

CS 412 Intro. to Data Mining Chapter 10. Cluster Analysis: Basic Concepts and Methods

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Spectral Clustering
- Evaluation of Clustering
- Summary

Cluster Analysis: An Introduction

What Is Cluster Analysis?

3

- Applications of Cluster Analysis
- Cluster Analysis: Requirements and Challenges
- Cluster Analysis: A Multi-Dimensional Categorization
- An Overview of Typical Clustering Methodologies
- An Overview of Clustering Different Types of Data
- An Overview of User Insights and Clustering

What Is Cluster Analysis?

What is a cluster?

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters) which are as similar as possible
- Cluster analysis is **unsupervised learning** (i.e., no predefined classes)
 - This contrasts with classification (i.e., supervised learning)
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - As a preprocessing (or intermediate) step for other algorithms

What Is Good Clustering?

- A good clustering method will produce high quality clusters which should have
 - □ High intra-class similarity: Cohesive within clusters
 - **Low inter-class similarity:** Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- □ There exist many similarity measures and/or functions for different applications
- Similarity measure is critical for cluster analysis

Cluster Analysis: Applications

- A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification, pattern discovery, hypothesis generation and testing, etc.
 - Outlier detection: Outliers—those "far away" from any cluster
- Data summarization, compression, and reduction
 - Ex. Image processing: Vector quantization
- Collaborative filtering, recommendation systems, or customer segmentation
 - **G** Find like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns
- Multimedia data analysis, biological data analysis and social network analysis
 - Ex. Clustering images or video/audio clips, gene/protein sequences, etc.

Considerations for Cluster Analysis

Partitioning criteria

Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable, e.g., grouping topical terms)

Separation of clusters

Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)

Similarity measure

Distance-based (e.g., Euclidean, road network, vector) vs. connectivitybased (e.g., density or contiguity)

Clustering space

 Full space (often when low dimensional) vs. subspaces (often in highdimensional clustering)

Requirements and Challenges

Quality

- Ability to deal with different types of attributes: Numerical, categorical, text, multimedia, networks, and mixture of multiple types
- Discovery of clusters with arbitrary shape
- Ability to deal with noisy data

Scalability

- Clustering all the data instead of only on samples
- High dimensionality
- Incremental or stream clustering and insensitivity to input order
- Constraint-based clustering
 - User-given preferences or constraints; domain knowledge; user queries
- Interpretability and usability
 - □ The final generated clusters should be semantically meaningful and useful

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Spectral Clustering
- Evaluation of Clustering
- Summary

Partitioning-Based Clustering Methods

- Basic Concepts of Partitioning Algorithms
- □ The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians and K-Modes Clustering Methods
- The Kernel K-Means Clustering Method

Partitioning Algorithms: Basic Concepts

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_k is the centroid or medoid of cluster C_k)
 - □ A typical objective function: Sum of Squared Errors (SSE)

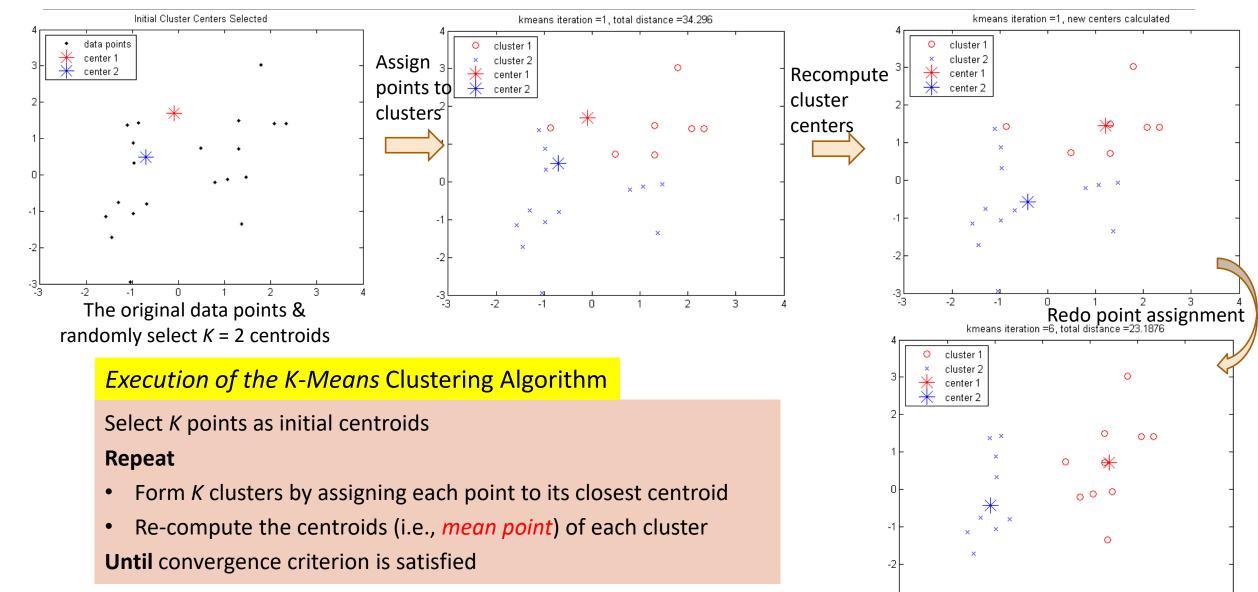
$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

- Problem definition: Given K, find a partition of K clusters that optimizes the chosen partitioning criterion
 - Global optimal: Needs to exhaustively enumerate all partitions
 - □ Heuristic methods (i.e., greedy algorithms): *K-Means*, *K-Medians*, *K-Medoids*, etc.

The K-Means Clustering Method

- K-Means (MacQueen'67, Lloyd'57/'82)
 - Each cluster is represented by the center of the cluster
- Given K, the number of clusters, the *K*-*Means* clustering algorithm is outlined as follows
 - Select *K* points as initial centroids
 - Repeat
 - □ Form *K* clusters by assigning each point to its closest centroid
 - Re-compute the centroids (i.e., *mean point*) of each cluster
 - **Until** convergence criterion is satisfied
- Different kinds of measures can be used
 - Manhattan distance (L₁ norm), Euclidean distance (L₂ norm), Cosine similarity

Example: *K-Means* Clustering



-2

-1

0

2

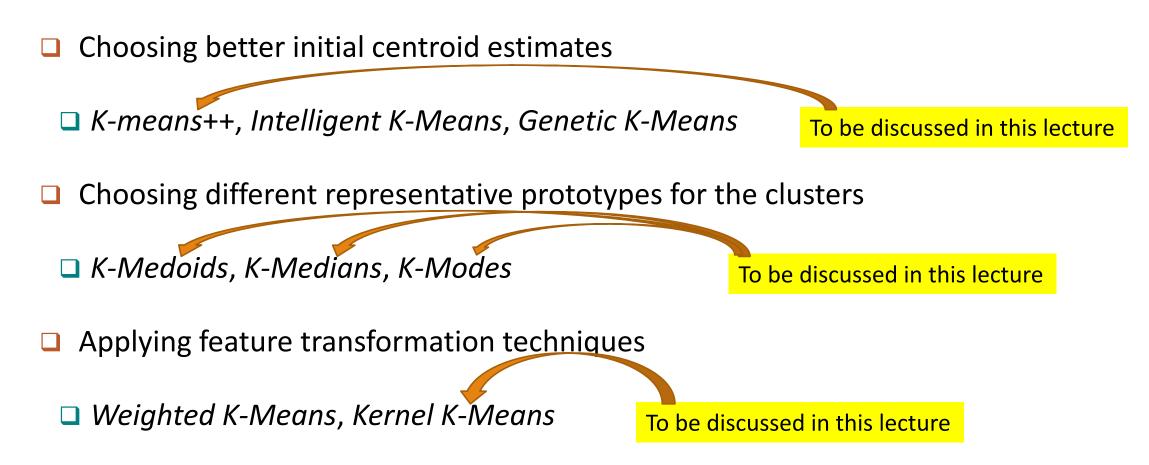
3

Discussion on the K-Means Method

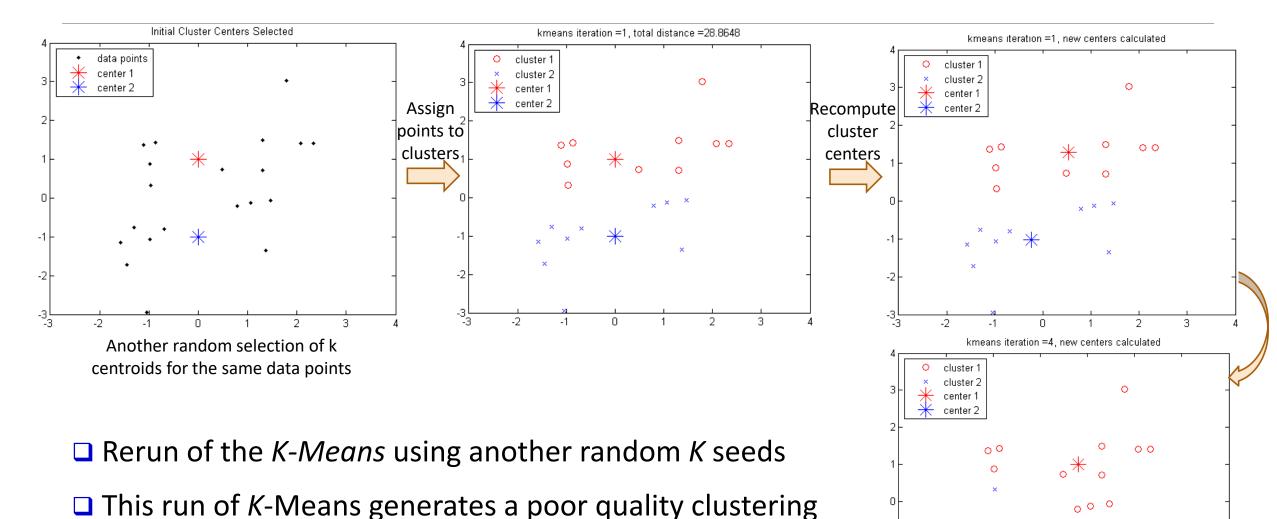
- **Efficiency**: *O*(*tKn*) where *n*: # of objects, *K*: # of clusters, and *t*: # of iterations
 - Normally, K, t << n; thus, an efficient method</p>
- K-means clustering often terminates at a local optimal
 - Initialization can be important to find high-quality clusters
- □ Need to specify K, the number of clusters, in advance
 - □ There are ways to automatically determine the "best" K
 - In practice, one often runs a range of values and selected the "best" K value
- Sensitive to noisy data and *outliers*
 - Variations: Using K-medians, K-medoids, etc.
- □ K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for *categorical data*
- Not suitable to discover clusters with *non-convex shapes*
 - Using density-based clustering, kernel K-means, etc.

