if ϵ_i < threshold)

and the base model M_i 's vote $\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \epsilon_i}{\epsilon_i} \right)$

Update weights

11

$$w_n^{(i+1)} = w_n^{(i)} \exp\{\alpha_i \cdot I(M_i(x_n) \neq y_n)\}$$

□ The final model is given by voting based on $\{\alpha_n\}$

Gradient Boosting

- Operates on:
 - A differentiable loss function
 - A weak learner to make predictions (usually trees)
 - An additive model to add weak learners to minimize the loss function
- Each time adds an additional weak learner

$$\begin{array}{ll} \hat{y}_{i}^{(0)} &= 0 \\ \hat{y}_{i}^{(1)} &= f_{1}(x_{i}) = \hat{y}_{i}^{(0)} + f_{1}(x_{i}) \\ \hat{y}_{i}^{(2)} &= f_{1}(x_{i}) + f_{2}(x_{i}) = \hat{y}_{i}^{(1)} + f_{2}(x_{i}) \\ & \cdots \\ \hat{y}_{i}^{(t)} &= \sum_{k=1}^{t} f_{k}(x_{i}) = \hat{y}_{i}^{(t-1)} + f_{t}(x_{i}) \end{array}$$
 Previous model New weak learner

Given Scalable implementation: XGBoost

Ensemble Methods Recap

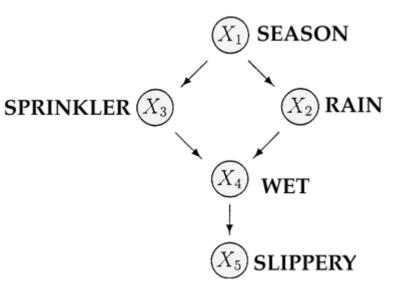
- Random forest and XGBoost are the most commonly used algorithms for tabular data
- Pros
 - Good performance for tabular data, requires no data scaling
 - Can scale to large datasets
 - Can handle missing data to some extent
- Cons
 - Can overfit to training data if not tuned properly
 - Lack of interpretability (compared to decision trees)

Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods
- **Summary**

From Naïve Bayes to Bayesian Networks

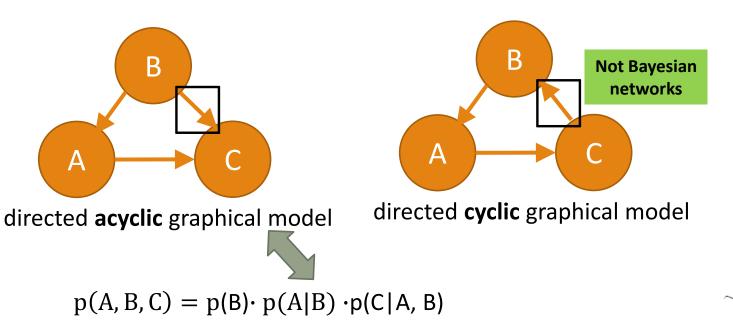
- Naïve Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable
 - This assumption is often too simple to model the real world well
- Bayesian network (or Bayes network, belief network, Bayesian model or probabilistic directed acyclic graphical model) is a probabilistic graphical model
 - Represented by a set of random variables and their conditional dependencies via a directed acyclic graph (DAG)
 - E.g. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases

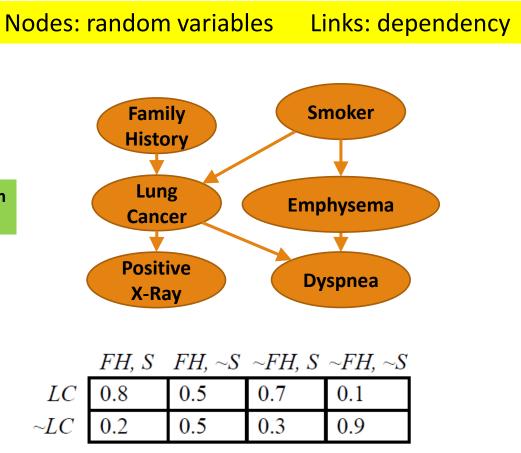


Bayesian Belief Networks

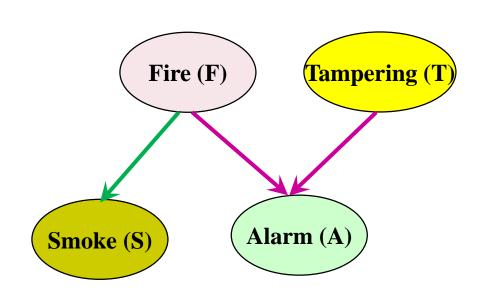
Bayesian belief network (or **Bayesian network**, **probabilistic network**):

- Allows class conditional independencies between subsets of variables
- Two components:
 - □ A *directed acyclic graph* (called a structure)
 - □ A set of *conditional probability tables* (CPTs)





A Bayesian Network and Its CPTs



Conditional Probability Tables (CPT)								
		Fire	Smok	ke	Θ _{s f}			
	٦	True	True	2	.90			
False			True	2	.01			
Fire	2	Tamp	pering	Ala	arm	Θ _{a f,t}		
True	ē	Tr	ue	Tr	ue	.5		
True	j	Fa	lse	Tr	ue	.99		
False	е	Tr	ue	Tr	ue	.85		
False	е	Fa	lse	Tr	ue	.0001		

CPT shows the conditional probability for each possible combination of its parents:

$$p(X) = \prod_{k} p(x_k | Parents(x_k))$$

 $p(F, S, A, T) = p(F) \cdot p(T) \cdot p(S|F) \cdot p(A|F, T)$

Training Bayesian Networks: Several Scenarios

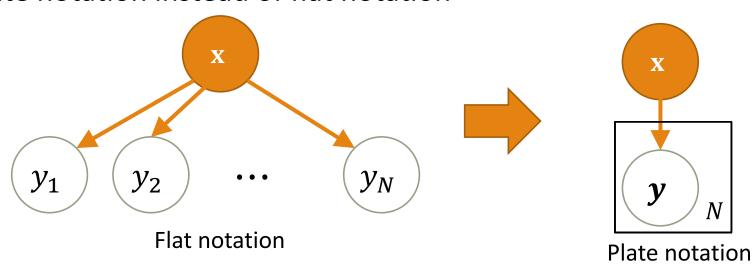
- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment, without backtracking
 - Weights are updated at each iteration & converge to local optimum

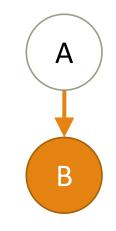
Training Bayesian Networks: Several Scenarios

- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In *Learning in Graphical Models*, M. Jordan, ed. MIT Press, 1999

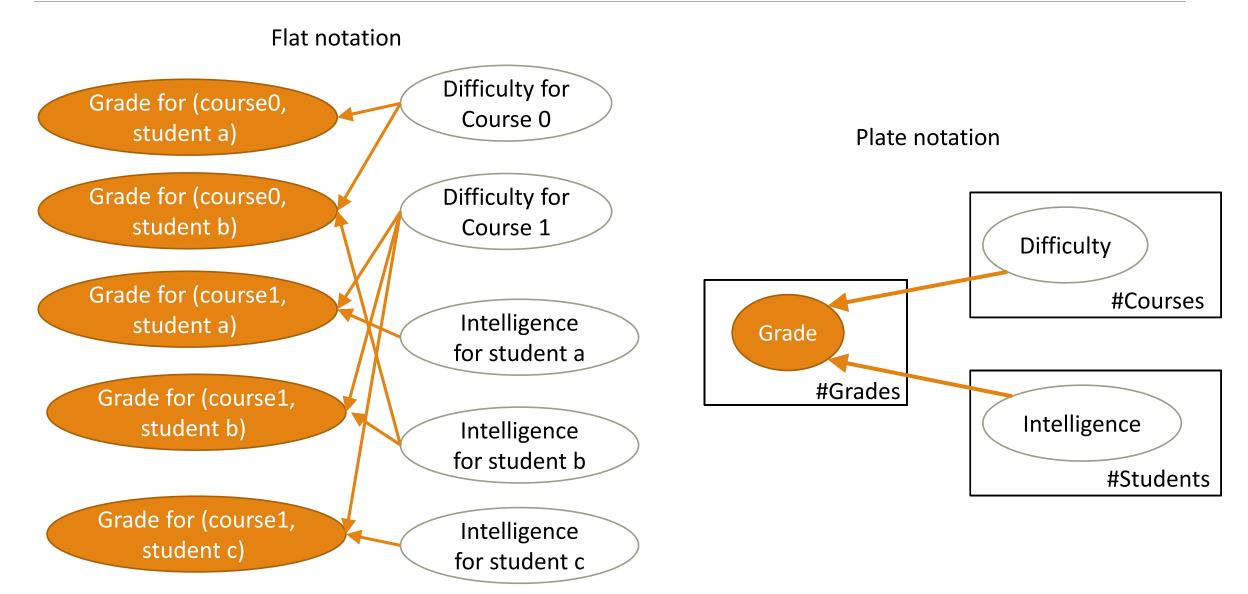
Probabilistic Graphic Model: Plate Notations

- Represent variables that repeat in a graphical model
- Variables
 - A solid (or shaded) circle means the corresponding variable is observed; otherwise it is hidden
- Dependency among variables:
 - A Directed Acyclic Graphical (DAG) model
- Using plate notation instead of flat notation





An Example of Plate Notation



Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods
- **Summary**

Classification: A Mathematical Mapping

The binary classification problem:

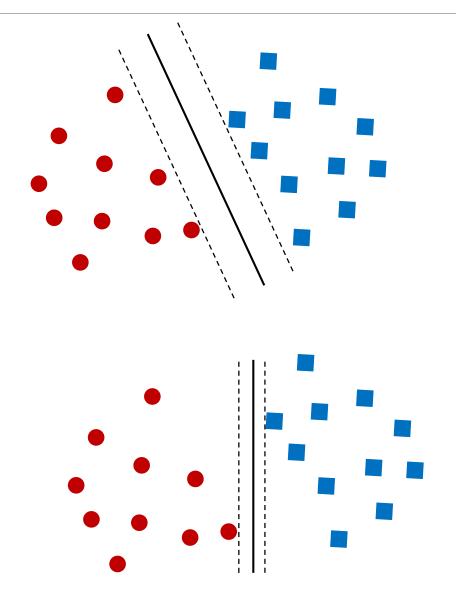
- **E.g.**, Movie review classification
 - $\Box x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1 \text{ (positive, negative)}$
 - \Box x₁ : # of word "awesome"
 - \Box x₂ : # of word "disappointing"
- □ Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$
 - □ We want to derive a function $f: X \to Y$
 - which maps input examples to their correct labels

SVM—Support Vector Machines

linear and nonlinear

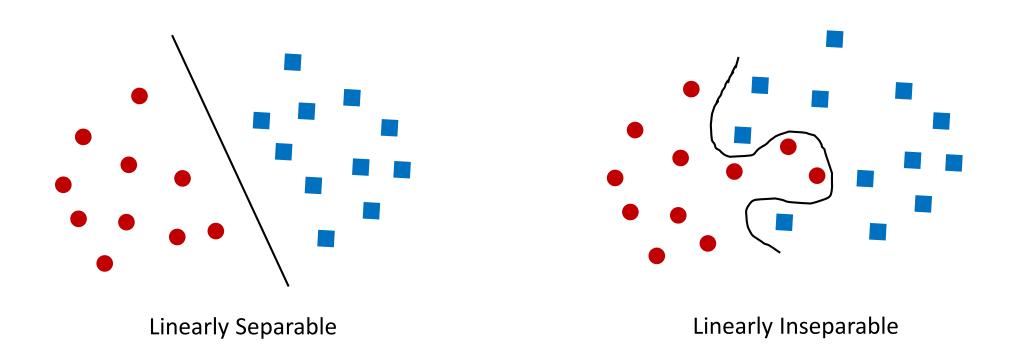
- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

