DIGITAL SIMULATION OF
CONTINUOUS-TIME SYSTEMS

7.1 PRELIMINARY CONSIDERATIONS:
SAMPLING AND THE Z-TRANSFORM

Up to this point, the models and their associated signals have been assumed to be
characterized in continuous time: there is an infinitesimal difference in time
between one time point and the next time point. Ordinary or partial differential
equations have been the mathematical representations that we have employed to
characterize the dynamics of models of physiological systems, and these operate in
the continuous-time domain. Analytical solutions exist for a large class of continu-
ous-time differential equations, but for the rest the only viable path is to employ a
numerical method of solution. However, to do so requires a conversion of the
problem from one in continuous time to the equivalent problem in discrete time.
The way this is achieved in practice is to sample the continuous-time signal
(commonly referred to as the analog signal) on a periodic basis. Continuous-
time systems can also be converted to discrete-time systems, and in this chapter, we
will demonstrate that this can be accomplished using different methods, each with
different ramifications.

In Figure 7.1, we consider from a theoretical perspective what exactly occurs
in the transformation of a continuous-time signal x(¢) into a discrete-time signal
xp(n). The first part of the transformation involves the multiplication of x(#) by
a train p(¢) of unit impulses uniformly spaced T time units apart. Thus, p(?) is
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FIGURE 7.1 Schematic illustration of the process of sampling a continuous-time signal
and converting it to discrete-time signal.

defined as
p(t) = Zoj: 6(t —nT) 7.1)
where n=0, +1, £2, +3, . . ., +00, and p(¢r) = 0 when t#nT.
The resulting product is
xs(2) = x(2) - p(t) = x(¢) - i 8(t —nT) (7.2)
Thus,
xs(t) = i x(nT) - 5(t — nT) (7.3)
Since
8(t—nT)=0, when t# nT (7.4)

at the time points at which x(¢) is sampled, we have

xp(n) = x(nT) (7.5)
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Note that, as a discrete-time signal, xp(n) is not defined between consecutive values
of n.
Now, take the two-sided Laplace transform of Equation 7.3:

n=—0oo

X,(s) = J e x,(t)dt = J e Z x(nT)s(t — nT)dt (7.6a)

=Y x(nT) J ¢™'8(t — nT) dt (7.6b)
=Y xnT)e™" (7.6¢)

If we define the following equality
z=e7 (7.7)

and use Equation 7.5, the right-hand side of Equation 7.6¢c can be converted
into a form that contains the variable z. We can then define the following
function of z:

0

Xp(2)= Y xp(n):™" (7.8)

n=—oo

Equation 7.8 yields a mapping between the discrete-time signal x(n) and the
corresponding transformed quantity in the complex z-domain, Xp(z). This “map-
ping” is called the z-transform.

The similarity in form between Equations 7.6c and 7.8 indicates that there is
a one-to-one mapping between Laplace transform of x(f) and the z-transform
of xp(n). It can also be demonstrated that as T goes to zero, Xp(z) converges
to X(s).

The utility of the z-transform for solving difference equations in discrete-time
systems parallels that of the Laplace transform for solving differential equations in
continuous time. A very simple result that is useful to keep in mind when employing
the z-transform is the “delay theorem™:

[e] (o]

Z xp(n—m)z" =z7" Z xp(n)z™" =z77"Xp(z) (7.9)

n=—00 n=—0oo

We will employ this result frequently in the following sections when we convert
difference equations into transfer functions.
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7.2 METHODS FOR CONTINUOUS-TIME TO
DISCRETE-TIME CONVERSION

In this section, we examine four ways of converting a continuous-time linear system
to a discrete-time linear system. In order to keep our focus on the conceptual aspects
of these four methods, we will base our considerations on a highly simplified linear
system: the lung mechanics model displayed in Figure 4.1. We will assume further
that the fluid inertance effects are negligible, and thus the inductance element L will
be equal to zero. Let P, =y and P,,=x. Then, from Equation 4.3, we have

=7 = 7.10
rdt+y x (7.10)

where 7 = RC. We showed in Equation 4.7 that the transfer function with x(P,,) as
input and y(P ) as output (for the open-loop configuration of the model) is given by