Variations of *K-Means*

□ There are many variants of the *K*-*Means* method, varying in different aspects



Poor Initialization in K-Means May Lead to Poor Clustering



-1

-2

-2

-1

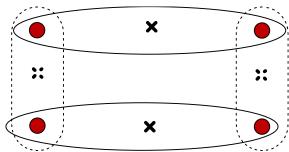
Π

2

3

Initialization of K-Means: Problem and Solution

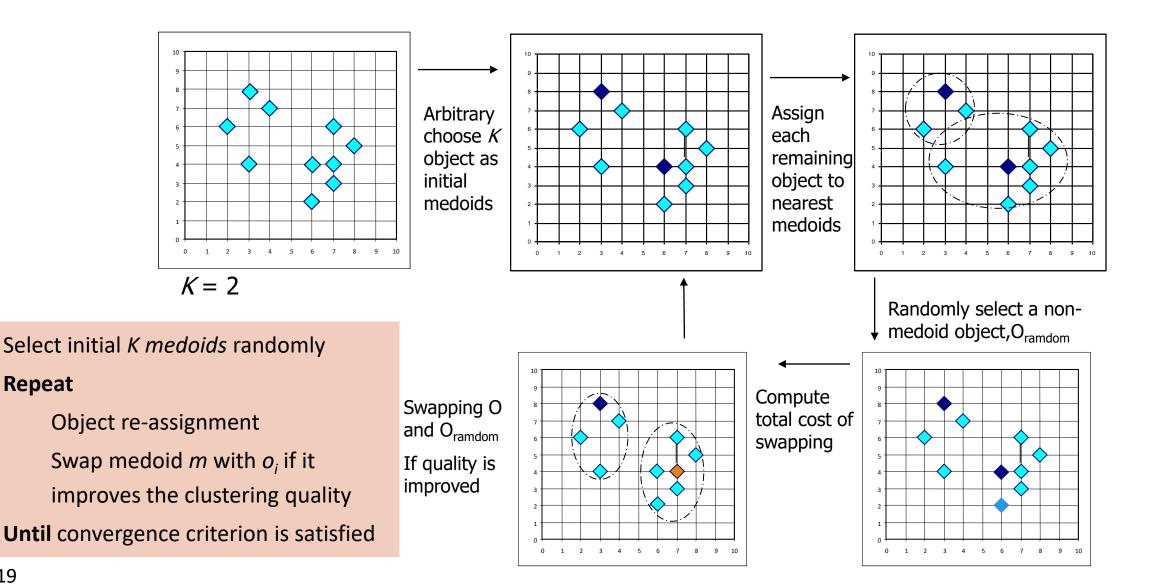
- Different initializations may generate rather different clustering results (some could be far from optimal)
- □ Original proposal (MacQueen'67): Select *K* seeds randomly
 - Need to run the algorithm multiple times using different seeds
- □ There are many methods proposed for better initialization of *k* seeds
 - **K-Means++** (Arthur & Vassilvitskii'07):
 - The first centroid is selected at random
 - The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
 - □ The selection continues until *K* centroids are obtained



Handling Outliers: From K-Means to K-Medoids

- □ The *K*-Means algorithm is sensitive to outliers!—since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
- □ The *K*-*Medoids* clustering algorithm:
 - Select *K* points as the initial representative objects (i.e., as initial *K medoids*)
 - Repeat
 - Assigning each point to the cluster with the closest medoid
 - \Box Randomly select a non-representative object o_i
 - Compute the total cost *S* of swapping the medoid *m* with *o_i*
 - If S < 0, then swap *m* with o_i to form the new set of medoids
 - Until convergence criterion is satisfied

PAM: A Typical *K-Medoids* Algorithm



Discussion on *K-Medoids* **Clustering**

- □ *K-Medoids* Clustering: Find *representative* objects (<u>medoids</u>) in clusters
- □ *PAM* (Partitioning Around Medoids: Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids, and
 - Iteratively replaces one of the medoids by one of the non-medoids if it improves the total sum of the squared errors (SSE) of the resulting clustering
 - PAM works effectively for small data sets but does not scale well for large data sets (due to the computational complexity)
 - □ Computational complexity: PAM: O(K(n K)²) (quite expensive!)
- **Efficiency improvements on PAM**
 - CLARA (Kaufmann & Rousseeuw, 1990):
 - **PAM** on samples; $O(Ks^2 + K(n K))$, s is the sample size
 - CLARANS (Ng & Han, 1994): Randomized re-sampling, ensuring efficiency + quality

K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
 - Think of the median salary vs. mean salary of a large firm when adding a few top executives!
- K-Medians: Instead of taking the mean value of the object in a cluster as a reference point, medians are used (L₁-norm as the distance measure)
- The criterion function for the *K-Medians* algorithm:

$$S = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} \mid x_{ij} - med_{kj} \mid$$

- □ The *K*-*Medians* clustering algorithm:
 - Select *K* points as the initial representative objects (i.e., as initial *K medians*)
 - Repeat
 - Assign every point to its nearest median
 - Re-compute the median using the median of each individual feature
 - Until convergence criterion is satisfied

K-Modes: Clustering Categorical Data

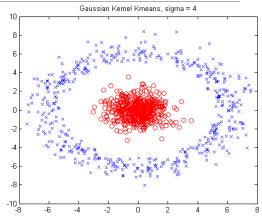
- □ *K-Means* cannot handle non-numerical (categorical) data
 - □ Mapping categorical value to 1/0 cannot generate quality clusters
- □ *K-Modes*: An extension to *K-Means* by replacing means of clusters with *modes*
 - Mode: The value that appears most often in a set of data values
- Dissimilarity measure between object X and the center of a cluster Z

$$\Box \quad \Phi(x_j, z_j) = 1 - n_j^r / n_j \text{ when } x_j = z_j \text{ ; 1 when } x_j \neq z_j$$

- where z_j is the categorical value of attribute j in Z_l, n_l is the number of objects in cluster l, and n_i^r is the number of objects whose attribute value is r
- □ This dissimilarity measure (distance function) is **frequency-based**
- □ Algorithm is still based on iterative *object cluster assignment* and *centroid update*
- A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership value for each object to each cluster
- □ A mixture of categorical and numerical data: Using a *K-Prototype* method

Kernel K-Means Clustering

- Kernel K-Means can be used to detect non-convex clusters
 - A region is convex if it contains all the line segments connecting any pair of its points. Otherwise, it is concave
 - □ *K-Means* can only detect clusters that are linearly separable
- Idea: Project data onto the high-dimensional kernel space, and then perform K-Means clustering
 - Map data points in the input space onto a high-dimensional feature space using the kernel function
 - Perform *K*-*Means* on the mapped feature space
- Computational complexity is higher than K-Means
 - Need to compute and store n x n kernel matrix generated from the kernel function on the original data, where n is the number of points
- Spectral clustering can be considered as a variant of <u>Kernel K-Means</u> clustering



Kernel Functions and Kernel K-Means Clustering

- **Typical kernel functions:**
 - □ Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$
 - Gaussian radial basis function (RBF) kernel: $K(X_i, X_j) = e^{-||X_i X_j||^2/2\sigma^2}$
 - Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j \delta)$
- □ The formula for kernel matrix K for any two points x_i , $x_j \in C_k$ is $K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$
- □ The SSE criterion of *kernel K-means*:
- $SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} || \phi(x_i) c_k ||^2$
 - □ The formula for the cluster centroid:

$$c_k = \frac{\sum_{x_{i \in C_k}} \phi(x_i)}{|C_k|}$$

Clustering can be performed without the actual individual projections φ(x_i) and φ(x_i) for the data points x_i, x_i ∈ C_k

Example: Kernel Functions and Kernel K-Means Clustering

- Gaussian radial basis function (RBF) kernel: $K(X_i, X_j) = e^{-||X_i X_j||^2/2\sigma^2}$
- Suppose there are 5 original 2-dimensional points:

$$\square \quad x_1(0, 0), x_2(4, 4), x_3(-4, 4), x_4(-4, -4), x_5(4, -4)$$

If we set σ to 4, we will have the following points in the kernel space

D E.g.,
$$||x_1 - x_2||^2 = (0 - 4)^2 + (0 - 4)^2 = 32$$
, thus, $K(x_1, x_2) = e^{-\frac{32}{2 \cdot 4^2}} = e^{-1}$

Original Space			RBF Kernel Space ($\sigma = 4$)				
	x		$K(x_i, x_1)$	$K(x_i, x_2)$	$K(x_i, x_3)$	$K(x_i, x_4)$	$K(x_i, x_5)$
<i>x</i> ₁	0	0	0	$e^{-\frac{4^2+4^2}{2\cdot 4^2}} = e^{-1}$	e^{-1}	e^{-1}	e^{-1}
<i>x</i> ₂	4	4	e^{-1}	0	e^{-2}	e^{-4}	e^{-2}
X 3	-4	4	e^{-1}	e^{-2}	0	e^{-2}	e^{-4}
<i>x</i> ₄	-4		e^{-1}	e^{-4}	e^{-2}	0	e^{-2}
<i>X</i> ₅	4	-4	e^{-1}	e^{-2}	e^{-4}	e^{-2}	0

Kernel k-means

Minimize sum of squared error:

Kernel k-means: mi

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij} \| x_i + c_j \|^2$$

$$\lim \sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij} \| \varphi(x_i) - \widetilde{c}_j \|^2$$

$$u_{ij} \in \{0,1\}$$

$$\sum_{j=1}^{m} u_{ij} = 1$$

www.cse.msu.edu/~cse802/Kernel k-means&Spectral_Clustering.pptx

Kernel k-means

• Cluster centers:

$$\widetilde{c}_j = \frac{1}{n_j} \sum_{i=1}^n u_{ij} \phi(x_i)$$

• Substitute for centers:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij} \left\| \phi(x_i) - \widetilde{c}_j \right\|^2$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij} \left\| \phi(x_i) - \frac{1}{n_j} \sum_{l=1}^{n} u_{lj} \phi(x_l) \right\|^2$$

www.cse.msu.edu/~cse802/Kernel k-means&Spectral_Clustering.pptx

Kernel k-means

• Use kernel trick:

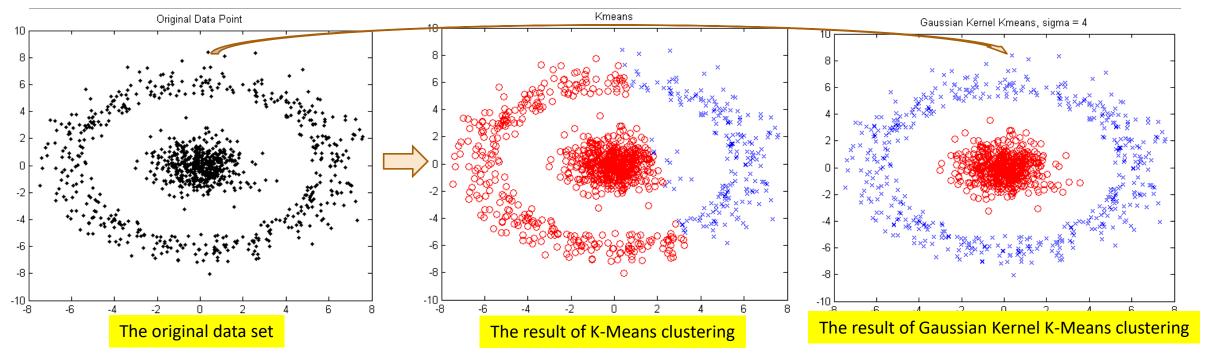
$$\sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij} \left\| \phi(x_i) - \widetilde{c}_j \right\|^2 = trace(K) - trace(UKU')$$

• Optimization problem:

min
$$trace(K) - trace(UKU') \approx \max trace(UKU')$$

• K is the n x n kernel matrix, U is the optimal normalized cluster membership matrix

Example: Kernel K-Means Clustering



- The above data set cannot generate quality clusters by K-Means since it contains non-convex clusters
- □ Gaussian RBF Kernel transformation maps data to a kernel matrix K for any two points $\mathbf{x}_i, \mathbf{x}_j$: $K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$ and Gaussian kernel: $K(\mathbf{X}_i, \mathbf{X}_j) = e^{-||X_i - X_j||^2/2\sigma^2}$

□ K-Means clustering is conducted on the mapped data, generating quality clusters

Chapter 10. Cluster Analysis: Basic Concepts and Methods

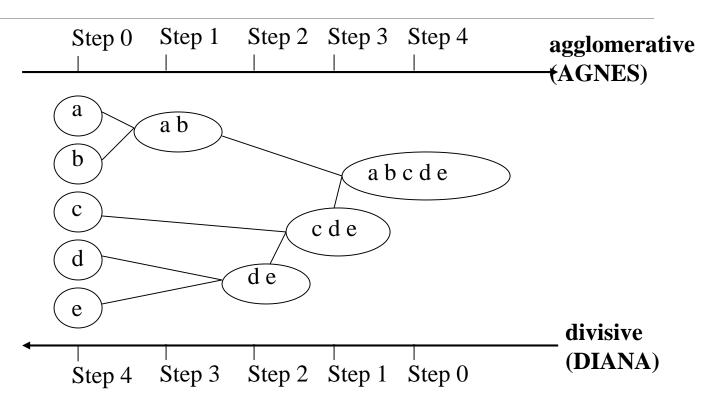
- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Spectral Clustering
- Evaluation of Clustering
- Summary

Hierarchical Clustering Methods

- Basic Concepts of Hierarchical Algorithms
- Agglomerative Clustering Algorithms
- Divisive Clustering Algorithms
- Extensions to Hierarchical Clustering

Hierarchical Clustering: Basic Concepts

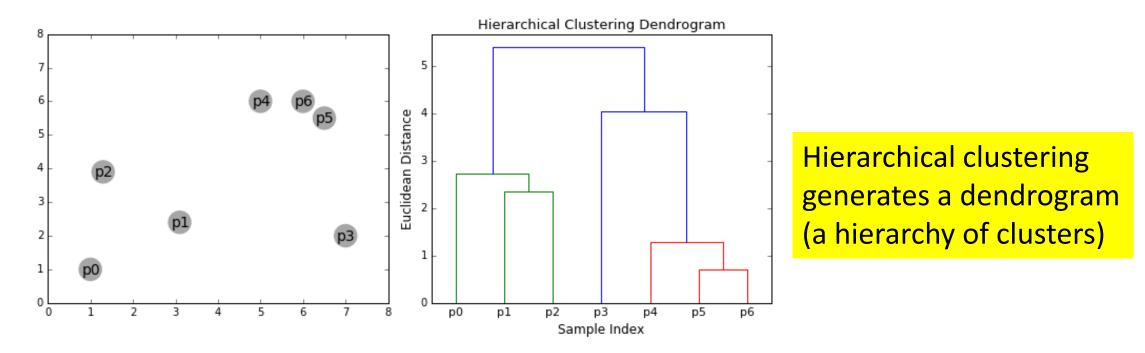
- Hierarchical clustering
 - Generate a clustering hierarchy (drawn as a **dendrogram**)
 - Not required to specify K, the number of clusters
 - More deterministic
 - No iterative refinement
- Two categories of algorithms:



- Agglomerative: Start with singleton clusters, continuously merge two clusters at a time to build a bottom-up hierarchy of clusters
- Divisive: Start with a huge macro-cluster, split it continuously into two groups, generating a top-down hierarchy of clusters

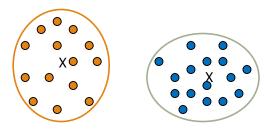
Dendrogram: Shows How Clusters are Merged

- Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level nested partitioning
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster



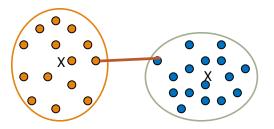
Agglomerative Clustering Algorithm

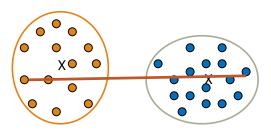
- □ AGNES (AGglomerative NESting) (Kaufmann and Rousseeuw, 1990)
 - Use the **single-link** method and the dissimilarity matrix
 - Continuously merge nodes that have the least dissimilarity
 - Eventually all nodes belong to the same cluster
- Agglomerative clustering varies on different similarity measures among clusters
 Single link (nearest neighbor)
 Average link (group average)
 Complete link (diameter)
 Centroid link (centroid similarity)



Single Link vs. Complete Link in Hierarchical Clustering

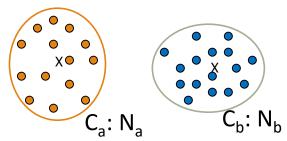
- □ Single link (nearest neighbor)
 - The similarity between two clusters is the similarity between their most similar (nearest neighbor) members
 - Local similarity-based: Emphasizing more on close regions, ignoring the overall structure of the cluster
 - Capable of clustering non-elliptical shaped group of objects
 - Sensitive to noise and outliers
- Complete link (diameter)
 - The similarity between two clusters is the similarity between their most dissimilar members
 - Merge two clusters to form one with the smallest diameter
 - Nonlocal in behavior, obtaining compact shaped clusters
 - Sensitive to outliers

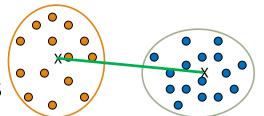




Agglomerative Clustering: Average vs. Centroid Links

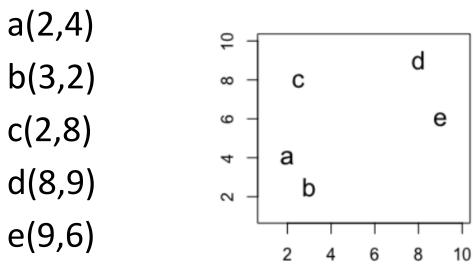
- Agglomerative clustering with average link
 - Average link: The average distance between an element in one cluster and an element in the other (i.e., all pairs in two clusters)
 - Expensive to compute
- □ Agglomerative clustering with **centroid link**
 - **Centroid link**: The distance between the centroids of two clusters
- Group Averaged Agglomerative Clustering (GAAC)
 - Let two clusters C_a and C_b be merged into C_{aUb} . The new centroid is:
 - \square N_a is the cardinality of cluster C_a, and c_a is the centroid of C_a
 - The similarity measure for GAAC is the average of their distances
- □ Agglomerative clustering with Ward's criterion
 - □ Ward's criterion: The increase in the value of the SSE criterion for the clustering obtained by merging them into $C_a \cup C_b$: $W(C_{a\cup b}, c_{a\cup b}) W(C, c) = \frac{N_a N_b}{N_a + N_b} d(c_a, c_b)$





$$c_{a\cup b} = \frac{N_a c_a + N_b c_b}{N_a + N_b}$$

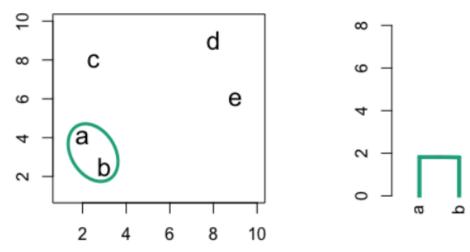
2-D Data points



Distance Matrix

	а	b	С	d	е
а	0				
b	2.2	0			
С	4	6.1	0		
d	7.8	8.6	6.1	0	
е	7.3	7.2	7.3	3.2	0

2-D Data points



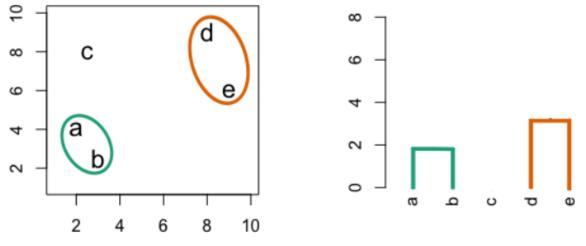
Distance Matrix

	a,b	С	d	е
a,b	0			
С	4	0		
d	7.8	6.1	0	
е	7.2	7.3	3.2	0

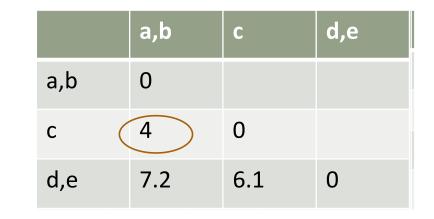
Update distance

- Distance((a,b), c) = min(Distance(a,c), Distance(b,c)) = min(4, 6.1)=4
- Distance((a,b), d) = min(Distance(a,d), Distance(b,d)) = min(7.8, 8.6)=7.8
- Distance((a,b), e) = min(Distance(a,e), Distance(b,e)) = min(7.3, 7.2)=7.2

2-D Data points



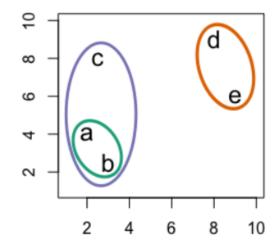
Distance Matrix

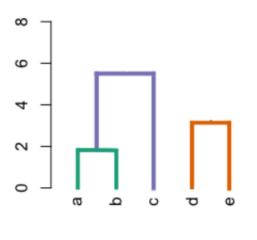


Update distance

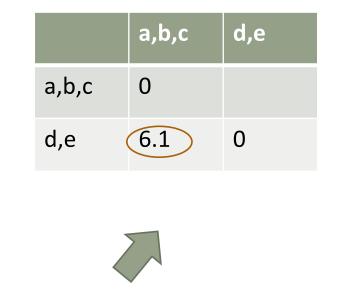
- Distance((d,e), (a,b)) = min(Distance(d,(a,b)), Distance(e,(a,b)) = 7.2
- Distance((d,e), c) = min(Distance(d,c), Distance(e,c)) = 6.1

2-D Data points





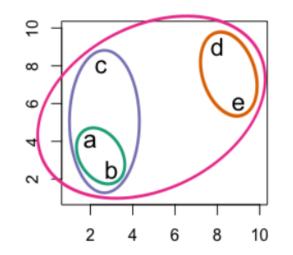
Distance Matrix

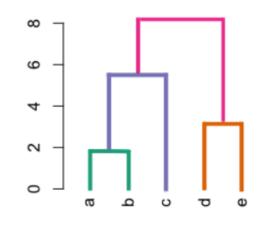


Update distance

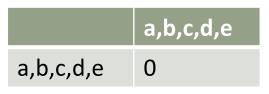
Distance((d,e), (c,(a,b))) = min(Distance((d,e),(a,b)), Distance((d,e),c) = 6.1

2-D Data points

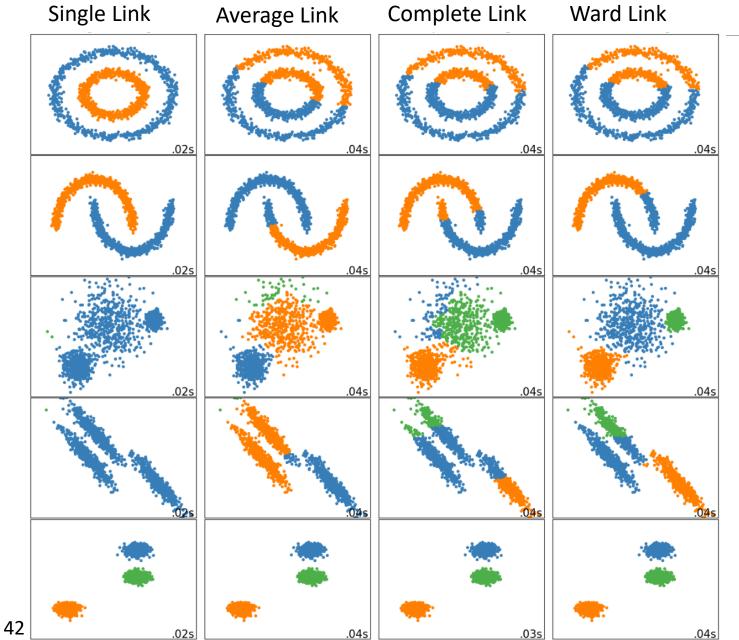




Distance Matrix



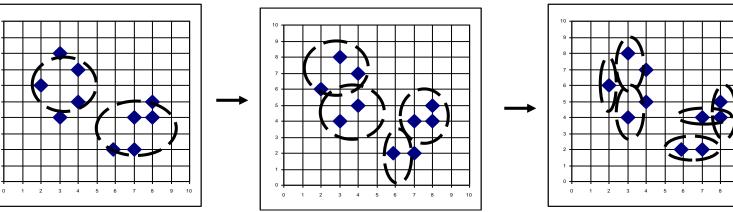
Comparison of different linkage methods



- Observations:
- Single link performs well on nonglobular data, but it performs poorly in the presence of noise.
- Average and Complete Linkage performs well on globular data, but have mixed results otherwise.
- Ward is the most effective method for noisy data.

Divisive Clustering

- DIANA (Divisive Analysis) (Kaufmann and Rousseeuw, 1990)
 - Implemented in some statistical analysis packages, e.g., Splus
- □ Inverse order of AGNES: Eventually each node forms a cluster on its own



Divisive clustering is a top-down approach

- The process starts at the root with all the points as one cluster
- It recursively splits the higher level clusters to build the dendrogram
- Can be considered as a global approach
- More efficient when compared with agglomerative clustering

More on Algorithm Design for Divisive Clustering

- Choosing which cluster to split
 - Check the sums of squared errors of the clusters and choose the one with the largest value
- **G** Splitting criterion: Determining how to split
 - One may use Ward's criterion to chase for greater reduction in the difference in the SSE criterion as a result of a split
 - □ For categorical data, Gini-index can be used
- Handling the noise
 - Use a threshold to determine the termination criterion (do not generate clusters that are too small because they contain mainly noises)

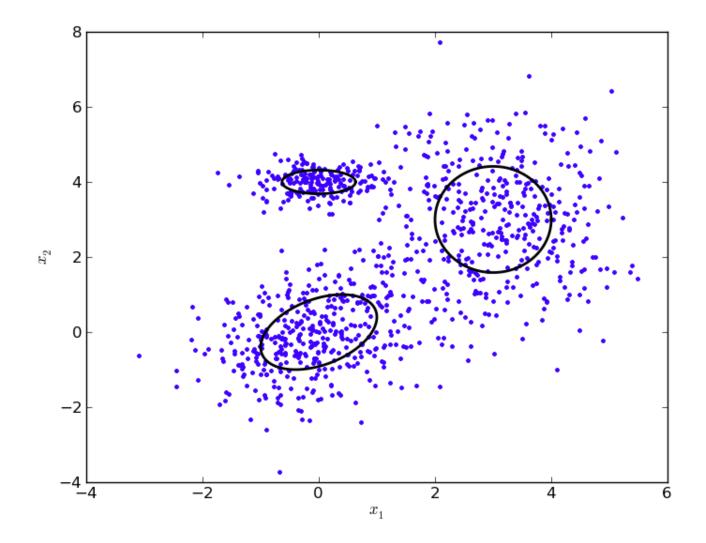
Extensions to Hierarchical Clustering

- Major weaknesses of hierarchical clustering methods
 - Can never undo what was done previously
 - Do not scale well
 - □ Time complexity of at least $O(n^2)$, where *n* is the number of total objects
- Other hierarchical clustering algorithms
 - BIRCH (1996): Use CF-tree and incrementally adjust the quality of sub-clusters
 - CURE (1998): Represent a cluster using a set of well-scattered representative points
 - CHAMELEON (1999): Use graph partitioning methods on the K-nearest neighbor graph of the data