SVM—General Philosophy



- □ Learning a max-margin classifier
 - From the infinite set of lines (hyperplanes) separating two classes
 - Find the one which separates two classes with the largest margin
 - i.e. a maximum marginal hyperplane (MMH)

SVM—When Data Is Linearly Separable



□ The simplest case: When data is **linearly separable**

Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable

Linear SVM for Linearly Separable Data

A separating hyperplane can be written as

$$w^T x + b = 0$$

Model parameters to learn

where $w = (w_1, w_2, ..., w_n)^T$ is a weight vector and b a scalar (bias)

- **D** For 2-D, it can be written as: $w_1 x_1 + w_2 x_2 + b = 0$
- □ The hyperplane defining the sides of the margin:

$$H_1: w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and

 $H_2: w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors

Linear SVM for Linearly Separable Data

 \Box The distance from any data point x to the separating hyperplane is

distance
$$(ax + by + c = 0, (x_0, y_0)) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$
 $r = \frac{|f(x)|}{\|w\|} = \frac{y_i(w^T x_i + b)}{\|w\|}$

Our objective is to maximize the distance of the closest data point to the hyperplane

$$\arg\max_{w,b}\left\{\frac{1}{\|\boldsymbol{w}\|}\min[y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b)]\right\}$$

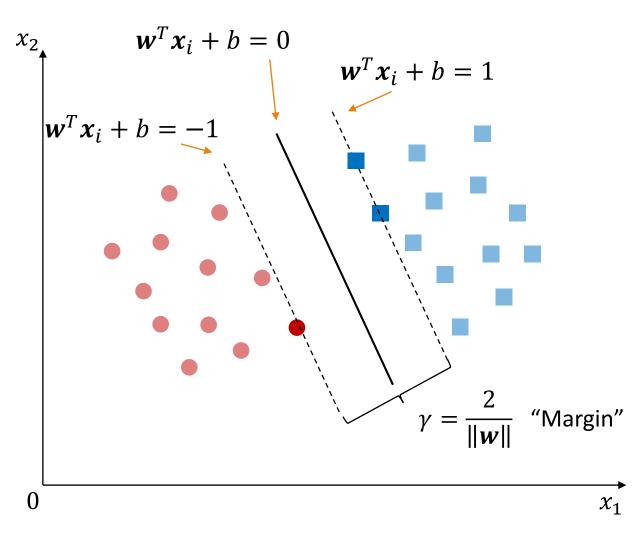
□ This is hard to solve, we shall convert it to an easier problem

arg min
w,b
$$\|w\|^2$$

s.t. $y_i(w^T x_i + b) \ge 1$, $i = 1, 2, ..., n$

This is the basic form of SVM, and it can be solved by using *quadratic programming*

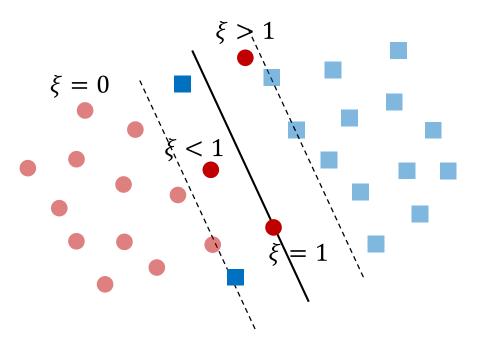
Linear SVM for Linearly Separable Data



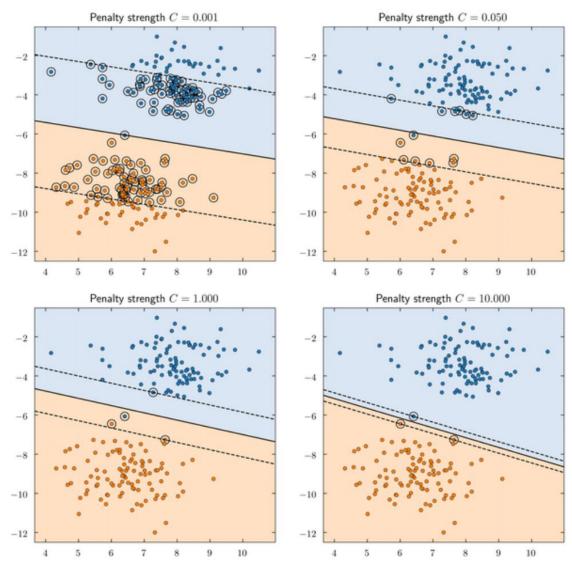
The data points closest to the separating hyperplane are called support vectors

SVM for Linearly Inseparable Data

- We allow data points to be on the "wrong side" of the margin boundary
- Penalize points on the wrong side according to its distance to the margin boundary
- \Box ξ : slack variable
- C (> 0): Controls the trade-off between the penalty and the margin
- Smaller C: allow more mistake
- □ Larger C: allow less mistake
- □ This is the widely used *soft-margin SVM*



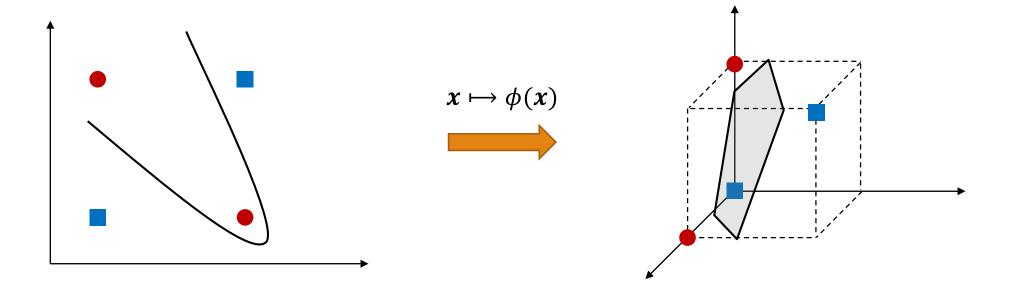
Effect of slack variable



https://www.quora.com/What-is-the-purpose-for-using-slack-variable-in-SVM

SVM for Linearly Inseparable Data

- Alternatively, for linearly inseparable data, we can map them to a higher dimensional space
- □ We search for a linear separating hyperplane in the new space
 - **Example:** The XOR problem



Kernel Functions for Nonlinear Classification

- □ Instead of computing the dot product on the transformed data, it is mathematically equivalent to applying a kernel function $K(x_i, x_j)$ to the original data, i.e.,
 - $\square \quad K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i) \ \phi(\boldsymbol{x}_j)$
- Typical Kernel Functions

Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel : $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

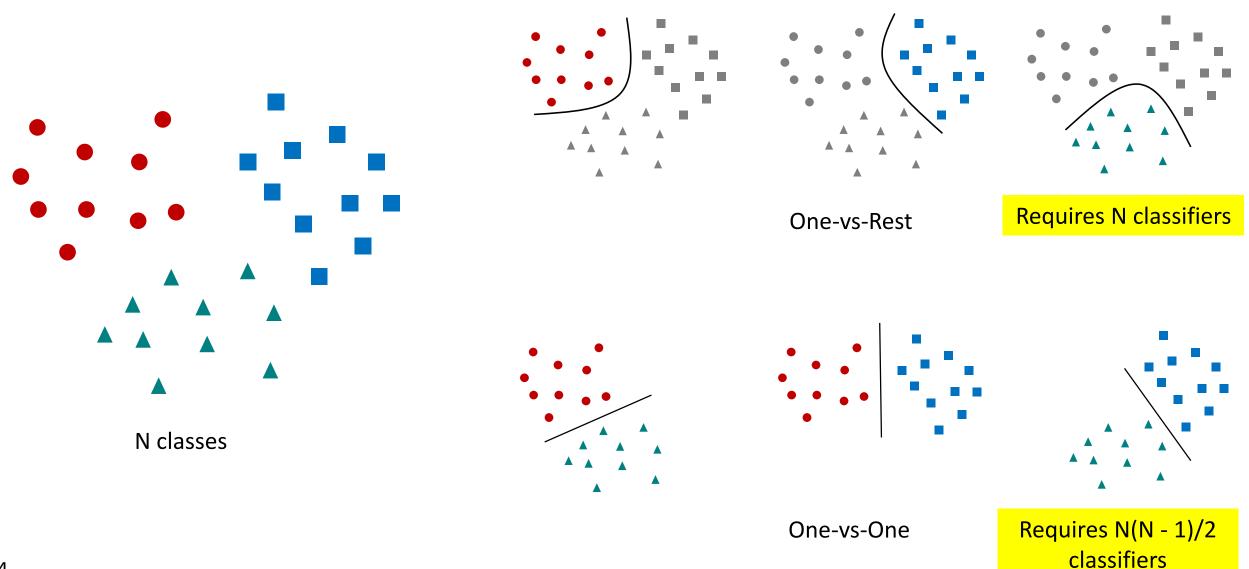
Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

SVMs can efficiently perform a non-linear classification using kernel functions, implicitly mapping their inputs into high-dimensional feature spaces

https://www.youtube.com/watch?time_continue=42&v=3liCbRZPrZA

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Multi-class Classification with SVM



Is SVM Scalable on Massive Data?

- SVM is effective on high dimensional data
 - The complexity of trained classifier is characterized by the <u># of support</u> vectors rather than the dimensionality of the data
 - The support vectors are the <u>essential or critical training examples</u>—they lie closest to the decision boundary (MMH)
 - Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high
- SVM is not scalable to the # of data objects in terms of training time and memory usage
 - Scaling SVM by a hierarchical micro-clustering approach
 - H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with</u> <u>Hierarchical Clusters</u>", KDD'03

SVM: Applications

- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction
 - SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Applications:

 handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

SVM Recap

Pros

- Elegant mathematical formulation, guaranteed global optimal with optimization
- Trains well on small data sets
- Flexibility through kernel functions
- Conformity with semi-supervised training
- Cons
 - Not naturally scalable to large data sets

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C

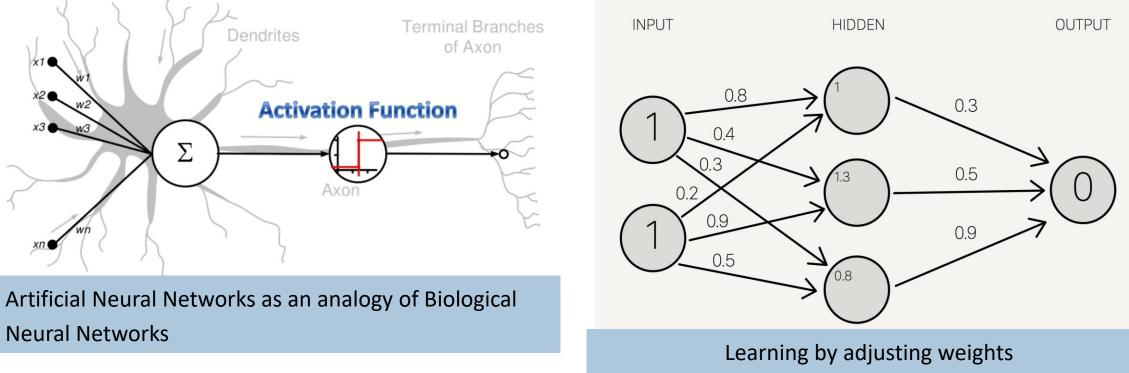
Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- **G** Support Vector Machines
- Neural Networks and Deep Learning

- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods
- **Summary**

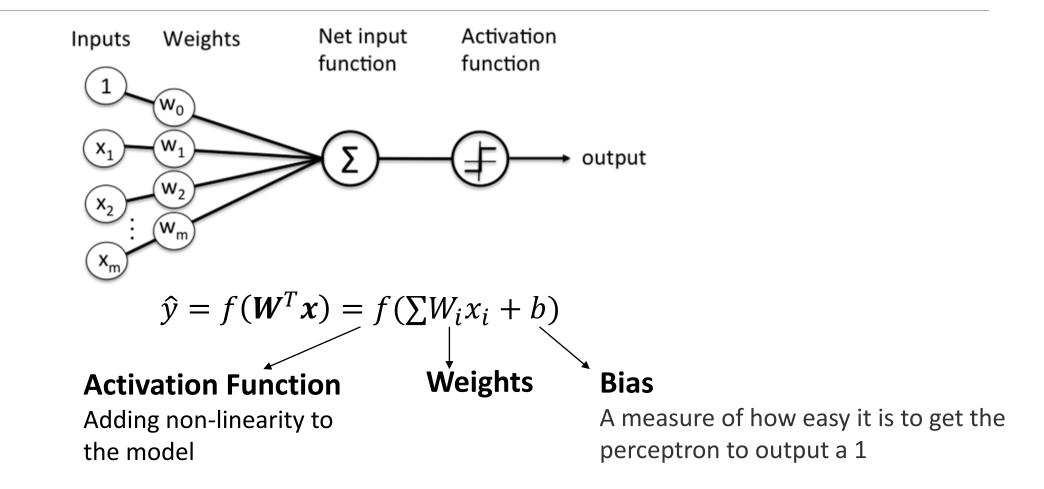
Neural Network for Classification

- A neural network: A set of connected input/output units where each connection has a weight associated with it
 - During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples



(https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/)

Perceptron: Predecessor of a Neural Network

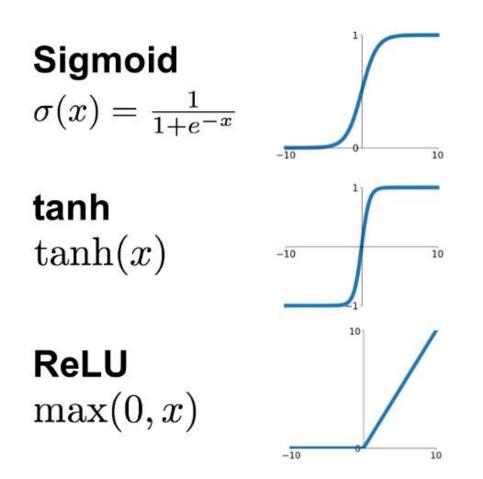


Computes a weighted sum of inputs

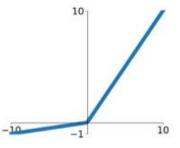
□ 1957 by Frank Rosenblatt - doesn't have a non-linear activation function

Perceptron: Predecessor of a Neural Network

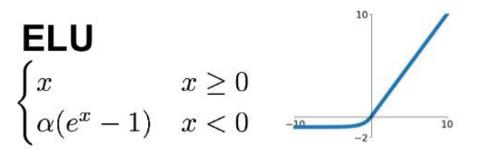
Examples of activation functions



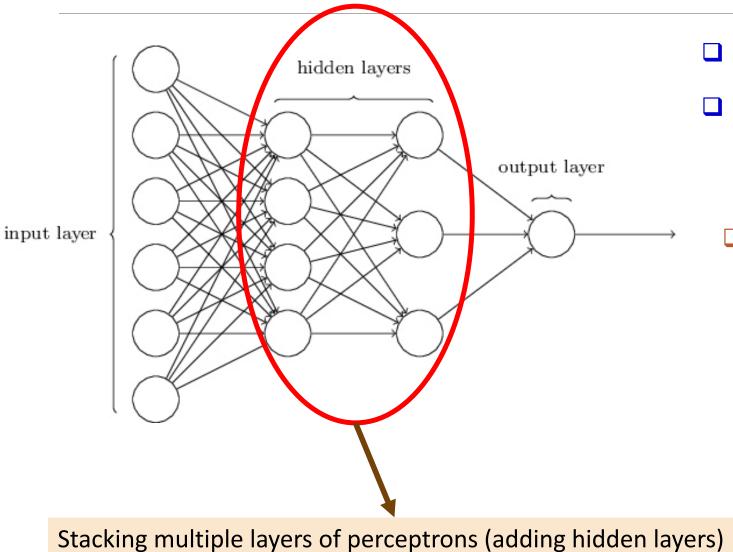




 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



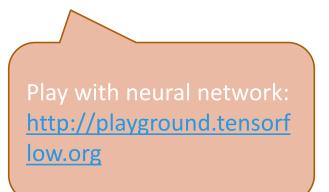
Multilayer Perceptron (MLP)



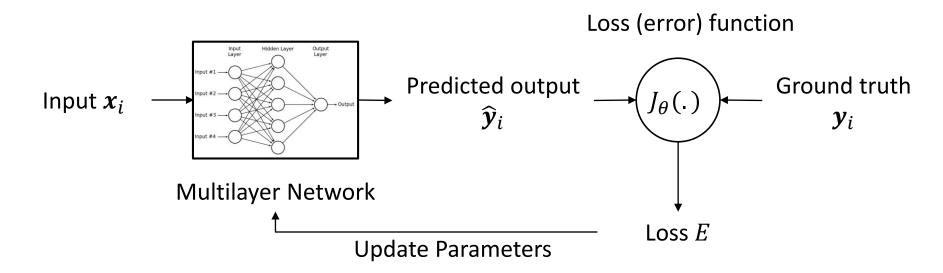
Multilayer perceptron (MLP)

 MLP can engage in sophisticated decision making, where perceptrons fail

E.g. XOR problem



Learning NN Parameters



Gradient Descent Algorithm

Input: Training sample x_i and its label y_i

1. Feed Forward: Get prediction $\hat{y}_i = MLP(x_i)$, and loss $E = J(\hat{y}_i, y_i)$

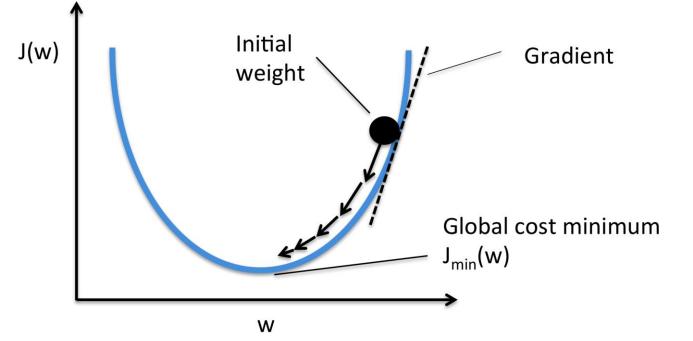
2. Compute Gradient: For each parameter θ_i (weights, bias), compute its gradient $\frac{\partial}{\partial \theta_i} J_{\theta}$

Explained later

3. Update Parameter:
$$\theta_i = \theta_i - \alpha \cdot \frac{\partial}{\partial \theta_i} J_{\theta}$$

46

Empirical Explanation of Gradient Descent

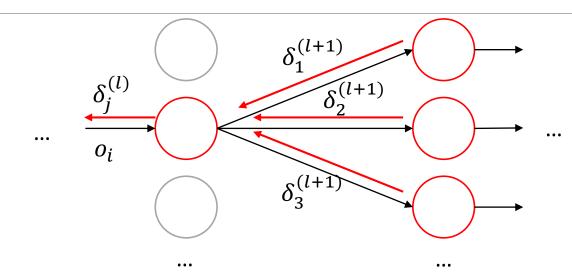


$$\theta_{i} = \theta_{i} - \alpha \cdot \frac{\partial}{\partial \theta_{i}} J_{\theta}$$
learning rate - 'step size' of the optimization

The loss function J – a function of the model parameters

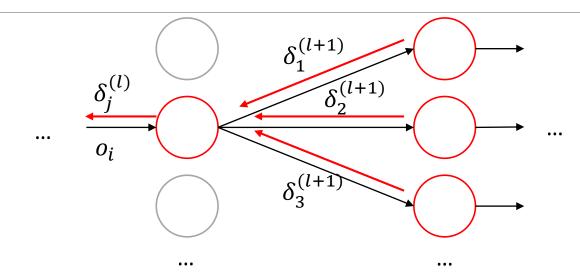
- Objective Minimize J
- Gradient Measures how much the output of a function changes if you change the inputs a little bit
- We update the parameters, based on their gradients, so that the loss function is going 'downhill'

Gradient Computation: Backpropagation



- The gradient of w_{ij} in the *l*th layer (corresponding to unit j in layer l, connected to unit i in layer l-1) is a function of
 - □ All 'error' terms from layer $|+1 \delta_k^{(l+1)}|$ -- An auxiliary term for computation, not to be confused with gradients
 - Output from unit i in layer I-1 (input to unit j in layer I) -- Can be stored at the feed forward phase of computation

Gradient Computation: Backpropagation



D The 'error' terms $\delta_i^{(l)}$ is a function of

- All $\delta_k^{(l+1)}$ in the layer I+1, if layer I is a hidden layer
- □ The overall loss value, if layer I is the output layer
- We can compute the error at the output, and distributed backwards throughout the network's layers (backpropagation)

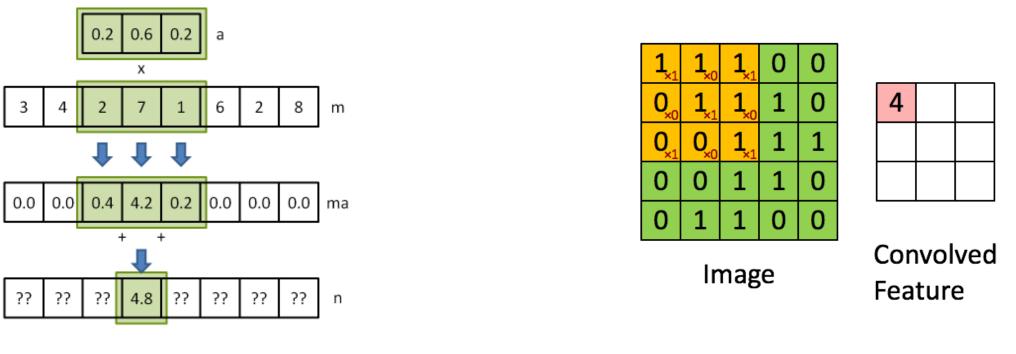
From Neural Networks to Deep Learning

Deep Learning – Training (deep) neural networks with

- More neurons, more layers
- More complex ways to connect layers
- Advantages
 - **Tremendous improvement of performance** in
 - □ Image recognition, natural language processing, AI game playing...
 - **Requires no (or less) feature engineering**, making end-to-end models possible
- Several factors lead to deep learning's success
 - Very large data sets
 - Massive amounts of computation power (GPU acceleration)
 - Advanced neural network structures and tricks
 - □ Convolutional neural networks, recurrent neural networks, ...
- Dropout, ReLU, residual connection, ... (not covered)

Convolutional Neural Networks (CNN)

□ What is convolution?