Y(s) 1
H(s)=—== 7.11
) X(s) zs+1 (7.11)
The corresponding impulse response for this model is
1 —t/t
h(t)y=—e (7.12)

T

7.2.1 Impulse Invariance

In the impulse invariance method, the impulse response is sampled at a uniform
interval of 7 time units, and thus the resulting sampled discrete-time impulse
response is

1

ho(n)=—e"T*, n>0 (7.13a)
T

and hp(n)=0, n<0 (7.13b)

Note that Equation 7.13b holds because /p(n) is causal.
Taking the z-transform of hp(n), we obtain

Hp@) = Y o)™ (7.14a)

n=—0oo

But because of Equation 7.13b,

Ho@)= Y ()™ (7.14b)
n=0
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Substituting for ip(n) in Equation 7.14b, we get

1 n=co 1 n=o00 n
Ho@)=—Y e/ o =—% (e (7.15)
n=0 n=0

However, note the equality:

io:cx" _ ! (7.16)

g ] —x

Using Equation 7.16 in Equation 7.15 yields

1/t

HD(Z) = 1- e—T/TZ—l

(7.17)
We can use Equation 7.17 to derive the equivalent difference equation relating
the output y(n) to the input x(n) by recognizing that Hp(z) is by definition Y(2)/X(2).
Then, substituting into Equation 7.17 and rearranging terms, we get
X
(1 —e_T/’z_l)Y(z) _X@ (7.18)

T

Taking the inverse z-transform of both sides of Equation 7.18, we obtain

Yy = ey - 1) + 1) (7.19)
T

Equation 7.19 gives the solution to the equivalent discrete-time equivalent of

Equation 7.10 for any type of input. A hallmark of this solution is that it is recursive

in nature: At each time point, y depends on its own past value, as well as the values of

the input x(r2). Thus, note that if the input is a unit impulse, that is,
x(0)=1 and x(n)=0, for n>0 (7.20)

then Equation 7.19 yields the impulse response:
1
y(n)=hp(n)=e"hp(n—=1)=e " hp(n=2)= --- =—"/*  (7.21)
T

which is the expression for the impulse response that we started with in
Equation 7.13a.

7.2.2 Forward Difference

In this method, we make use of the following numerical approximation for dy/dt that
becomes more and more exact as 7 tends toward zero:

dy _y(n+1)~y(n)

7.22
dt T ( )
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Thus, substituting this into Equation 7.10 yields

¥+ )= y()

T + y(n) = x(n) (7.23)

Rearranging terms in Equation 7.23, we obtain

yin+1)= (1 - g) y(n) + (g) x(n) (7.24a)

or equivalently,

y(n) = (1 - g)y(n -+ G)x(n -1) (7.24b)

Equation 7.24b provides a somewhat different solution in discrete time to Equa-
tion 7.10 than we had found using the impulse invariance method (Equation 7.19).

Using Equation 7.20 in Equation 7.24b allows us to derive the discrete-time
impulse response of this system:

hp(n)=0, n=0 (7.252)

n—1
hp(n) = (1 - —) —, n>0 (7.25b)
T T

The corresponding discrete-time transfer function can be derived by taking the z-
transform of Equation 7.24b:

Y(z) = (1 —;)z“Y(Z) + (g) 7'X(2) (7.26a)

Rearranging terms, Equation 7.26a yields the z-transform for the discrete-time
system in question:

_Yo_ T/t
0= X0 =T - @/ (7:200

7.2.3 Backward Difference

Here, the following numerical approximation for dy/dt, based on the difference
between the current time point and the previous time point, is used:

dy _yn)—y(n—1)

7.27
dt T (7.27)
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Substituting into Equation 7.10, we have

Ty(n) -y(n-1)

T + y(n) = x(n) (7.28)

Rearranging terms, we obtain

y(n) = ﬁ}w/r)y(n -1+ lﬂ%x(n) (7.29)

As in the previous cases, we obtain the impulse response by setting x(7) to be equal
to the unit impulse (Equation 7.20):