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Evaluation of Clustering

Hard Clustering Can Be Difficult

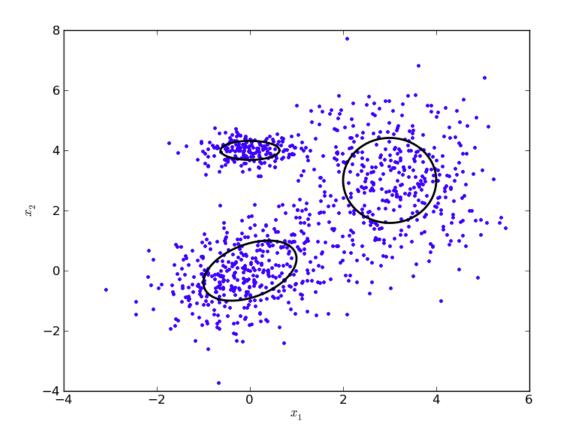


Soft Clustering

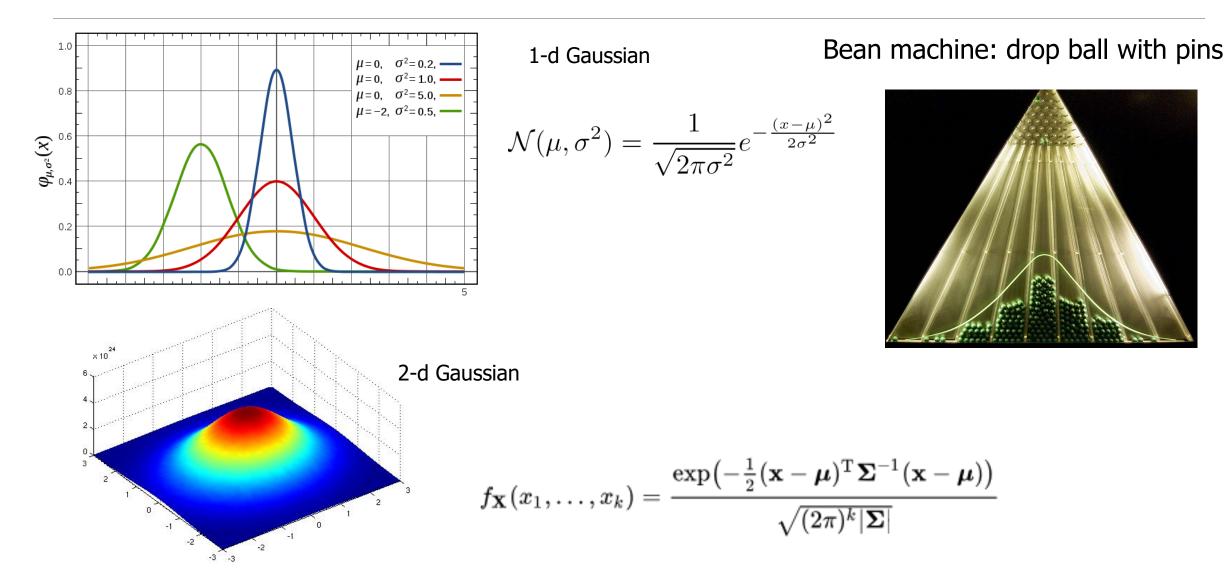
Every object i is assigned to one cluster j with a probability

□
$$P(z_i = j) \in [0,1] \text{ and } \Sigma_j P(z_i = j) = 1$$

 \Box Where z_i is a hidden variable of which cluster x_i belongs to.



Gaussian Distribution



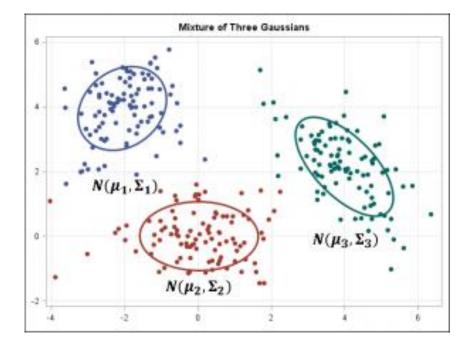
From wikipedia and http://home.dei.polimi.it

Gaussian Mixture Model

Assumptions

- Each data point comes from one of K classes.
- **The cluster prior distribution** w_i is *unknown*.
- **Each** class c_i follows a Gaussian

distribution:
$$P(x|c_j, \theta_j) = \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{(x-\mu_j)}{2\sigma_j^2}}$$



□ The parameters for each class μ_j , σ_j are *unknown*(need to be learned).

****2

The probability of x_i is the sum over all classes, $P(x_i|\theta) = \sum_{j=1}^{K} P(x_i|c_j, \theta_j) P(c_j)$

Soft Clustering with Gaussian Mixture Model

Every object i is assigned to one cluster j with a probability

□
$$P(z_i = j) \in [0,1] \text{ and } \Sigma_j P(z_i = j) = 1$$

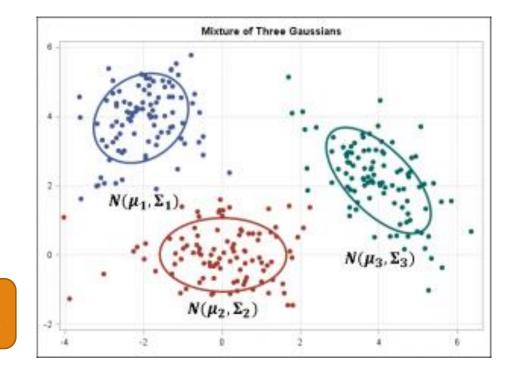
 \Box Where z_i is a hidden variable of which cluster x_i belongs to.

Assume the parameters of the GMM have been learned

The probability of x_i belonging to cluster c_j :

$$P(z_i = c_j | x_i) \propto P(x_i, z_i = c_j)$$
$$= w_j P(x_i | z_i = c_j)$$

Cluster prior Probability density probabilities function of each cluster



Algorithm

- A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.
- **Expectation Step:**
 - Assigns objects to clusters according to the current soft clustering or parameters of probabilistic clusters

$$\square \quad w_{ij}^{t+1} = P(z_i = j | x_i, \theta_j^t) \propto w_j P(x_i | z_i = j, \theta_j^t)$$

Joint probability of x_i and its cluster c_j

- Maximization Step:
 - finds the new parameters of each cluster that maximize the expected likelihood

$$\exists \ \theta_{t+1} = argmax_{\theta} \Sigma_i \Sigma_j w_{ij}^{t+1} logL(x_i, z_j | \theta)$$

Example: Applying E-M algorithm to 1-D GMM

Iteratively do the following two steps

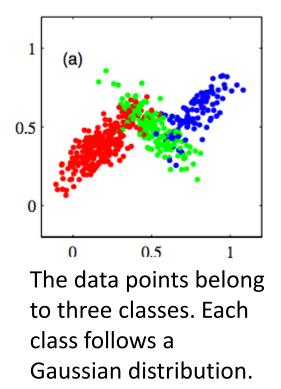
L E-Step: Evaluate the soft clustering probability according to $\mu_i^t, \sigma_i^t, w_i^t$

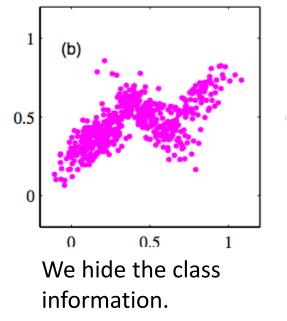
 $\square w_{ij}^{t+1} = \frac{w_j^t P(x_i | \mu_j^t, \sigma_j^t)}{\Sigma_k w_k^t P(x_i | \mu_k^t, \sigma_k^t)}$

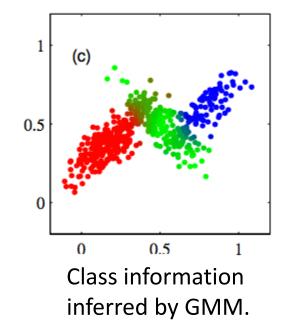
M-Step: Find the new parameters μ^t_j, σ^t_j that maximize log likelihood. In Gaussian distribution, this is equivalent to do parameter estimation when each data point has a weight.

Gaussian Mixture Model

Example of applying Gaussian Mixture Model

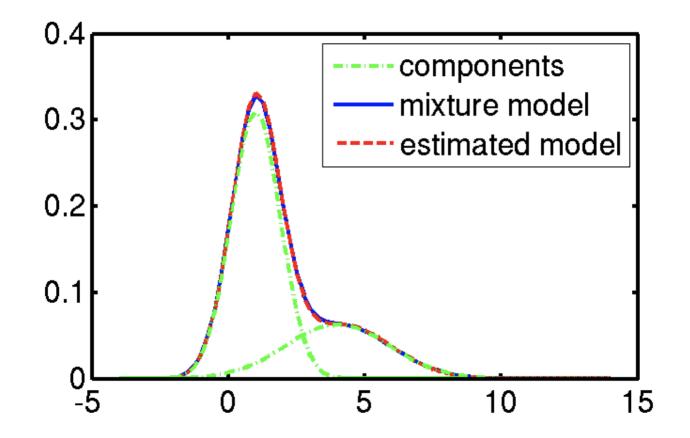




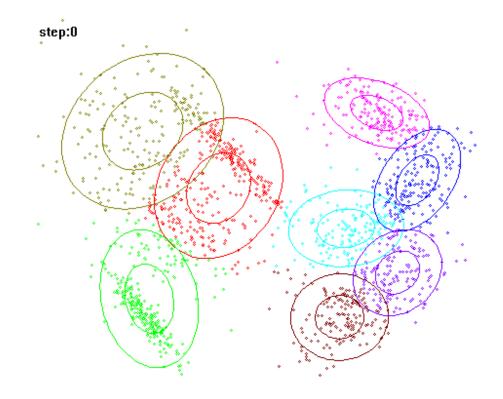


□ We can use E-M algorithm to learn the parameters.

Example: Applying E-M algorithm to 1-D GMM



EM for Learning 2D Gaussian Mixture Model



Gaussian mixture model – Strength and Weakness

Advantages

- Mixture models are more general than partitioning: different densities and sizes of clusters
- Clusters can be characterized by a small number of parameters
- □ The results satisfy the statistical assumptions of generative models

Disadvantages

Converge to local optimal

Computationally more expensive

- Hard to estimate the number of clusters
- Can only deal with spherical clusters

Overcome it by running multi-times w. random initialization

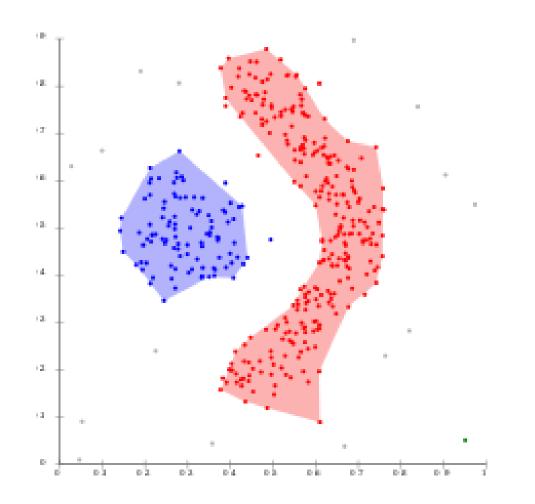
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density-Based Methods
- Evaluation of Clustering

Density-Based Clustering

Clustering based on density (a local criterion), such as densely-connected points

- Main Advantages
 - Discover clusters of arbitrary shape
 - Handle noise



Representative Density-Based Clustering Methods

- □ Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)

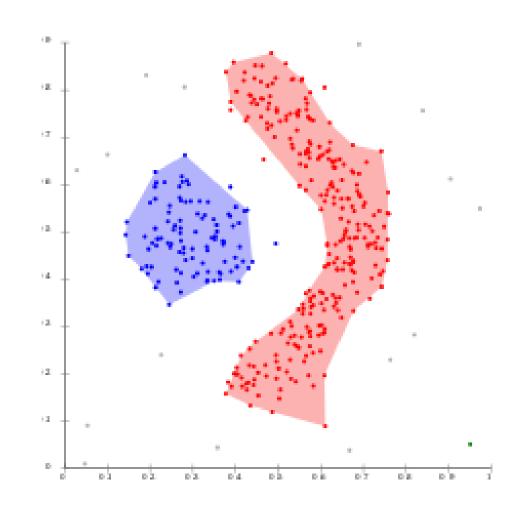
To be covered in this lecture

- OPTICS: Ankerst, et al (SIGMOD'99)
- DENCLUE: Hinneburg & D. Keim (KDD'98)
- <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (also, grid-based)