1D Convolution

2D Convolution

The outputs are computed by sliding a kernel (of weights) on the inputs, and computing weighted sum locally

CNN Motivation

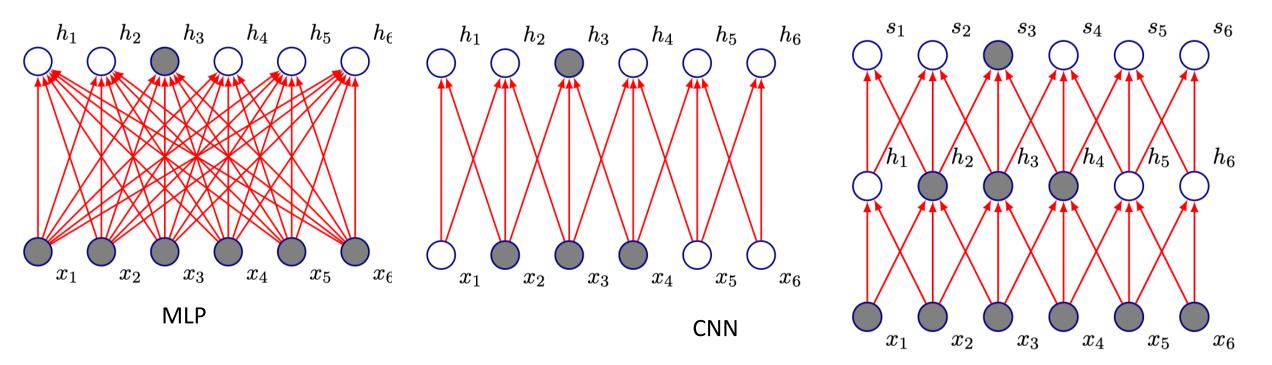
□ Why not deep MLP?

- **Computationally expensive** (Long training time)
- □ Hard to train (slow convergence, local minima).
- Motivations of convolution
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
- The properties of CNNs are well aligned with properties of many forms of data (e.g. images, text), making them very successful

CNN Motivation

Motivations of convolution

- Sparse interactions
 - **E.g.** 1D convolution with kernel size 3
 - Units in deeper layers still connect to a wide range of inputs



CNN Motivation

Motivations of convolution

Parameter sharing

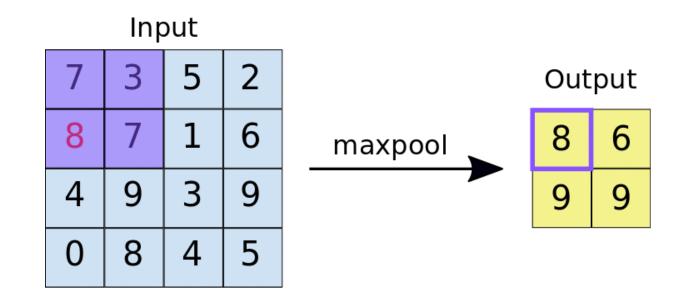
- Each kernel is used on all locations of input
- Reduce # of parameters

Equivariance

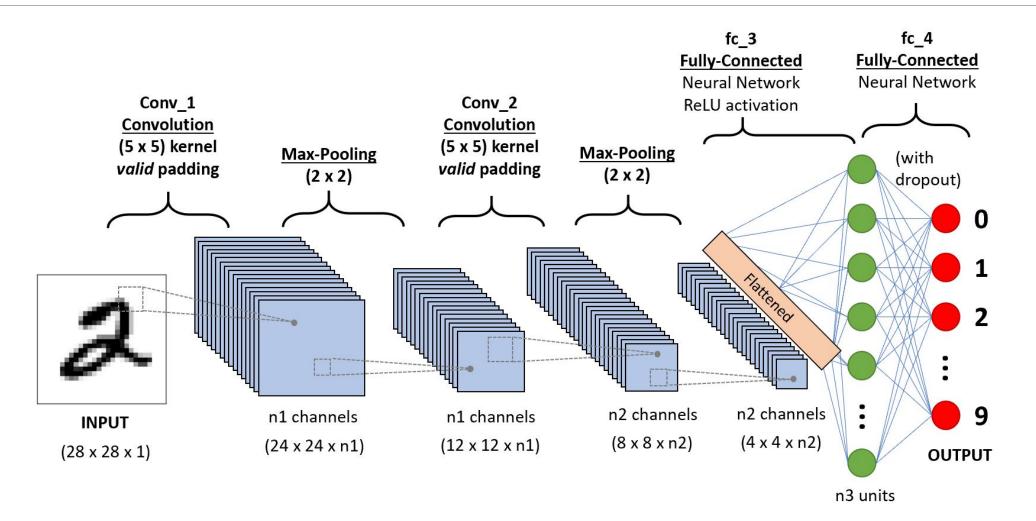
- □ Same input at different location gives same output
- E.g. a cat at the upper right corner and at the lower left corner of an image, will produce the same outputs
- E.g. "University of Illinois" at the start of the sentence and at the end of the sentence produce the same outputs

CNN: Pooling Layer

- Pooling (Subsampling)
 - Pool hidden units in the same neighborhood
 - Introduces invariance to local translations
 - Reduces the number of hidden units in hidden layer



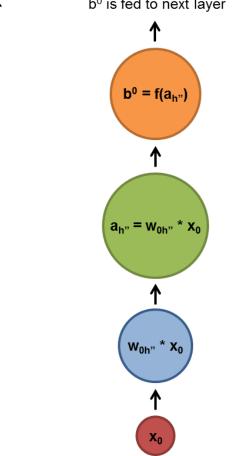
CNN for Image Recognition: Example



An example CNN for hand written digit recognition

Recurrent Neural Networks

- □ Handling sequences with Recurrent Neural Networks (RNN)
 - At each time step, the input and the previous hidden state are fed into the network
 b⁰ is fed to next layer



Recurrent Neural Networks: General Concepts

Modeling the time dimension:

- **Feedback loops** connected to past decisions
- **Long-term dependencies**: Use hidden states to preserve sequential information
- RNNs are trained to generate sequences: Output at each timestamp is based on ALL inputs (current and previous)

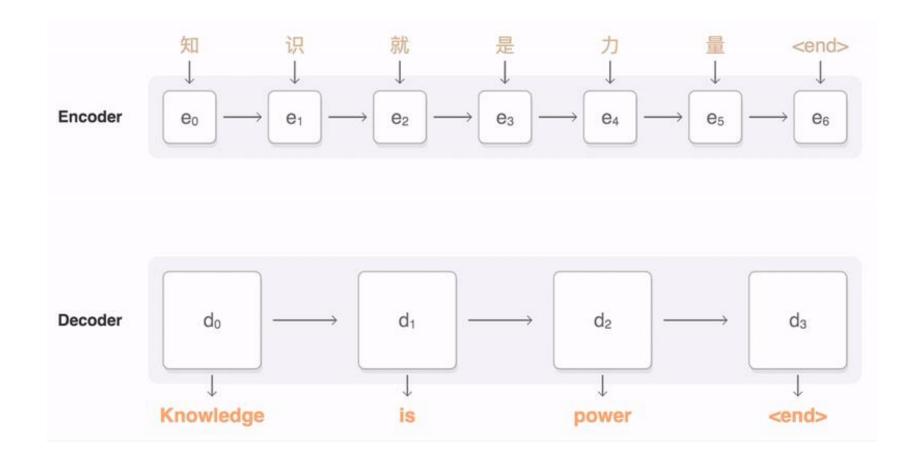
 $\mathbf{h}_{t} = \phi \left(W \mathbf{x}_{t} + U \mathbf{h}_{t-1} \right),$

Compute a gradient with the algorithm BPTT (backpropagation through time)

Major obstacles of RNN: Vanishing and Exploding Gradients

- When the gradient becomes too large or too small, it is difficult to model longrange dependencies (10 timestamps or more)
- Solution: Use a variant of RNN: LSTM (1997, by Hochreiter and Schmidthuber)

RNN for Machine Translation: Example



Deep Learning Recap

Pros

- Very good performance on certain tasks, for certain types of data
- □ Images: image recognition, segmentation, ...
- Text (sometimes): machine translation, language modeling,...

...

- Requires very little feature engineering
- Good generalization
- E.g. models trained on ImageNet dataset for classification can help tasks such as segmentation
- Cons
 - Requires huge amounts of computation power
 - Black box model
 - □ Hard to tune the architecture and hyperparameters for new tasks

Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification

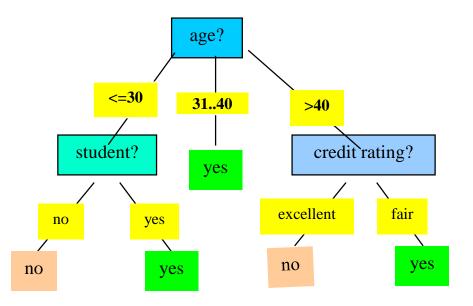
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods
- **Summary**

Using IF-THEN Rules for Classification

- Represent the knowledge in the form of IF-THEN rules
 - R₁: IF *age* = youth AND *student* = yes THEN *buys_computer* = yes
- Assessment of a rule: *coverage* and *accuracy*
 - coverage(R₁) = ratio of tuples covered by **the condition of** R₁ (THEN-part is not important for this)
 - accuracy(R₁) = ratio of tuples correctly classified by R₁ in the covered ones (both IF-part and THEN-part counts)
- □ If more than one rule are triggered, need **conflict resolution**
 - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the *most attribute tests*)
 - **Class-based ordering**: decreasing order of *prevalence or misclassification cost per class*
 - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts

Rule Extraction from a Decision Tree

- □ Rules are *easier to understand* than large trees
- One rule is created *for each path* from the root to a leaf
- Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive

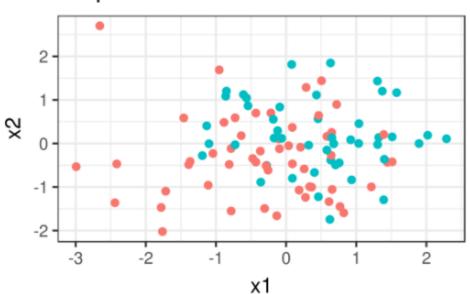


Example: Rule extraction from our *buys_computer* decision-tree

IF age = young AND student = noTHEN buys_computer = noIF age = young AND student = yesTHEN buys_computer = yesIF age = mid-ageTHEN buys_computer = yesIF age = old AND credit_rating = excellentTHEN buys_computer = noIF age = old AND credit_rating = fairTHEN buys_computer = yes

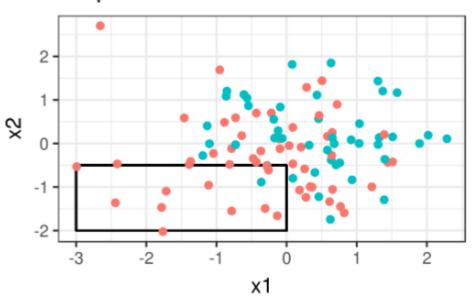
- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

G Step 0: Start with an empty list of rules.



- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

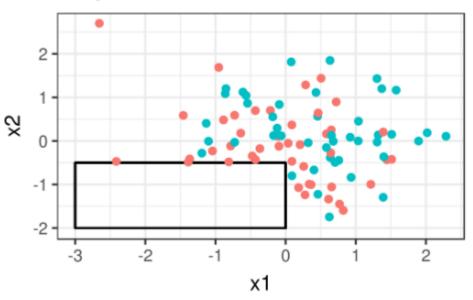
Step 1: Learn a rule r.



Step 1: Find rule

- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

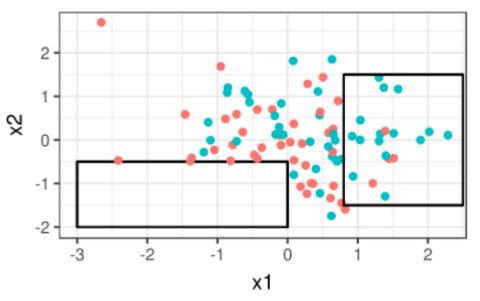
Step 2: The tuples covered by the rules are removed.



Step 2: Remove covered instances

- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

 Step 3: Repeat the process on the remaining tuples until termination condition, e.g., when no more training examples or when the quality of a rule returned is below a threshold.



Pattern-Based Classification, Why?

HO

- **Pattern-based classification:** An integration of both themes
- Why pattern-based classification?
 - Feature construction
 - Higher order; compact; discriminative
 - \Box E.g., single word \rightarrow phrase (Apple pie, Apple i-pad)
 - Complex data modeling
 - Graphs (no predefined feature vectors)
 - Sequences
 - Semi-structured/unstructured Data

CBA: Classification Based on Associations

- CBA [Liu, Hsu and Ma, KDD'98]
- Method
 - Mine high-confidence, high-support class association rules
 - □ LHS: conjunctions of attribute-value pairs); RHS: class labels $p_1 \land p_2 \dots \land p_l \rightarrow "A_{class-label} = C"$ (confidence, support)
 - Rank rules in descending order of confidence and support
 - Classification: Apply the first rule that matches a test case; o.w. apply the default rule
 - Effectiveness: Often found more accurate than some traditional classification methods, such as C4.5
 - Why? Exploring high confident associations among multiple attributes may overcome some constraints introduced by some classifiers that consider only one attribute at a time

Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors

- Other Classification Methods
- **Summary**

Lazy vs. Eager Learning

Lazy vs. eager learning

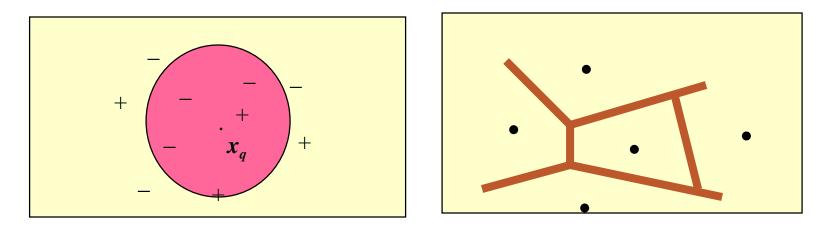
- Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- □ Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The *k*-Nearest Neighbor Algorithm

- □ All instances correspond to points in the n-D space
- □ The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples



Discussion on the *k*-NN Algorithm

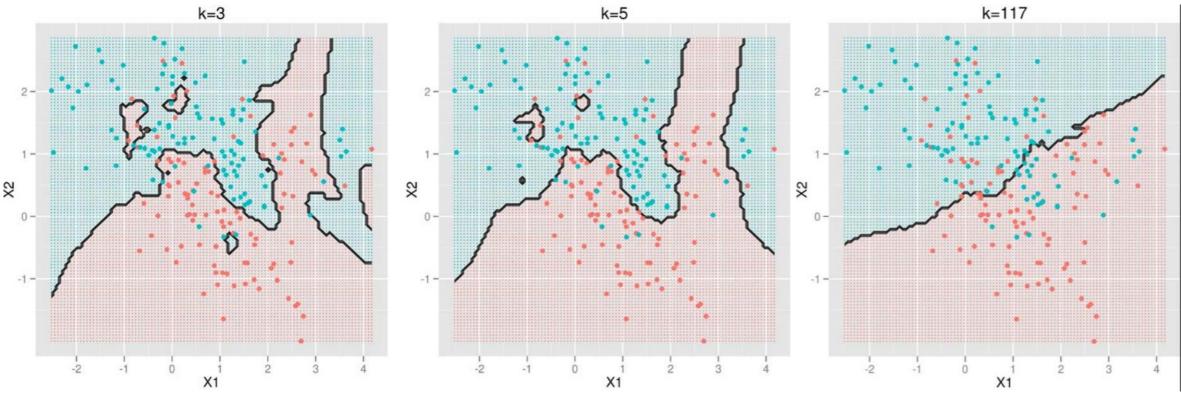
- □ *k*-NN for <u>real-valued prediction</u> for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors

$$w = \frac{1}{d(x_q, x_i)^2}$$

- Pro: Robust to noisy data by averaging *k*-nearest neighbors
- Cons:
 - Curse of dimensionality- distance between neighbors could be dominated by irrelevant attributes
 - □ To overcome it, axes stretch or elimination of the least relevant attributes
 - □ How to measure similarity?

Selection of k for kNN

- **The number of neighbors k**
 - Small k: overfitting (high var., low bias)
 - Big k: bringing too many irrelevant points (high bias, low var.)



http://scott.fortmann-roe.com/docs/BiasVariance.html

Case-Based Reasoning (CBR)

- **CBR**: Uses a database of problem solutions to solve new problems
- Store <u>symbolic description</u> (tuples or cases)—not points in a Euclidean space
- Applications: Customer-service (product-related diagnosis), legal ruling
- Methodology
 - Instances represented by rich symbolic descriptions (e.g., function graphs)
 - Search for similar cases, multiple retrieved cases may be combined
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving

□ <u>Challenges</u>

- □ Find a good similarity metric
- Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases

Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- **G** Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods

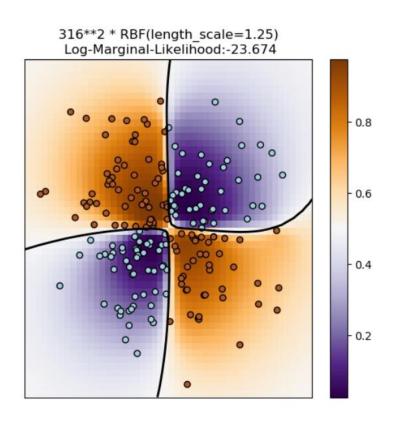
Genetic Algorithms (GA)

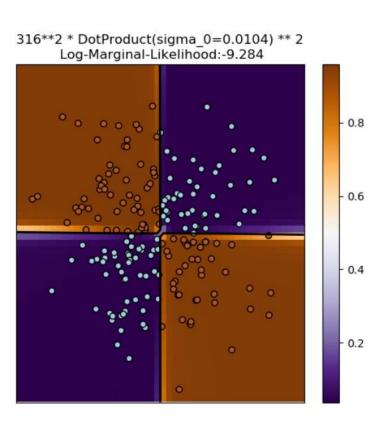
- Genetic Algorithm: (biological evolution)
- □ An initial **population** is created consisting of randomly generated rules
 - **Each rule is represented by a string of bits**
 - **E**.g., if A_1 and $\neg A_2$ then C_2 can be encoded as 100
 - □ If an attribute has k > 2 values, k bits can be used
- **Fitness: classification accuracy on a set of training examples**
- □ Survival of the **fittest** ->a new population (the fittest rules and their offspring)
- Offspring are generated by crossover and mutation
- The process continues until a population P evolves when each rule in P satisfies a pre-specified threshold
- Slow but easily parallelizable

Gaussian Process

Lazy learning

Probabilistic prediction





Chapter 9. Classification: Advanced Methods

- Ensemble Methods: Increasing the Accuracy
- Bayesian Belief Networks
- **G** Support Vector Machines
- Neural Networks and Deep Learning
- Pattern-Based Classification
- □ Lazy Learners and K-Nearest Neighbors
- Other Classification Methods

Summary

- Bayesian belief network (probabilistic networks)
- □ Support Vector Machine (SVM)
- Neural networks and Deep Learning
- Pattern-Based classification
- Other classification methods
 - lazy learners (KNN, case-based reasoning)

References (1)

- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. *Data Mining and Knowledge Discovery*, 2(2): 121-168, 1998
- N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000
- H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. KDD'03
- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990
- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001
- S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2008

82

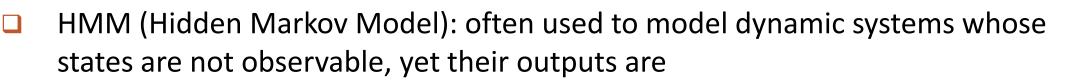
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995

References (2): Rule and Pattern-Based Classification

- H. Cheng, X. Yan, J. Han & C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, ICDE'07
- H. Cheng, X. Yan, J. Han & P. S. Yu, Direct Discriminative Pattern Mining for Effective Classification, ICDE'08
- □ W. Cohen. Fast effective rule induction. ICML'95
- G. Cong, K. Tan, A. Tung & X. Xu. Mining Top-k Covering Rule Groups for Gene Expression Data, SIGMOD'05
- M. Deshpande, M. Kuramochi, N. Wale & G. Karypis. Frequent Substructure-based Approaches for Classifying Chemical Compounds, TKDE'05
- G. Dong & J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences, KDD'99
- W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu & O. Verscheure. Direct Mining of Discriminative and Essential Graphical and Itemset Features via Model-based Search Tree, KDD'08
- W. Li, J. Han & J. Pei. CMAR: Accurate and Efficient Classification based on Multiple Class-association Rules, ICDM'01
- B. Liu, W. Hsu & Y. Ma. Integrating Classification and Association Rule Mining, KDD'98
- J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML'93
- Jingbo Shang, Wenzhu Tong, Jian Peng, and Jiawei Han, "<u>DPClass: An Effective but Concise Discriminative</u> <u>Patterns-Based Classification Framework</u>", SDM'16
- J. Wang and G. Karypis. HARMONY: Efficiently Mining the Best Rules for Classification, SDM'05
- **X**. Yin & J. Han. CPAR: Classification Based on Predictive Association Rules, SDM'03

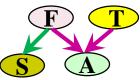
How Are Bayesian Networks Constructed?

- **Subjective construction**: Identification of (direct) causal structure
 - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
 - Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
 - $\square \quad \text{E.g., S} \leftarrow F \rightarrow A \leftarrow T, \text{ path S} \rightarrow A \text{ is blocked once we know F} \rightarrow A$



How Are Bayesian Networks Constructed?