DBSCAN: High-Level Idea

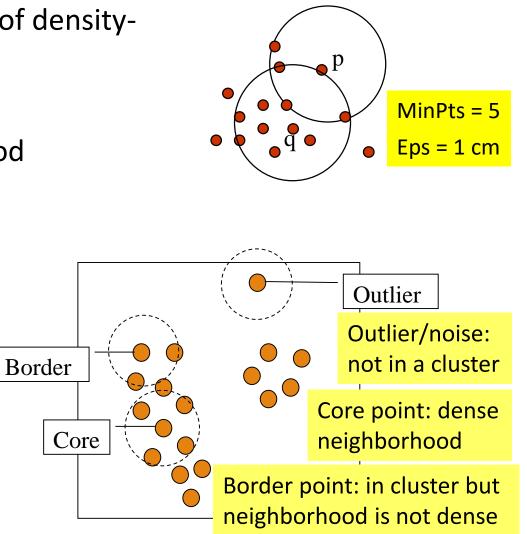
DBSCAN

- Discovers clusters of arbitrary shape:
 <u>Density-Based Spatial Clustering of</u>
 <u>Applications with Noise</u>
- □ A *density-based* notion of cluster
 - A cluster is defined as a maximal set of density-connected points



DBSCAN: Core Concepts

- DBSCAN: A *cluster* is defined as a maximal set of densityconnected points
- □ Two parameters:
 - \Box *Eps* (ε): Maximum radius of the neighborhood
 - MinPts: Minimum number of points in the Eps-neighborhood of a point
- **The Eps**(ε)-neighborhood of a point q:
 - □ $N_{Eps}(q)$: {p belongs to D | dist(p, q) ≤ Eps}



DBSCAN: Density-Reachable and Density-Connected

Directly density-reachable:

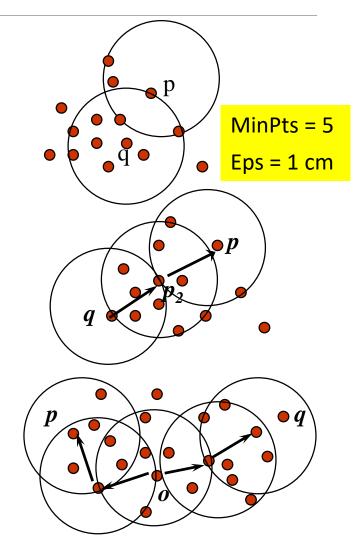
- A point *p* is directly density-reachable from a point *q* w.r.t. *Eps* (ε), *MinPts* if
 - $\square \quad p \text{ belongs to } N_{Eps}(q)$
 - □ **core point** condition: $|N_{Eps}(q)| \ge MinPts$

Density-reachable:

A point *p* is density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected:

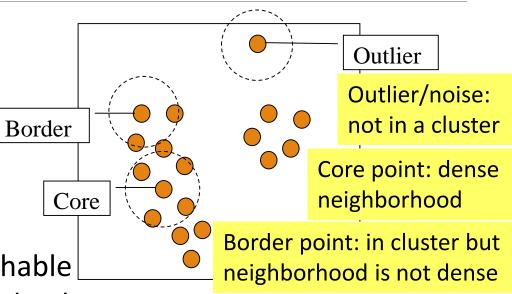
A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both p and q are density-reachable from o w.r.t. Eps and MinPts



DBSCAN: The Algorithm

Algorithm

- Arbitrarily select a point p
- Retrieve all points density-reachable
 - from p w.r.t. Eps and MinPts
 - □ If *p* is a core point, a cluster is formed
 - □ If *p* is a border point, no points are density-reachable from *p*, and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
- Computational complexity
 - If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), where n is the number of database objects
 - Otherwise, the complexity is O(n²)



DBSCAN Is Sensitive to the Setting of Parameters

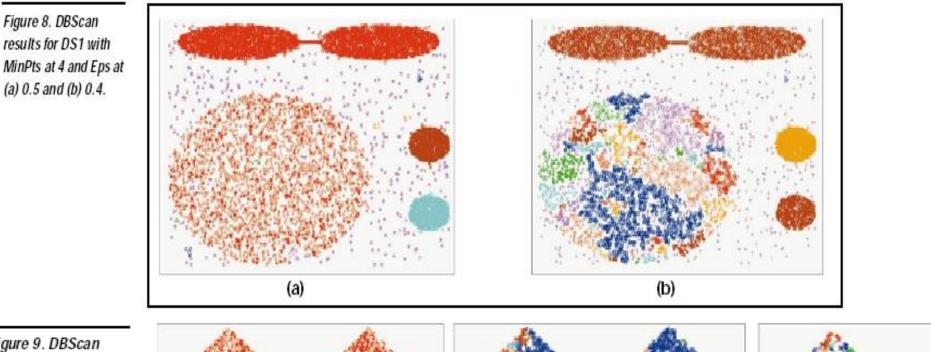
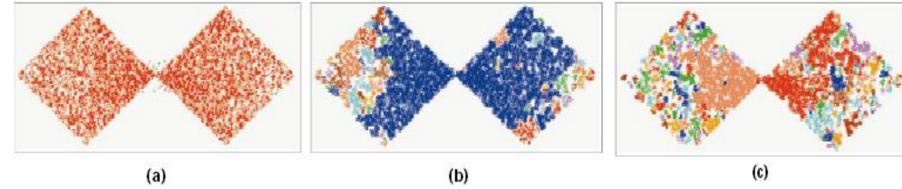


Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.



Ack. Figures from G. Karypis, E.-H. Han, and V. Kumar, COMPUTER, 32(8), 1999

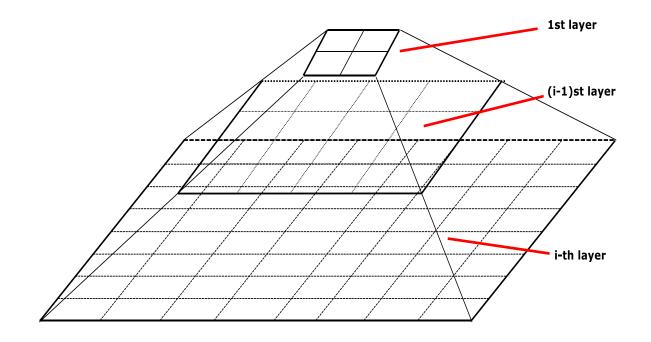
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Evaluation of Clustering

Grid-Based Clustering Methods

Grid-Based Clustering: Explore multi-resolution grid data structure in clustering

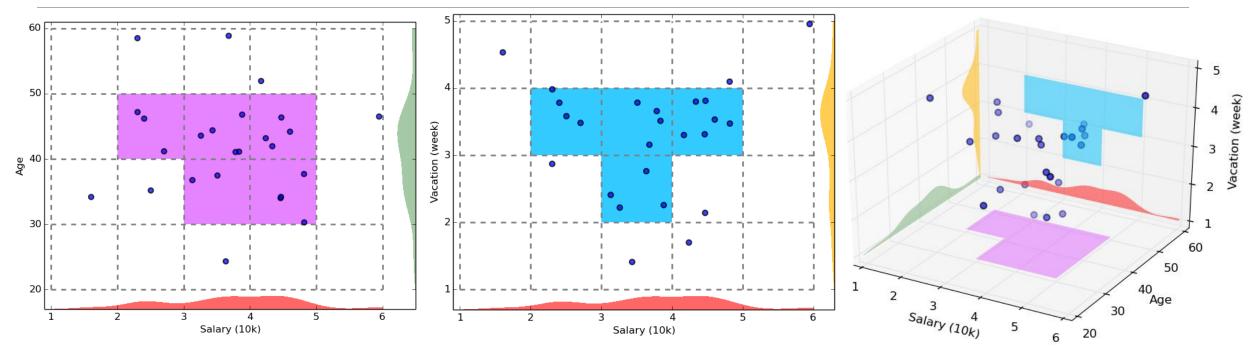
- Partition the data space into a finite number of cells to form a grid structure
- □ Find clusters (dense regions) from the cells in the grid structure



CLIQUE: Grid-Based Subspace Clustering

- CLIQUE (Clustering In QUEst) (Agrawal, Gehrke, Gunopulos, Raghavan: SIGMOD'98)
- □ CLIQUE is a **density-based** and **grid-based subspace clustering** algorithm
 - Grid-based: It discretizes the data space through a grid and estimates the density by counting the number of points in a grid cell
 - Density-based: A cluster is a maximal set of connected dense units in a subspace
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - Subspace clustering: A subspace cluster is a set of neighboring dense cells in an arbitrary subspace. It also discovers some minimal descriptions of the clusters
- It automatically identifies subspaces of a high dimensional data space that allow better clustering than original space using the Apriori principle

CLIQUE: SubSpace Clustering with Aprori Pruning



- □ Start at 1-D space and discretize numerical intervals in each axis into grid
- Find dense regions (clusters) in each subspace and generate their minimal descriptions
- Use the dense regions to find promising candidates in 2-D space based on the Apriori principle
- Repeat the above in level-wise manner in higher dimensional subspaces

Major Steps of the CLIQUE Algorithm

Identify subspaces that contain clusters

- Partition the data space and find the number of points that lie inside each cell of the partition
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests
- Generate minimal descriptions for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster

Additional Comments on CLIQUE

Strengths

- Automatically finds subspaces of the highest dimensionality as long as high density clusters exist in those subspaces
- Insensitive to the order of records in input and does not presume some canonical data distribution
- Scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

Weaknesses

As in all grid-based clustering approaches, the quality of the results crucially depends on the appropriate choice of the number and width of the partitions and grid cells

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Evaluation of Clustering

Clustering Validation

- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - □ I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- **Cluster Stability**
- **Clustering Tendency**

Clustering Validation and Assessment

Major issues on clustering validation and assessment

- Clustering evaluation
 - Evaluating the goodness of the clustering
- Clustering stability
 - To understand the sensitivity of the clustering result to various algorithm parameters, e.g., # of clusters

Clustering tendency

Assess the suitability of clustering, i.e., whether the data has any inherent grouping structure

Clustering Validation

- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- **Cluster Stability**
- Clustering Tendency

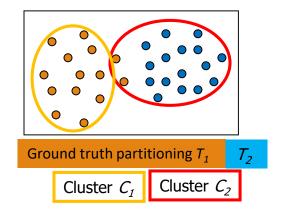
Measuring Clustering Quality

- **Clustering Evaluation**: Evaluating the goodness of clustering results
 - No commonly recognized best suitable measure in practice
- **Three categorization of measures**: External, internal, and relative
 - **External**: Supervised, employ criteria not inherent to the dataset
 - Compare a clustering against prior or expert-specified knowledge (i.e., the ground truth) using certain clustering quality measure
 - □ Internal: Unsupervised, criteria derived from data itself
 - Evaluate the goodness of a clustering by considering how well the clusters are separated and how compact the clusters are, e.g., silhouette coefficient
 - Relative: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm

Commonly Used External Measures

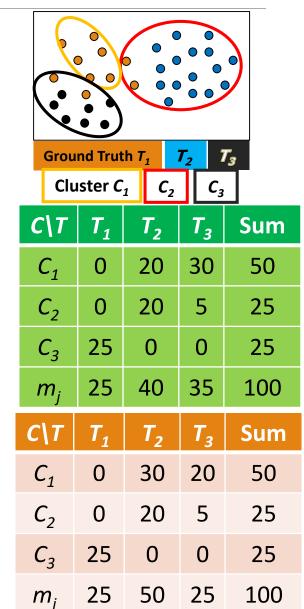
Matching-based measures

- Purity, maximum matching, F-measure
- Entropy-Based Measures
 - Conditional entropy
 - Normalized mutual information (NMI)
- Pairwise measures
 - □ Four possibilities: True positive (TP), FN, FP, TN
 - Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure



Matching-Based Measures (I): Purity vs. Maximum Matching

- **Purity**: Quantifies the extent that cluster C_i contains points only from one (ground truth) partition: $purity_i = \frac{1}{n} \max_{j=1}^{n} \{n_{ij}\}$ Total purity of clustering C: $purity = \sum_{i=1}^{r} \frac{n_i}{n} purity_i = \frac{1}{n} \sum_{i=1}^{r} \max_{j=1}^{k} \{n_{ij}\}$ Perfect clustering if purity = 1 and r = k (the number of clusters obtained is the same as that in the ground truth) **Ex.** 1 (green or orange): $purity_1 = 30/50$; $purity_2 = 20/25$; $purity_3 = 25/25; purity = (30 + 20 + 25)/100 = 0.75$ Two clusters may share the same majority partition Maximum matching: Only one cluster can match one partition
 - Match: Pairwise matching, weight $w(e_{ij}) = n_{ij}$ w(M) = $\sum_{e \in M} w(e)$ Maximum weight matching: match = $\arg \max_{M} \{\frac{w(M)}{n}\}$ Ex2. (green) match = purity = 0.75; (orange) match = 0.65 > 0.6



Matching-Based Measures (II): F-Measure

- **Precision**: The fraction of points in C_i from the majority partition T (i.e., the same as purity), where j_i is the partition that contains the maximum # of points from C_i $prec_{i} = \frac{1}{n_{i}} \max_{j=1}^{k} \{n_{ij}\} = \frac{n_{ij_{i}}}{n_{i}}$
 - **Ex.** For the green table

 \square prec₁ = 30/50; prec₂ = 20/25; prec₃ = 25/25

- **Recall**: The fraction of point in partition T_i shared in common with cluster C_{i} , where $m_{j_i} = |T_{j_i}|$ $recall_{i} = \frac{n_{ij_{i}}}{|T_{i}|} = \frac{n_{ij_{i}}}{m_{i}}$
 - **Ex.** For the green table
 - \Box recall₁ = 30/35; recall₂ = 20/40; recall₃ = 25/25
- **F-measure** for C_i : The harmonic means of *prec_i* and *recall_i*: $F_i = \frac{2n_{ij_i}}{n_i + m_i}$
- □ F-measure for clustering *C*: average of all clusters: $F = \frac{1}{r} \sum_{i=1}^{r} F_i$
 - **Ex.** For the green table

$$\Box$$
 $F_1 = 60/85; F_2 = 40/65; F_3 = 1; F = 0.774$

Entropy-Based Measures (I): Conditional Entropy

Entropy of clustering *C*: $H(\mathcal{C}) = -\sum_{i=1}^{\prime} p_{C_i} \log p_{C_i} \qquad p_{C_i} = \frac{n_i}{n} \text{ (i.e., the probability of cluster } C_i\text{)}$ □ Entropy of partitioning *T*: $H(\mathcal{T}) = -\sum_{j=1} p_{T_i} \log p_{T_j}$ □ Entropy of *T* with respect to cluster C_i : $H(\mathcal{T}|C_i) = -\sum_{i=1}^k (\frac{n_{ij}}{n_i}) \log(\frac{n_{ij}}{n_i})$ **Conditional entropy of** *T* with respect to **Ground Truth** T₁ **clustering** *C*: $H(\mathcal{T}|\mathcal{C}) = -\sum_{i=1}^{r} (\frac{n_i}{n}) H(\mathcal{T}|C_i) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log(\frac{p_{ij}}{p_{C_i}})$ The more a cluster's members are split into different partitions, Cluster C₁ the higher the conditional entropy

□ For a perfect clustering, the conditional entropy value is 0

$$H(\mathcal{T}|\mathcal{C}) = -\sum_{\substack{i=1\\r}}^{r} \sum_{\substack{j=1\\k}}^{k} p_{ij}(\log p_{ij} - \log p_{C_i}) = -\sum_{\substack{i=1\\j=1}}^{r} \sum_{j=1}^{k} p_{ij}\log p_{C_i} \sum_{j=1}^{r} p_{ij}\log p_{C_i} + \sum_{\substack{i=1\\i=1}}^{r} (p_{C_i}\log p_{C_i}) = H(\mathcal{C},\mathcal{T}) - H(\mathcal{C})$$

T₂

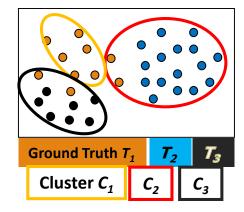
Entropy-Based Measures (II): Normalized Mutual Information (NMI)

Mutual information:

- Quantifies the amount of shared info between $I(C,T) = \sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log(\frac{p_{ij}}{p_{C_i} \cdot p_{T_j}})$ the clustering *C* and partitioning *T*
- Measures the dependency between the observed joint probability p_{ij} of C and T, and the expected joint probability p_{Ci}. p_{Tj} under the independence assumption
- □ When *C* and *T* are independent, $p_{ij} = p_{Ci}$. p_{Tj} , I(C, T) = 0.
- Normalized mutual information (NMI)

$$NMI(\mathcal{C},\mathcal{T}) = \sqrt{\frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{C})} \cdot \frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{T})}} = \frac{I(\mathcal{C},\mathcal{T})}{\sqrt{H(\mathcal{C}) \cdot H(\mathcal{T})}}$$

□ Value range of NMI: [0,1]. Value close to 1 indicates a good clustering



Pairwise Measures: Four Possibilities for Truth Assignment

- **Four possibilities** based on the agreement between cluster label and partition label
 - TP: true positive—Two points x_i and x_i belong to the same partition T, and they also in the same cluster C

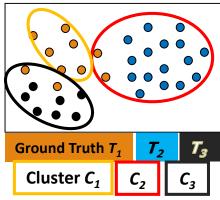
$$TP = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \not = y_j\}|$$

where y_i : the true partition label, and \hat{y}_i : the cluster label for point x_i

- □ *FN*: false negative: $FN = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i = y_i \text{ and } \not x \neq y_i\}|$
- **D** FP: false positive $FP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \notin y_i \neq y_i \}|$
- *TN*: true negative $TN = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \not x \neq y_i\}|$ $N = \begin{pmatrix} n \end{pmatrix}$

$$TP = \sum_{i=1}^{r} \sum_{j=1}^{k} \binom{n_{ij}}{2} = \frac{1}{2} \left(\left(\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2} \right) - n \right) \quad FN = \sum_{j=1}^{k} \binom{m_{j}}{2} - TP$$

$$FP = \sum_{i=1}^{r} \binom{n_{i}}{2} - TP \quad TN = N - (TP + FN + FP) = \frac{1}{2} \left(n^{2} - \sum_{i=1}^{r} n_{i}^{2} - \sum_{j=1}^{k} m_{j}^{2} + \sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2} \right)$$

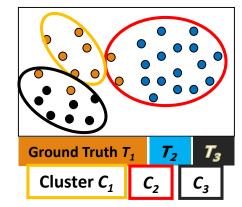


Total # of pairs of points

Pairwise Measures: Jaccard Coefficient and Rand Statistic

- □ Jaccard coefficient: Fraction of true positive point pairs, but after ignoring the true negatives (thus asymmetric)
 - □ Jaccard = TP/(TP + FN + FP) [i.e., denominator ignores TN]
 - Perfect clustering: Jaccard = 1
- Rand Statistic:
 - $\square Rand = (TP + TN)/N$
 - □ Symmetric; perfect clustering: *Rand* = 1
- **Fowlkes-Mallow Measure**:
 - Geometric mean of precision and recall

$$FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP + FN)(TP + FP)}}$$



<i>C\T</i>	T ₁	T ₂	T ₃	Sum
<i>C</i> ₁	0	20	30	50
<i>C</i> ₂	0	20	5	25
<i>C</i> ₃	25	0	0	25
m _j	25	40	35	100

 Using the above formulas, one can calculate all the measures for the green table (leave as an exercise)

Clustering Validation

- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - □ I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- Clustering Tendency

Internal Measures (I): BetaCV Measure

- A trade-off in maximizing intra-cluster compactness and inter-cluster separation
- Given a clustering $C = \{C_1, \ldots, C_k\}$ with k clusters, cluster C_i containing $n_i = |C_i|$ points
 - Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R
 - The sum of all the intra-cluster weights over all clusters: $W_{in} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, C_i)$ The sum of all the inter-cluster weights: $W_{out} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, \overline{C_i}) = \sum_{i=1}^{k-1} \sum_{i>i} W(C_i, C_j)$

 - The number of distinct intra-cluster edges: $N_{in} = \sum_{i=1}^{k} \binom{n_i}{2}$
 - The number of distinct inter-cluster edges: $N_{out} = \sum_{i=1}^{k-1} \sum_{i=1}^{k} n_i n_j$

Beta-CV measure: $BetaCV = \frac{W_{in} / N_{in}}{W_{out} / N_{out}}$

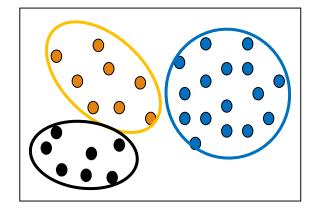
- The ratio of the mean intra-cluster distance to the mean inter-cluster distance
- The smaller, the better the clustering

Internal Measures (II): Normalized Cut

$$\square \text{ Normalized cut:} \quad NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, C_i)}{W(C_i, \overline{C_i})} + 1}$$

where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i

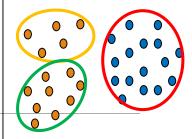
□ The higher normalized cut value, the better the clustering



Clustering Validation

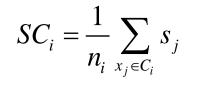
- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - □ I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- **Clustering Tendency**

Relative Measure



- Relative measure: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm
- **Silhouette coefficient** as an **internal measure**: Check cluster cohesion and separation
 - □ For each point \mathbf{x}_{i} , its silhouette coefficient s_{i} is: $s_{i} = \frac{\mu_{out}^{\text{min}}(\mathbf{x}_{i}) \mu_{in}(\mathbf{x}_{i})}{\max\{\mu_{out}^{\text{min}}(\mathbf{x}_{i}), \mu_{in}(\mathbf{x}_{i})\}}$ where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster $\mu_{out}^{\min}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its closest cluster
 - Silhouette coefficient (SC) is the mean values of s_i across all the points: $SC = \frac{1}{n} \sum_{i=1}^{n} s_i$
 - SC close to +1 implies good clustering
 - Points are close to their own clusters but far from other clusters

Silhouette coefficient as a **relative measure**: Estimate the # of clusters in the data



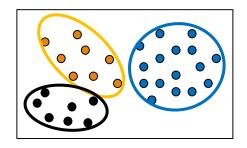
 $SC_i = \frac{1}{n_i} \sum_{x_i \in C_i} s_j$ Pick the k value that yields the best clustering, i.e., yielding high values for SC and SC_i ($1 \le i \le k$)

Clustering Validation

- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - □ I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- Clustering Tendency

Cluster Stability

- Clusterings obtained from several datasets sampled from the same underlying distribution as *D* should be similar or "stable"
- Typical approach:
 - Find good parameter values for a given clustering algorithm
- Example: Find a good value of *k*, the correct number of clusters
- A **bootstrapping approach** to find the best value of *k* (judged on stability)
 - Generate *t* samples of size *n* by sampling from *D* with replacement
 - □ For each sample D_i , run the same clustering algorithm with k values from 2 to k_{max}
 - Compare the distance between all pairs of clusterings C_k(D_i) and C_k(D_j) via some distance function
 - Compute the expected pairwise distance for each value of k
 - The value k* that exhibits the least deviation between the clusterings obtained from the resampled datasets is the best choice for k since it exhibits the most stability



Other Methods for Finding K, the Number of Clusters

Empirical method

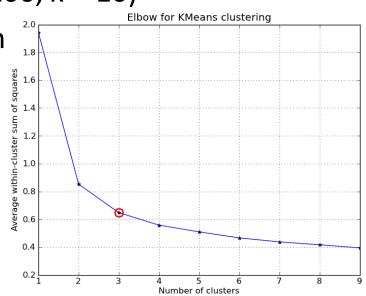
□ # of clusters: $k \approx \sqrt{n/2}$ for a dataset of n points (e.g., n = 200, k = 10)

Elbow method: Use the turning point in the curve of the sum

of within cluster variance with respect to the # of clusters

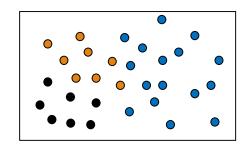
Cross validation method

- Divide a given data set into *m* parts
- □ Use *m* − 1 parts to obtain a clustering model
- Use the remaining part to test the quality of the clustering
 - For example, for each point in the test set, find the closest centroid, and use the sum of squared distance between all points in the test set and the closest centroids to measure how well the model fits the test set
- For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different k's, and find # of clusters that fits the data the best



Clustering Tendency: Whether the Data Contains Inherent Grouping Structure

- Assessing the suitability of clustering
 - □ (i.e., whether the data has any inherent grouping structure)
- Determining *clustering tendency* or *clusterability*