- **Synthesis from other specifications**
 - E.g., from a formal system design: block diagrams & info flow
- Learning from data (e.g., from medical records or student admission record)
 - Learn parameters give its structure or learn both structure and params
 - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set



Linear SVM for Linearly Separable Data

A separating hyperplane can be written as

$$\boldsymbol{w}^T\boldsymbol{x}+b=0$$

Model parameters to learn

where $w = (w_1, w_2, ..., w_n)^T$ is a weight vector and b a scalar (bias)

- **D** For 2-D, it can be written as: $w_1 x_1 + w_2 x_2 + b = 0$
- \Box The distance from any data point \boldsymbol{x} to the separating hyperplane is

$$r = \frac{|f(\boldsymbol{x})|}{\|\boldsymbol{w}\|} = \frac{y_i(\boldsymbol{w}^T\boldsymbol{x}_i + b)}{\|\boldsymbol{w}\|}$$

Our objective is to maximize the distance of the closest data point to the hyperplane

$$\arg \max_{\boldsymbol{w}, \boldsymbol{b}} \left\{ \frac{1}{\|\boldsymbol{w}\|} \min[y_i(\boldsymbol{w}^T \boldsymbol{x}_i + \boldsymbol{b})] \right\}$$

□ This is hard to solve, we shall convert it to an easier problem

Linear SVM for Linearly Separable Data

- If we rescale the model parameters $w \to \kappa w, b \to \kappa b$, the distance from any data point to the hyperplane is not going to change
- □ We can set $y_i(w^T x_i + b) = 1$ for the closest data point to the hyperplane, then all the data points will satisfy the constraint

 $y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge 1$

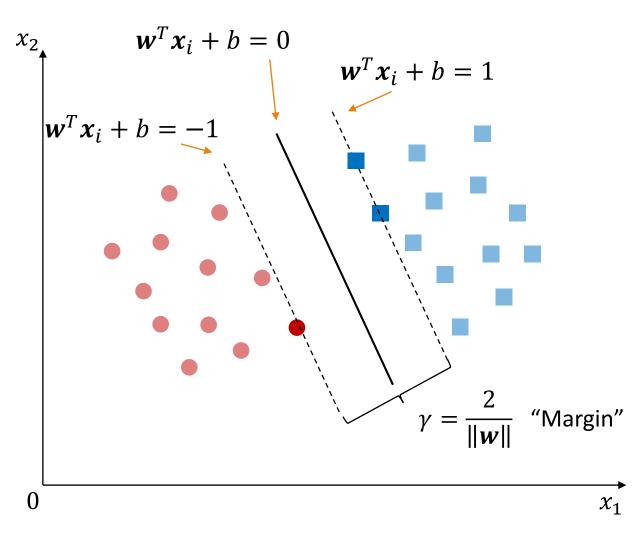
□ We will then maximize $||w||^{-1}$ subject to this constraint. This is equivalent to minimizing $||w||^2$

arg min
w,b
$$\|w\|^2$$

s.t. $y_i(w^T x_i + b) \ge 1$, $i = 1, 2, ..., n$

This is the basic form of SVM, and it can be solved by using *quadratic programming*

Linear SVM for Linearly Separable Data



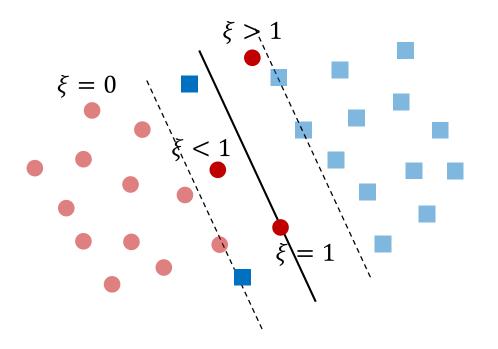
The data points closest to the separating hyperplane are called support vectors

SVM for Linearly Inseparable Data

- We allow data points to be on the "wrong side" of the margin boundary
- Penalize points on the wrong side according to its distance to the margin boundary
- □ We define **slack variables**

$$\xi_i = \begin{cases} 0, & \text{correct side} \\ |y_i - f(\mathbf{x}_i)|, & \text{wrong side} \\ &= \max(0, 1 - y_i(\mathbf{w}^T x_i + b)) \end{cases}$$

□ Original constraint: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$ □ Updated constraint: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$



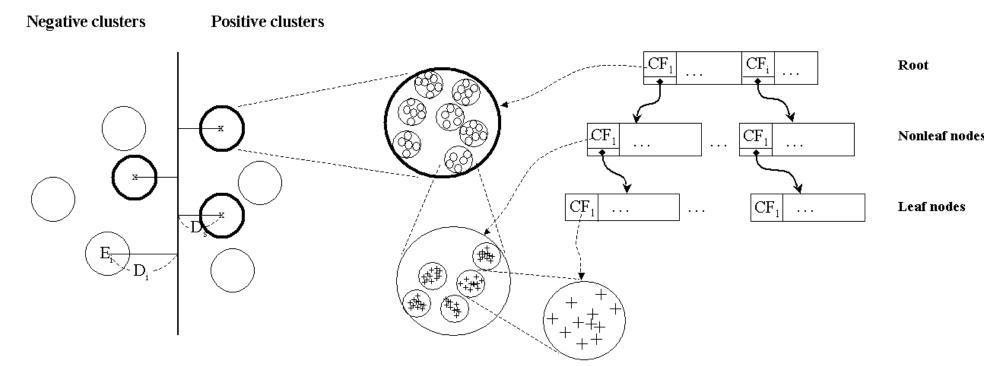
SVM for Linearly Inseparable Data

Using the updated constraint, our objective becomes

 $\begin{aligned} \arg\min_{\substack{w,b}\\ w,b} & \|w\|^2 + C\sum \xi_i \\ \text{s.t.} & y_i(w^T x_i + b) \ge 1 - \xi_i, \\ & \xi_i \ge 0, \qquad \qquad i = 1, 2, ..., n \end{aligned}$

- □ C > 0 controls the trade-off between the slack variable penalty and the margin
- □ Limit C $\rightarrow \infty$, we will recover the earlier support vector machine for separable data.
- □ This is the widely used *soft-margin SVM*

Scaling SVM by Hierarchical Micro-Clustering

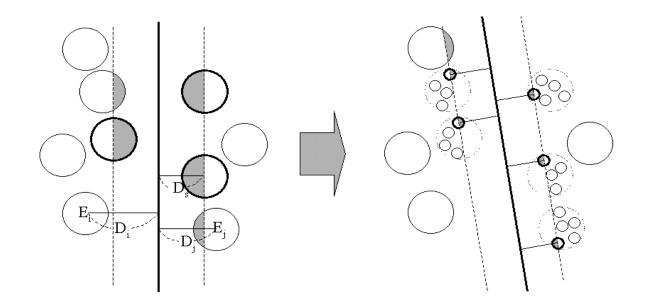


- Construct two CF-trees (i.e., statistical summary of the data) from positive and negative data sets independently (with one scan of the data set)
- Micro-clustering: Hierarchical indexing structure
 - Provide finer samples closer to the boundary and coarser samples farther from the boundary

Selective Declustering: Ensure High Accuracy

De-cluster only the cluster E_i such that

- □ D_i R_i < D_s, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
- Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - □ "Support cluster": The cluster whose centroid is a support vector



Accuracy and Scalability on Synthetic Dataset

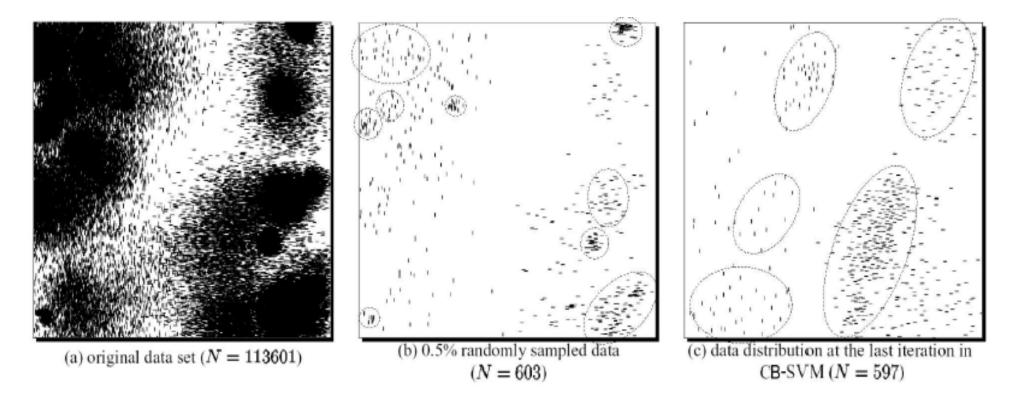


Figure 6: Synthetic data set in a two-dimensional space. (]': positive data; '-': negative data

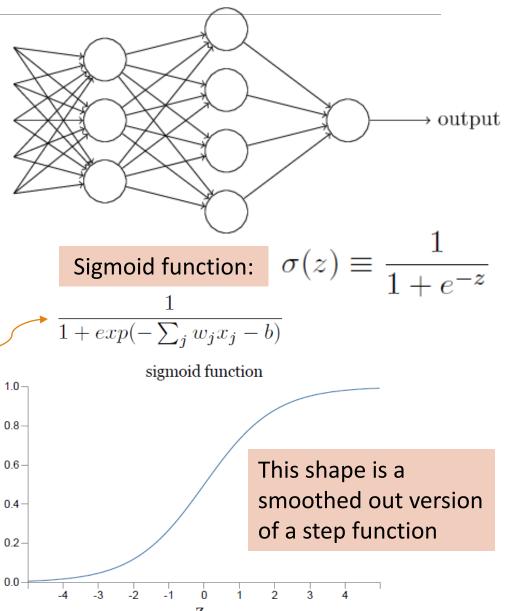
Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

Sigmoid Neurons

- A many-layer network of perceptrons can engage in sophisticated decision making
- Instead of assigning weights of the edges by a ^{inputs} person, we can devise *learning algorithms* that can automatically tune the weights and biases of a network of artificial neurons
- □ Use sigmoid neuron instead of perceptron: Output is not 0/1 but a sigmoid function: $\sigma(w \bullet x + b)$, i.e.,
- The smoothness of σ means that small changes in the Δw_j weights and in the Δb bias will produce a small change Δ_{output} in the output from the neuron

$$\Delta \mathrm{output} pprox \sum_j rac{\partial \, \mathrm{output}}{\partial w_j} \Delta w_j + rac{\partial \, \mathrm{output}}{\partial b} \Delta b$$

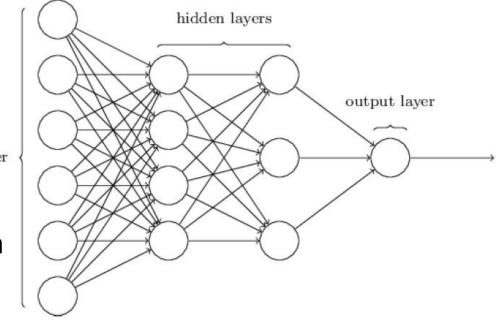
i.e., Δ_{output} is a *linear function* of the changes Δw_j and Δb



Architecture of a (Feed-Forward) Neural Network (NN)

Input layer

- The inputs to NN correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
 input layer
- Hidden layer(s)
 - Inputs are weighted and fed simultaneously to a hidden layer
 - The number of hidden layers is arbitrary
- Output layer
 - The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction



Neural Network Architecture: Feed-Forward vs. Recurrent

- **Feed-Forward Neural Network:** Typical neural network architecture
 - □ The output from one layer is used as input to the next layer (no loops)
 - Information is always fed forward, never fed back
 - □ From a statistical point of view, networks perform **nonlinear regression**
 - Given enough hidden units and enough training samples, they can closely approximate any function
- **Recurrent neural network**: Feedback loops are possible (cascade of neurons firing)
 - Some neurons fire for some limited duration of time, before becoming quiescent
 - That firing can stimulate other neurons, which may fire a little while later, also for a limited duration, which causes still more neurons to fire, and so on
 - Loops do not cause problems since a neuron's output only affects its input at some later time, not instantaneously

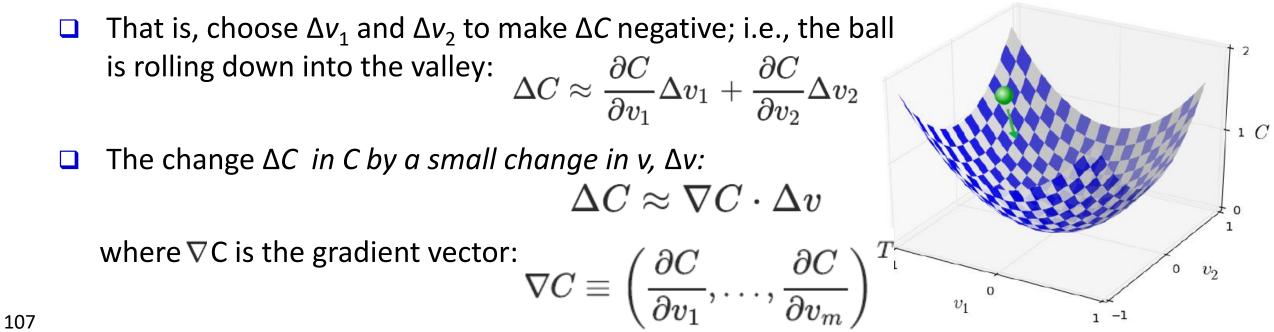
Learning with Gradient Descent

A quadratic cost (objective) function C (or mean square error, MSE)

$$C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2$$

where w: the collection of all weights in the network, b: all the biases, n: the total # of training inputs, a: the vector of outputs from the network when x is input

Goal of training a network: Find weights and biases which minimize the cost *C*(*w*, *b*)



Stochastic Gradient Descent

- Gradient descent can be viewed as a way of taking small steps in the direction which does the most to immediately decrease C
- □ To compute gradient ∇C, we need to compute the gradients ∇C_x separately for each training input, x, and then average them: slow when the # of training inputs is large
- Stochastic gradient descent (SGD): Speed up learning
 - Computing for a small sample of randomly chosen training inputs and *averaging* over them, we can quickly get a good estimate of the true gradient
 - □ Method: Randomly pick out a small number (*mini-batch*) *m* of randomly chosen training inputs. Provided the sample size is large enough, we expect that the average value will be roughly equal to the average over all, that is, $\nabla C \approx \frac{1}{m} \sum_{i=1}^{m} \nabla C_{X_i}$
- Stochastic gradient descent in neural networks:
 - Pick out a randomly chosen minibatch of training inputs and train with them; then pick out another minibatch, until inputs exhausted—complete an *epoch* of training
- Then we start over with a new training epoch

108

Backpropagation for Fast Gradient Computation

- Backpropagation: Reset weights on the "front" neural units and this is sometimes done in combination with training where the correct result is known
- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value

hidden layers

input laver

output layer

- Modifications are made in the "backwards" direction
 - From the output layer, through each hidden layer
 back to the first hidden layer, hence "backpropagation"
- Steps

109

- Initialize weights to small random numbers, associated with biases
- Propagate the inputs forward (by applying activation function)
- Backpropagate the error (by updating weights and biases)
- Terminating condition (when error is very small, etc.)

More on Backpropagation

- With backpropagation, we distribute the "blame" backward through the network
 - Each hidden node sending input to the current node is somewhat "responsible" for some portion of the error in each neuron to which it has forward connection
- Local minima and backpropagation
 - Backpropagation can be stuck at local minima
 - But in practice it generally performs well
- □ Is backpropagation too slow?
 - □ Historically, backpropagation has been considered slow
 - Recent advances in computer power through parallelism and GPUs (graphics processing units) have reduced time substantially for training neural networks

From Neural Networks to Deep Learning

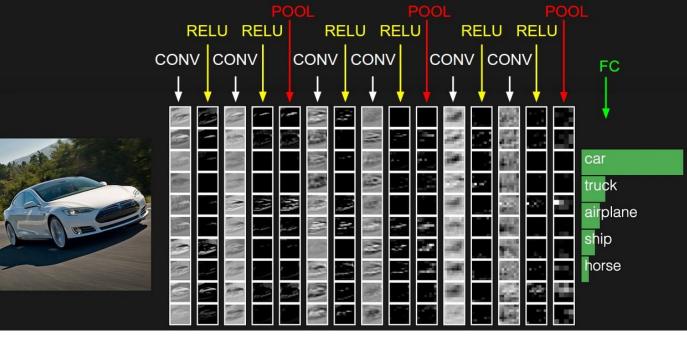
- Train networks with many layers (vs. shallow nets with just a couple of layers)
 - More neurons than previous networks
 - More complex ways to connect layers
 - Tremendous computing power to train networks
 - Automatic feature extraction
- Multiple layers work to build an improved feature space
 - Analogy: Signals passing through regions of the visual cortex
 - **\Box** Example: For face recognition: edge \rightarrow nose \rightarrow face, layer-by-layer
- Popular Deep Learning Frameworks for Classification
 - Deep Feedforward Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Deep (Feed Forward) Neural Networks

- □ How multiple layers work to build an improved feature space?
 - □ First layer learns 1st order features (e.g., edges, ...)
 - 2nd layer learns higher order features (combinations of first layer features, combinations of edges, etc.)
 - In Deep Belief Networks (DBNs), layers often learn in an unsupervised mode and discover general features of the input space—serving multiple tasks related to the unsupervised instances (image recognition, etc.)
 - Then final layer features are fed into supervised layer(s)
 - And entire network is often subsequently tuned using supervised training of the entire net, using the initial weightings learned in the unsupervised phase
 - Could also do fully supervised versions (back-propagation)

Convolutional Neural Networks: General Architecture

- Learn high-order features in the data via convolutions
 - □ Well suited to object recognition with images (e.g., computer vision)
 - Build position- and (somewhat) rotation-invariant features from raw image data
- CNN leverages learnable visual filters and globally shared local features
 - □ Specifics: high dimensional, 2D topology of pixels, invariance to translations, etc.
- High-level general CNN architecture
 - Input layer
 - Feature-extraction layers
 (Convolution—ReLU—Pool)
 - Classification layers
- CNN properties
 - Local connectivity
 - Parameter sharing
- ¹¹³ **U** Subsampling



ReLU: Rectified Linear Unit

Convolutional Neural Networks: Local Connectivity

Local Connectivity

- Receptive fields: Each hidden unit is connected only to a sub-region of the image
 - Manageable number of parameters
 - Efficient computation of pre-activation
- Spatial arrangements
 - Depth: Number of filters
 - □ Stride: how to slide the filter
 - Zero-padding: deal with the border

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

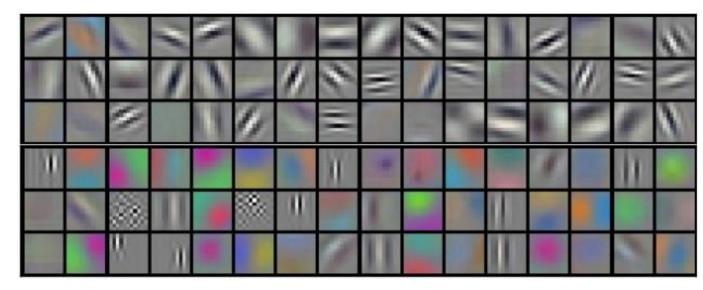
Convolutional Neural Networks: Parameter Sharing

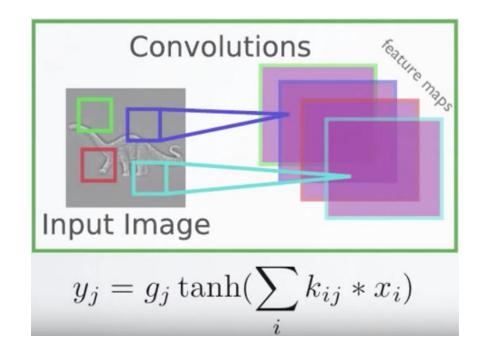
Parameter sharing

Discrete convolution: share matrix of parameters across certain units

Reduces even more the number of parameters

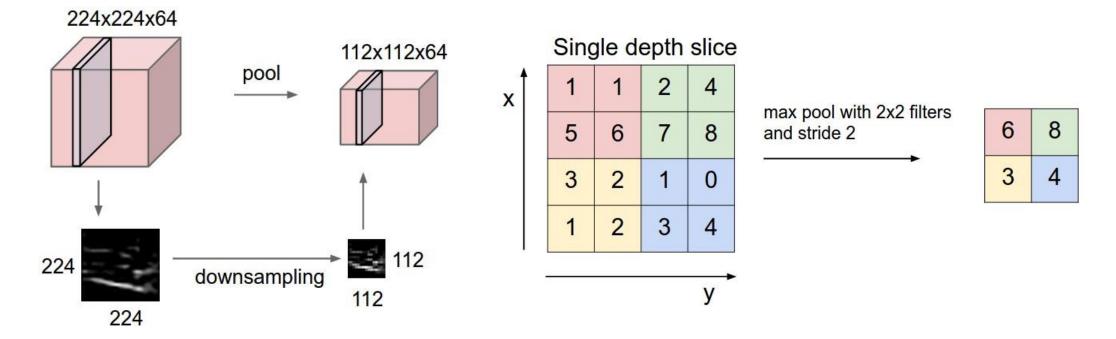
Extract the same feature at every position





Convolutional Neural Networks: Subsampling

- Subsampling
 - Pooling: pool hidden units in the same neighborhood
 - Introduces invariance to local translations
 - Reduces the number of hidden units in hidden layer



Recurrent Neural Networks: General Concepts

- Modeling the time dimension: by creating cycles in the network (thus "recurrent")
 - Adding feedback loops connected to past decisions
 - □ Long-term dependencies: Use hidden states to preserve sequential information
- RNNs are trained to generate sequences: Output at each timestamp is based on both the current input and the inputs at all previous timestamps

 $\mathbf{h}_{t} = \phi \left(W \mathbf{x}_{t} + U \mathbf{h}_{t-1} \right),$

Compute a gradient with the algorithm BPTT (backpropagation through time)

Major obstacles of RNN: Vanishing and Exploding Gradients

- When the gradient becomes too large or too small, it is difficult to model longrange dependencies (10 timestamps or more)
- Solution: Use a variant of RNN: LSTM (1997, by Hochreiter and Schmidthuber)

LSTM: One Variant of Recurrent Neural Network

- Critical components of LSTM
 - Memory cells
 - 3 Gates (input, forget, output)
- Use gated cells to

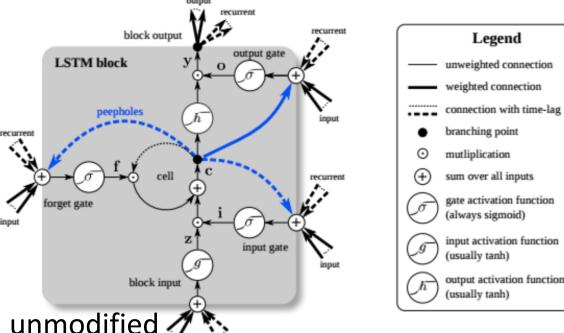
118

- Write, store, forget information
- When both gates are closed
 - The contents of the memory cell will remain unmodified
- □ The gating structure allows information to be retained across many timestamps

SRN

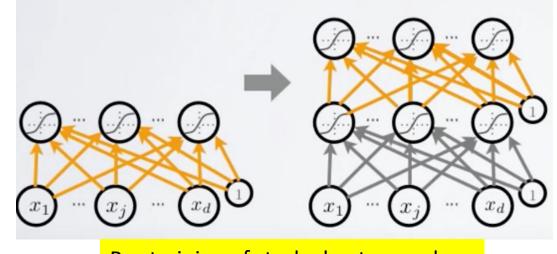
unit

- Also allows gradient to flow across many timestampls
- By back-propagating errors and adjusting weights, to learn what to store, and when to allow reads, writes and erasures
- Applications: Handling sequence and time series data
 - E.g., NLP, video analysis, image captioning, robotics control