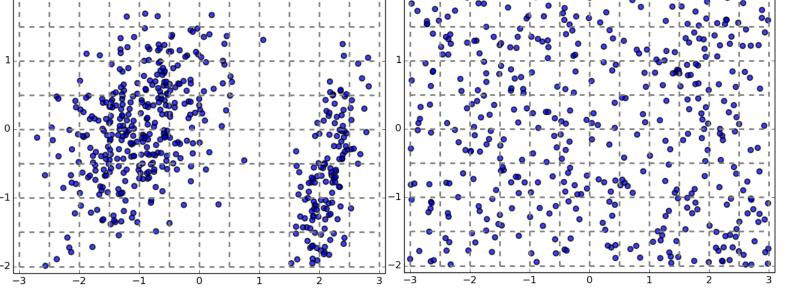
- □ A hard task because there are so many different definitions of clusters
 - □ E.g., partitioning, hierarchical, density-based, graph-based, etc.
- Even fixing cluster type, still hard to define an appropriate null model for a data set
- □ Still, there are some **clusterability assessment methods**, such as
 - Spatial histogram: Contrast the histogram of the data with that generated from random samples
 To be covered here
 - Distance distribution: Compare the pairwise point distance from the data with those from the randomly generated samples
 - **Hopkins Statistic**: A sparse sampling test for spatial randomness

Clustering Validation

- Clustering Validation: Basic Concepts
- External Measures for Clustering Validation
 - □ I: Matching-Based Measures
 - □ II: Entropy-Based Measures
 - III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- Clustering Tendency

Testing Clustering Tendency: A Spatial Histogram Approach

- Spatial Histogram Approach: Contrast the *d*-dimensional histogram of the input dataset *D* with the histogram generated from random samples
 - Dataset D is clusterable if the distributions of two histograms are rather different
- Method outline
 - Divide each dimension into equi-width bins, count how many points
 lie in each cells, and obtain the empirical
 joint probability mass function (EPMF)



- Do the same for the randomly sampled data
- Compute how much they differ using the *Kullback-Leibler* (*KL*) *divergence* value

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Gaussian Mixture Models and E-M algorithm
- Density- and Grid-Based Methods
- Evaluation of Clustering

Summary

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering

References: (I) Cluster Analysis: An Introduction

- Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011 (Chapters 10 & 11)
- Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and Applications. CRC Press, 2014
- Mohammed J. Zaki and Wagner Meira, Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990
- Charu Aggarwal. An Introduction to Clustering Analysis. *in* Aggarwal and Reddy (eds.).
 Data Clustering: Algorithms and Applications (Chapter 1). CRC Press, 2014

References: (II) Partitioning Methods

- □ J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In *Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability*, 1967
- S. Lloyd. Least Squares Quantization in PCM. *IEEE Trans. on Information Theory*, 28(2), 1982
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988
- R. Ng and J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. VLDB'94
- B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. *Neural computation*, 10(5):1299–1319, 1998
- I. S. Dhillon, Y. Guan, and B. Kulis. Kernel K-Means: Spectral Clustering and Normalized Cuts. KDD'04
- D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding. SODA'07
- C. K. Reddy and B. Vinzamuri. A Survey of Partitional and Hierarchical Clustering Algorithms, in (Chap. 4) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014

References: (III) Hierarchical Methods

- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 1990
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. SIGMOD'96
- S. Guha, R. Rastogi, and K. Shim. Cure: An Efficient Clustering Algorithm for Large Databases. SIGMOD'98
- G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. *COMPUTER*, 32(8): 68-75, 1999.
- C. K. Reddy and B. Vinzamuri. A Survey of Partitional and Hierarchical Clustering Algorithms, in (Chap. 4) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014

References: (IV) Density- and Grid-Based Methods

- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases. KDD'96
- W. Wang, J. Yang, R. Muntz, STING: A Statistical Information Grid Approach to Spatial Data Mining, VLDB'97
- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. SIGMOD'98
- A. Hinneburg and D. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98
- M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering Points to Identify the Clustering Structure. SIGMOD'99
- M. Ester. Density-Based Clustering. In (Chapter 5) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications . CRC Press. 2014
- □ W. Cheng, W. Wang, and S. Batista. Grid-based Clustering. In (Chapter 6) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press. 2014

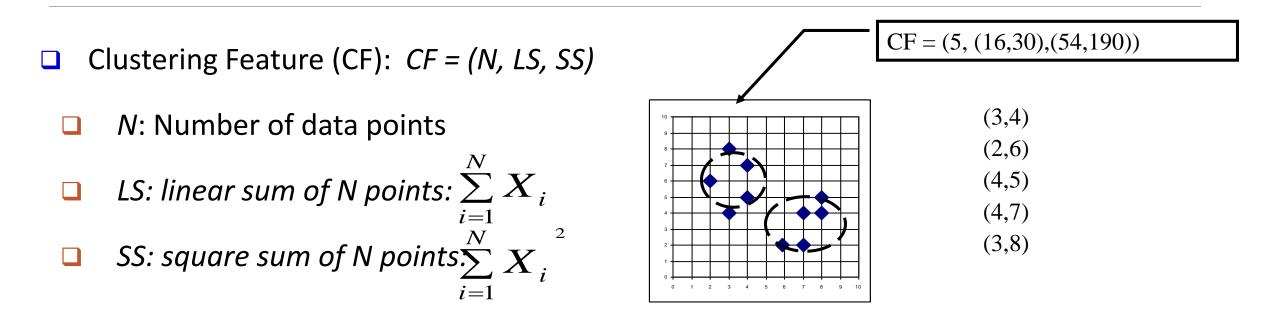
References: (IV) Evaluation of Clustering

- M. J. Zaki and W. Meira, Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- L. Hubert and P. Arabie. Comparing Partitions. *Journal of Classification*, 2:193–218, 1985
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988
- M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On Clustering Validation Techniques. Journal of Intelligent Info. Systems, 17(2-3):107–145, 2001
- J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- H. Xiong and Z. Li. Clustering Validation Measures. in (Chapter 23) C. Aggarwal and C. K. Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)

- A multiphase clustering algorithm (Zhang, Ramakrishnan & Livny, SIGMOD'96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: Scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: Use an arbitrary clustering algorithm to cluster the leaf nodes of the CFtree
- Key idea: Multi-level clustering
 - Low-level micro-clustering: Reduce complexity and increase scalability
 - □ High-level macro-clustering: Leave enough flexibility for high-level clustering
- Scales linearly: Find a good clustering with a single scan and improve the quality with a few additional scans

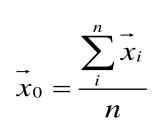
Clustering Feature Vector in BIRCH

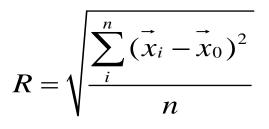


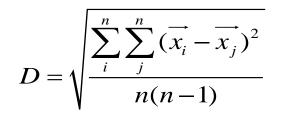
- Clustering feature:
 - Summary of the statistics for a given sub-cluster: the 0-th, 1st, and 2nd moments of the sub-cluster from the statistical point of view
 - Registers crucial measurements for computing cluster and utilizes storage efficiently

Measures of Cluster: Centroid, Radius and Diameter

- **Centroid**: \vec{x}_0
 - the "middle" of a cluster
 - n: number of points in a cluster
 - $\Box \vec{x_i}$ is the *i*-th point in the cluster
- Radius: R
 - Average distance from member objects to the centroid
 - The square root of average distance from any point of the cluster to its centroid
- Diameter: D
 - Average pairwise distance within a cluster
 - The square root of average mean squared distance between all pairs of points in the cluster







The CF Tree Structure in BIRCH

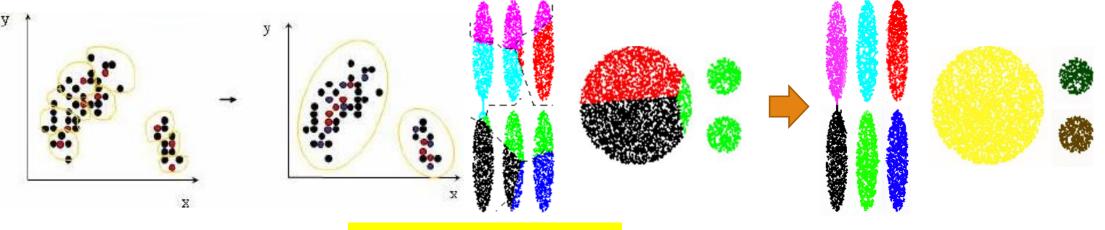
Root Incremental insertion of new points CF_6 $\mathbf{B} = 7$ CF₁ CF_2 CF₃ (similar to B+-tree) child child₁ child₃ child L = 6□ For each point in the input Find closest leaf entry Non-leaf node Add point to leaf entry and CF_1 CF_5 CF_2 CF_3 update CF child, child₃ child child₅ □ If entry diameter > max_diameter Leaf node Leaf node split leaf, and possibly parents, prev CF₁ CF₄|next CF_6 next CF_1 CF_2 CF_2 prev □ A CF tree has two parameters Branching factor: Maximum □ A CF tree: A height-balanced tree that • • ••• number of children stores the clustering features (CFs) Maximum diameter of sub-The non-leaf nodes store sums of the CFs clusters stored at the leaf nodes of their children

BIRCH: A Scalable and Flexible Clustering Method

- □ An integration of agglomerative clustering with other (flexible) clustering methods
 - Low-level micro-clustering
 - **Exploring CP-feature and BIRCH tree structure**
 - Preserving the inherent clustering structure of the data
 - Higher-level macro-clustering
 - Provide sufficient flexibility for integration with other clustering methods
- Impact to many other clustering methods and applications
- Concerns
 - Sensitive to insertion order of data points
 - Due to the fixed size of leaf nodes, clusters may not be so natural
 - Clusters tend to be spherical given the radius and diameter measures

CURE: Clustering Using Representatives

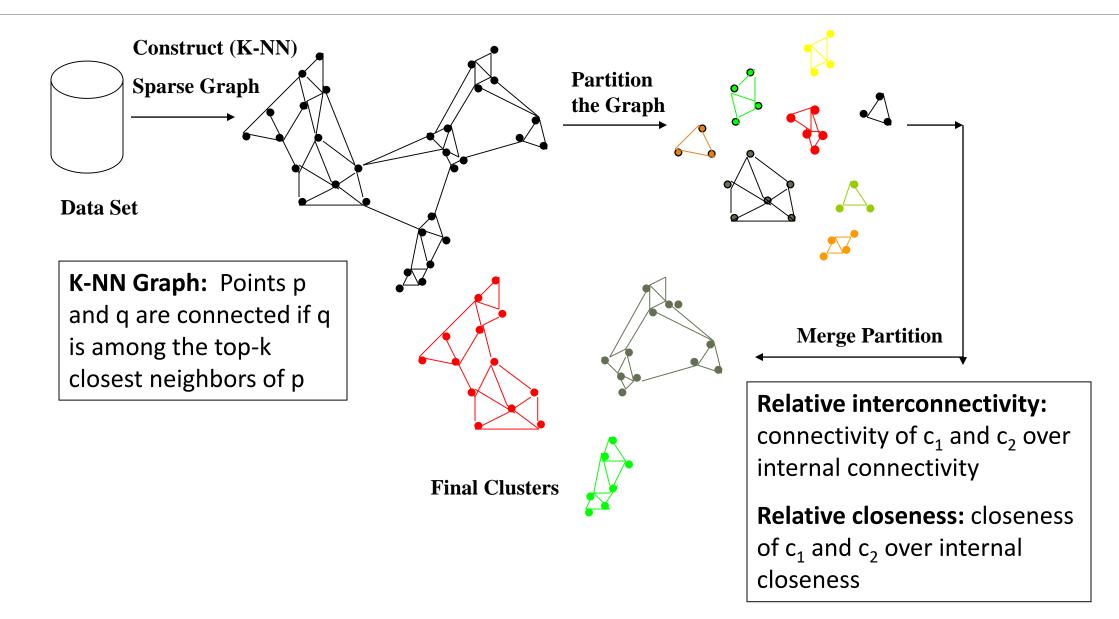
- **CURE** (Clustering Using REpresentatives) (S. Guha, R. Rastogi, and K. Shim, 1998)
 - Represent a cluster using a set of well-scattered representative points
- Cluster distance: Minimum distance between the representative points chosen
 - This incorporates features of both single link and average link
- **C** Shrinking factor α : The points are shrunk towards the centroid by a factor α
 - □ Far away points are shrunk more towards the center: More robust to outliers
- Choosing scattered points helps CURE capture clusters of arbitrary shapes