Difficulties of Training and Improvements

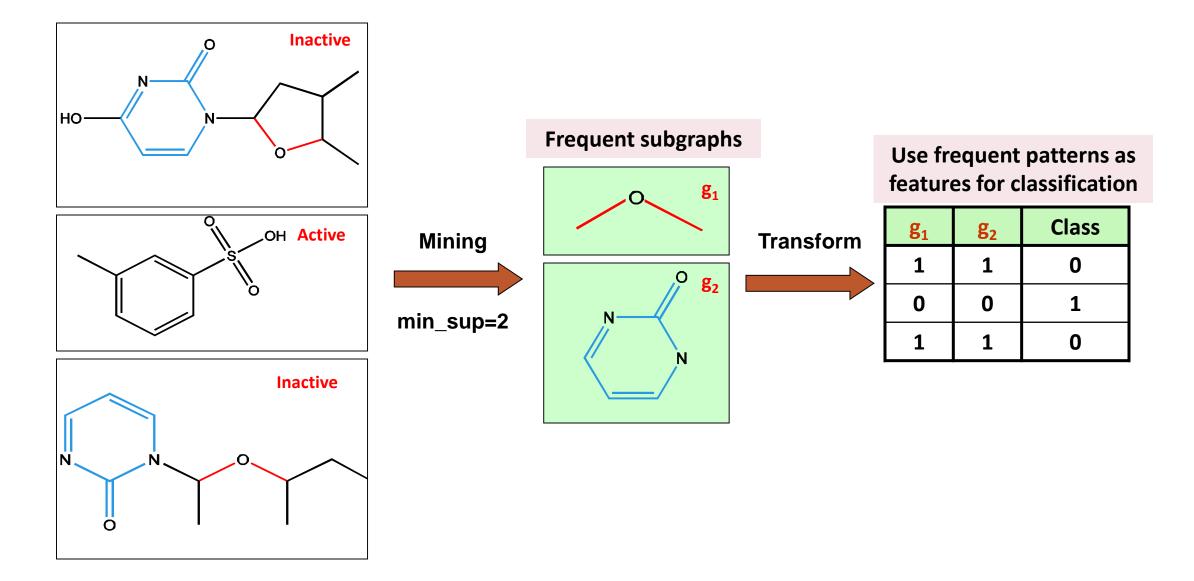
- Vanishing gradient problem: Saturated units block gradient propagation
 - Need better optimization (than SGD)
- Overfitting: high variance/low bias situation
 - Better regularization (than L1, L2 norm)
 - Unsupervised pre-training
 - Statistical dropout
 - Other popular approaches



Pre-training of stacked autoencoders

Batch normalization, residual networks, highway networks, attention, etc.

Pattern-Based Classification on Graphs

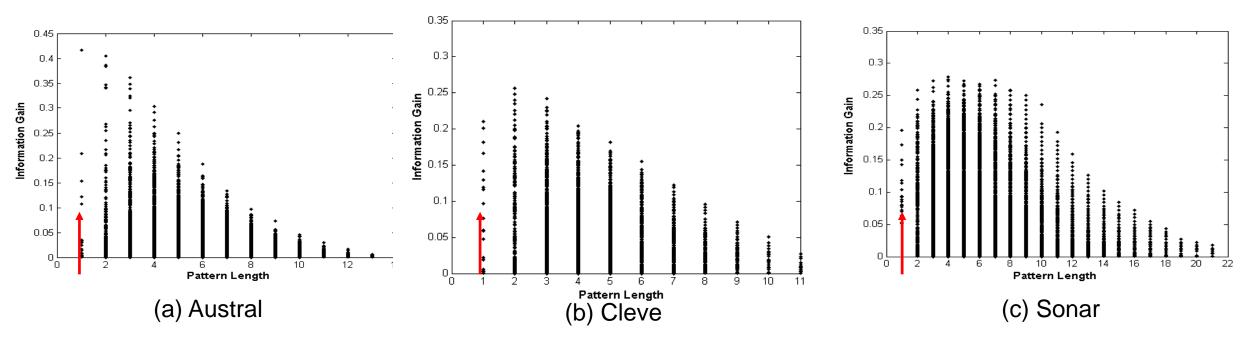


Discriminative Pattern-Based Classification

- Discriminative patterns as features for classification [Cheng et al., ICDE'07]
- Principle: Mining discriminative frequent patterns as high-quality features and then apply any classifier
- **Framework (PatClass)**
 - □ Feature construction by *frequent itemset mining*
 - □ Feature selection (e.g., using Maximal Marginal Relevance (MMR))
 - Select discriminative features (i.e., that are relevant but minimally similar to the previously selected ones)
 - Remove redundant or closely correlated features
 - Model learning
 - Apply a general classifier, such as SVM or C4.5, to build a classification model

On the Power of Discriminative Patterns

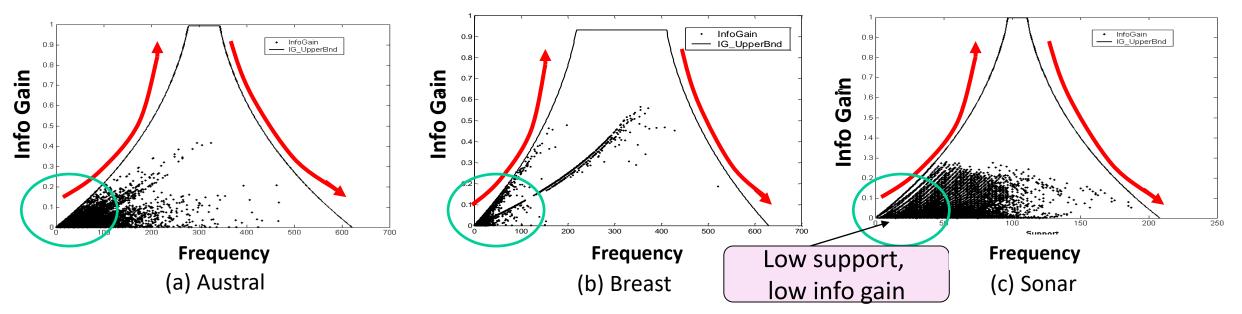
- K-itemsets are often more informative than single features (1-itemsets) in classification
- Computation on real datasets shows: The discriminative power of k-itemsets (for k > 1 but often ≤ 10) is higher than that of single features



Information Gain vs. Pattern Length

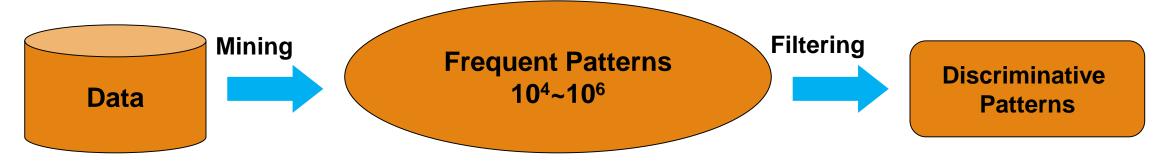
Information Gain vs. Pattern Frequency

- Computation on real datasets shows: Pattern frequency (but not too frequent) is strongly tied with the discriminative power (information gain)
- □ Information gain upper bound monotonically increases with pattern frequency

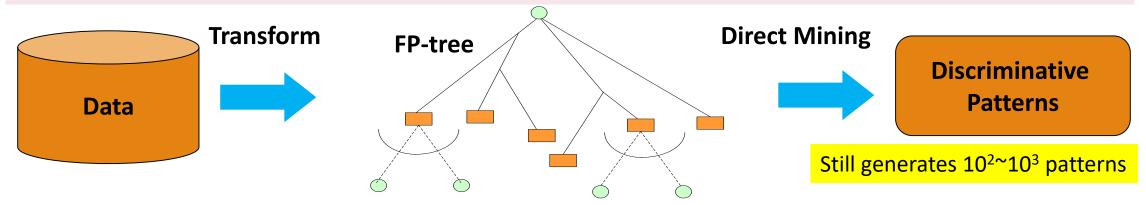


Mining Concise Set of Discriminative Patterns

Frequent pattern mining, then getting discriminative patterns: Expensive, large model

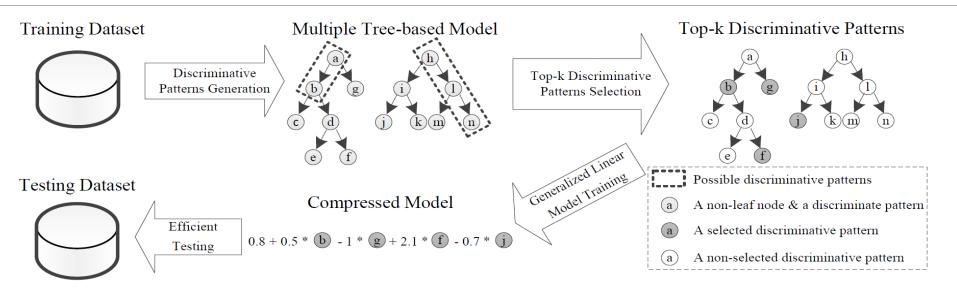


DDPMine [Cheng et al., ICDE'08]: Direct mining of discriminative patterns: Efficient



DPClass [Shang et al, SDM'16]: A better solution—Efficient, effective, and generating a very limited number of (such as only 20 or so) patterns

DPClass: Discriminative Pattern-based Classification



Input: A feature table for training data

- □ Adopt every prefix path in an (extremely) random forest as a candidate pattern
 - □ The split points of continuous variables are automatically chosen by random forest → No discretization!
- Run top-k (e.g., top-20) pattern selection based on training data
- Train a generalized linear model (e.g., logistic regression) based on "bag-of-patterns" representations of training data

Explanatory Discriminative Patterns: Generation

Example: For each patient, we have several uniformly sampled features as follows

Features	Age	Gender	Lab Test 1 (LT1)	Lab Test 2(LT2)
Values	Positive Integers	Male or Female	А, В, О, АВ	Real value in [0, 1]

The positive label of the hypo-disease will be given when at least one of the following rules holds

Features	Age	Gender	Lab Test 1 (LT1)	Lab Test 2(LT2)
Rule 1	> 18	Male	AB	>= 0.6
Rule 2	> 18	Female	0	>= 0.5
Rule 3	<= 18			>= 0.9

- **Training:** 10^5 random patients + 0.1% noise
- Flip the binary labels with 0.1% probability
- Testing: 5×10^4 random patients in test

Explanatory Discriminative Patterns: Evaluation

Ground Truth:	Features	Age	Gender	Lab Test 1 (LT1)	Lab Test 2(LT2)
	Rule 1	> 18	Male	AB	>= 0.6
	Rule 2	> 18	Female	0	>= 0.5
	Rule 3	<= 18			>= 0.9

Top-3 Discriminative Patterns for each model:

DPClass (perfect):

- □ (age > 18) and (gender = Female) and (LT1 = O) and (LT2 \ge 0.496)
- □ (age \leq 18) and (LT2 \geq 0.900)
- □ (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 \ge 0.601)
- DDPMine (poor):
 - □ (LT2 > 0.8)
 - □ (gender = Male) and (LT1 = AB) and (LT2 \ge 0.6) and (LT2 < 0.8)
 - □ (gender = Female) and (LT1 = O) and (LT2 \ge 0.6) and (LT2 < 0.8)

A Comparison on Classification Accuracy

- DPClass: Discriminative & frequent at the same time, then select top-k
- Two methods on pattern selection
 - **Given Service Action** Forward vs. LASSO
- In comparison with
 DDPMine and Random
 Forest, DPClass maintains
 high accuracy

	Dataset	DPClass (Forward)	DPClass (LASSO)	DDPMine	Random Forest
low- dimensional data	adult	85.66%	84.33%	83.42%	85.45%
	hypo	99.58%	99.28%	92.69%	97.22%
	sick	98.35%	98.87%	93.82%	94.03%
	crx	89.35%	87.96%	87.96%	89.35%
	sonar	85.29%	83.82%	73.53%	83.82%
	chess	92.25%	92.05%	90.04%	94.22%
high- dimensional data	namao	97.17%	96.94%	96.83%	97.86%
	musk	95.92%	95.71%	93.29%	96.60%
	madelon	74.50%	76.00%	59.84%	56.50%