CHAMELEON: Hierarchical Clustering Using Dynamic Modeling

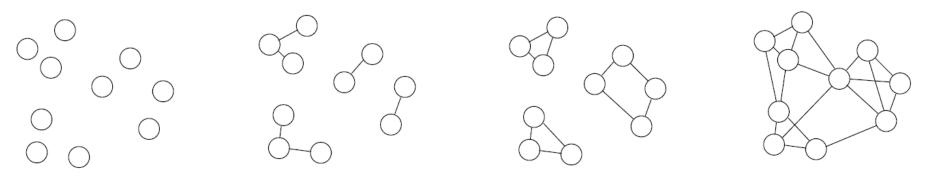
- CHAMELEON: A graph partitioning approach (G. Karypis, E. H. Han, and V. Kumar, 1999)
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- □ A graph-based, two-phase algorithm
 - 1. Use a graph-partitioning algorithm: Cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: Find the genuine clusters by repeatedly combining these sub-clusters

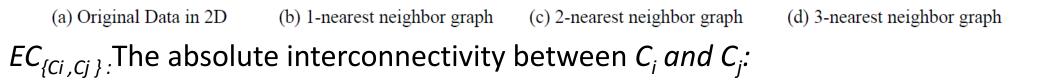
Overall Framework of CHAMELEON



KNN Graphs and Interconnectivity

□ K-nearest neighbor (KNN) graphs from an original data in 2D:





- \Box The sum of the weight of the edges that connect vertices in C_i to vertices in C_j
- □ Internal interconnectivity of a cluster C_i : The size of its min-cut bisector EC_{Ci} (i.e., the weighted sum of edges that partition the graph into two roughly equal parts)
- Relative Interconnectivity (RI):

$$RI(C_i, C_j) = \frac{|EC_{\{C_i, C_j\}}|}{\frac{|EC_{C_i}| + |EC_{C_j}|}{2}}$$

Relative Closeness & Merge of Sub-Clusters

Relative closeness between a pair of clusters C_i and C_j: The absolute closeness between C_i and C_j normalized w.r.t. the internal closeness of the two clusters C_i and C_j

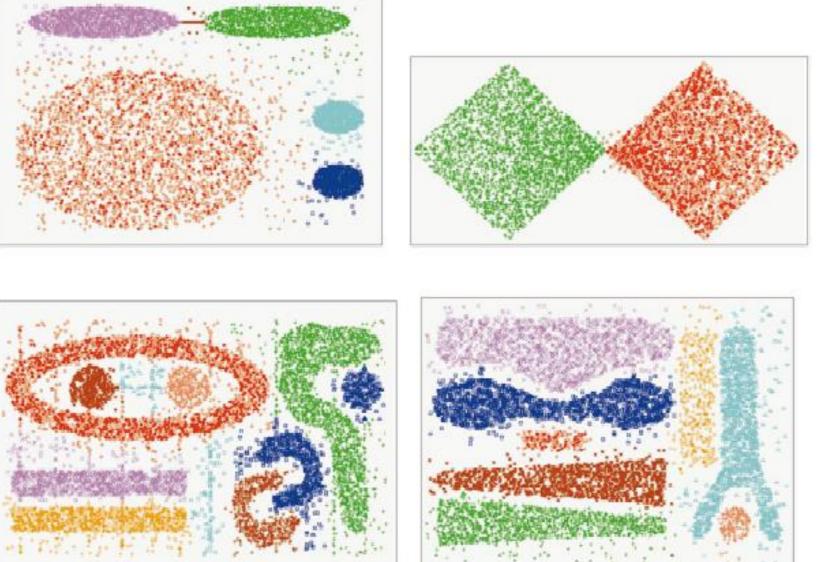
$$RC(C_i, C_j) = \frac{\overline{S}_{EC_{\{C_i, C_j\}}}}{\frac{|C_i|}{|C_i| + |C_j|} \overline{S}_{EC_{C_i}} + \frac{|C_j|}{|C_i| + |C_j|} \overline{S}_{EC_{C_j}}}$$

• where $\overline{S}_{EC_{c_i}}$ and $\overline{S}_{EC_{c_j}}$ are the average weights of the edges that belong to the min-cut bisector of clusters C_i and C_j , respectively, and $\overline{S}_{EC_{\{C_i,C_j\}}}$ is the average weight of the edges that connect vertices in C_i to vertices in C_j

Merge Sub-Clusters:

- Merges only those pairs of clusters whose RI and RC are both above some user-specified thresholds
- Merge those maximizing the function that combines RI and RC

CHAMELEON: Clustering Complex Objects



CHAMELEON is capable to generate quality clusters at clustering complex objects

Probabilistic Hierarchical Clustering

- Algorithmic hierarchical clustering
 - Nontrivial to choose a good distance measure
 - Hard to handle missing attribute values
 - Optimization goal not clear: heuristic, local search
- Probabilistic hierarchical clustering
 - Use probabilistic models to measure distances between clusters
 - Generative model: Regard the set of data objects to be clustered as a sample of the underlying data generation mechanism to be analyzed
 - Easy to understand, same efficiency as algorithmic agglomerative clustering method, can handle partially observed data
- In practice, assume the generative models adopt common distribution functions, e.g., Gaussian distribution or Bernoulli distribution, governed by parameters

Generative Model

Given a set of 1-D points $X = \{x_1, ..., x_n\}$ for clustering analysis & assuming they are generated by a Gaussian distribution:

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The probability that a point $x_i \in X$ is generated by the model:

$$P(x_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

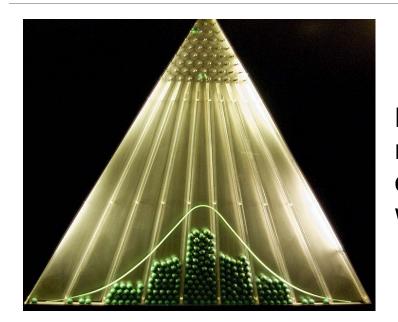
The likelihood that *X* is generated by the model:

$$L(\mathcal{N}(\mu, \sigma^2) : X) = P(X|\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

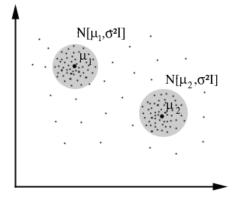
The task of learning the generative model: find the parameters μ and σ^2 such that

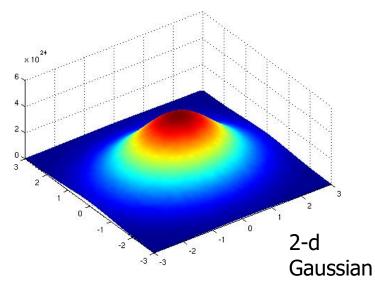
$$\mathcal{N}(\mu_0, \sigma_0^2) = \arg \max\{L(\mathcal{N}(\mu, \sigma^2) : X)\}$$

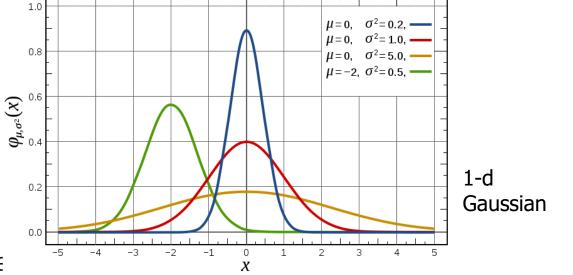
Gaussian Distribution



Bean machine: drop ball with pins







123

A Probabilistic Hierarchical Clustering Algorithm

□ For a set of objects partitioned into *m* clusters C_1, \ldots, C_m , the quality can be measured by

$$Q(\{C_1,\ldots,C_m\}) = \prod_{i=1}^{m} P(C_i)$$

where P() is the maximum likelihood

□ If we merge two clusters C_{j1} and C_{j2} into a cluster $C_{j1}UC_{j2}$, the change in quality of the overall clustering is

$$Q((\{C_1, \dots, C_m\} - \{C_{j_1}, C_{j_2}\}) \cup \{C_{j_1} \cup C_{j_2}\}) - Q(\{C_1, \dots, C_m\})$$

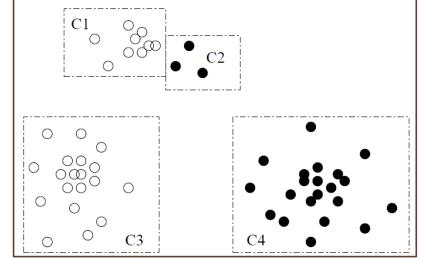
$$= \frac{\prod_{i=1}^{m} P(C_i) \cdot P(C_{j_1} \cup C_{j_2})}{P(C_{j_1}) P(C_{j_2})} - \prod_{i=1}^{m} P(C_i)$$

$$= \prod_{i=1}^{m} P(C_i) (\frac{P(C_{j_1} \cup C_{j_2})}{P(C_{j_1}) P(C_{j_2})} - 1)$$

Distance between clusters C_1 and C_2 :

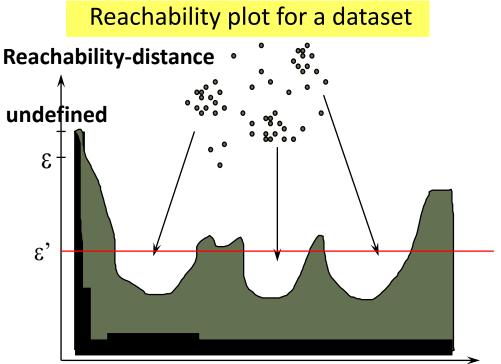
$$dist(C_i, C_j) = -\log \frac{P(C_1 \cup C_2)}{P(C_1)P(C_2)}$$

If dist(C_i, C_j) < 0, merge C_i and C_j



OPTICS: Ordering Points To Identify Clustering Structure

- OPTICS (Ankerst, Breunig, Kriegel, and Sander, SIGMOD'99)
 - DBSCAN is sensitive to parameter setting
 - An extension: finding clustering structure
- Observation: Given a *MinPts*, density-based clusters w.r.t. a higher density are completely contained in clusters w.r.t. to a lower density
- Idea: Higher density points should be processed first—find high-density clusters first
- OPTICS stores such a clustering order using two pieces of information:
 - Core distance and reachability distance

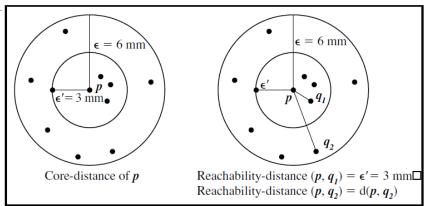


Cluster-order of the objects

- Since points belonging to a cluster have a low reachability distance to their nearest neighbor, valleys correspond to clusters
- The deeper the valley, the denser the cluster

OPTICS: An Extension from DBSCAN

- Core distance of an object *p*: The smallest value ε such that the ε-neighborhood of *p* has at least *MinPts* objects
 Let N_ε(*p*): ε-neighborhood of *p*
 - ε is a distance value



Core-distance_{ε , MinPts}(p) = Undefined if card($N_{\varepsilon}(p)$) < MinPts Figure 10.16: OPTICS terminology. Based on [ABKS99]. MinPts-distance(p), otherwise Beachability

Reachability distance of object p from core object q is the min. radius value that makes p density-reachable from q

Reachability-distance_{ε , MinPts}(p, q) =

Undefined, if q is not a core object

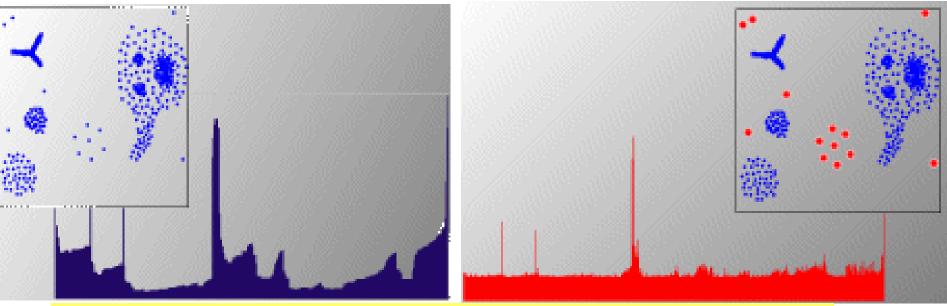
max(core-distance(q), distance (q, p)), otherwise

Complexity: O(N logN) (if index-based) where N: # of points Reachability distance undefined $\epsilon^{}$

Cluster-order of the objects

OPTICS: Finding Hierarchically Nested Clustering Structures

- OPTICS produces a special cluster-ordering of the data points with respect to its density-based clustering structure
 - The cluster-ordering contains information equivalent to the density-based clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis—finding intrinsic, even hierarchically nested clustering structures



Finding nested clustering structures with different parameter settings