The transfer function for the backward difference system can be derived from
Equation 7.29 by taking the z-transform of Equation 7.29:

T/t

YR+ ———X(2) (7.31a)

Y@) = 1+ (T/7)

1
1+(T/7)

Rearranging terms in Equation 7.31a yields the transfer function:

_Y@) T/t 1 . -l
o) =3 = <1 ¥ <T/r>) (1 s ) 7310

7.2.4 Bilinear Transformation

The bilinear transformation is best known through the following mapping between
the s terms in the continuous-time transfer function H(s) and the z terms in the
discrete-time transfer function H(z):

21-7"1
§s==
T1+71

(7.32a)

The following expression characterizes the same mapping, but expressing z as a
function of s:

1+(T/2)s
== 7.32b
CTI=(T)2)s (7.320)
One disadvantage of the bilinear transformation is that we need to have the
expression representing the transfer function H(s) before the conversion to discrete
time can be performed.
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For a more intuitive interpretation of this transformation, consider the inverse of
Equation 7.32a:

1 T1+z7!
N

T 732
21— (7:32¢

Denoting the right-hand side of Equation 7.32c as H(z), and remembering that it is
by definition equal to Y(z)/X(z):

Yz T14z7!
—— == 7.33
X@ 21-71 (7.332)
Rearranging terms in Equation 7.33a, we obtain
-1 r -1
Y)-7z'Y(2) = 5 (X(x) +z7'X(2)) (7.33b)
Taking the inverse z-transform of Equation 7.33b yields
T
yn)=yn—-1)+ ) (x(n) + x(n — 1)) (7.34)

Equation 7.34 provides a useful, practical interpretation of Equation 7.32c. What it
says is that the bilinear transformation converts the integration operation in
continuous time (represented by 1/s) into the equivalent operation of numerical
integration in discrete time by employing the “trapezoidal rule.”

We now turn back to deriving the discrete-time equivalent of the first-order
continuous-time transfer function given in Equation 7.11. Starting with
Equation 7.11 and applying the transformation defined in Equation 7.32a, we obtain

1

Ho(z) = 1+ @Qt/T)[(1 =21/ +z7")]

(7.35)

From Equation 7.35, it is easy to show that the corresponding finite difference
equation is

1 —(T/27)
~14+(T/27)

T/2c
y(n) yn—-1)+ m (x(n) + x(n — 1)) (7.36)

The corresponding discrete-time impulse response can be derived from
Equation 7.36 by setting x(n) to be equal to the unit impulse (Equation 7.20):

. T/2t _
() = ——/F (7.37b)

(1+(T/20))"



SAMPLING 207

_(1=(T/20\""" T/t
hD(n)_<1+(T/2T)) (1+(T/2T)2)’ n>l (7.37¢)

7.3 SAMPLING

In the previous section, we showed that a given continuous-time system can be
converted into more than one equivalent discrete-time systems, depending on the
method employed to perform the analog-to-digital transformation. Another impor-
tant parameter in this process is the rate at which the sampling of the continuous-
time signal is carried out. It should be quite intuitive that, with a very slow sampling
rate, one could miss much of the dynamics of a particular signal. In the example
discussed above, different values of the ratio 7/r could lead to discrete-time
equivalents with very different system dynamics. In addition, there is another
fundamental phenomenon that poses its own challenges, if certain constraints are
not kept — and this is the problem of aliasing that arises from employing sampling
rates that are too low, relative to the dynamics of the continuous-time system.

Consider a continuous-time impulse response A(f). The frequency response of
this system is given by the Fourier transform of A(f):

H(w) = J h(t)e™ dt (7.38)
Conversely, the inverse Fourier transform of H(w) yields the impulse response:
1 jot
Wt)=— | Hw)d"dw (7.39)
2n

If h(7) is sampled at uniform intervals of 7, the values of /(f) at those points would be

h(nT) = % J H()e"™" do (7.40)

Equation 7.40 can be reformulated in a somewhat different way for use later. We
make the following change in variables:

¢ =wT (7.41a)

From Equation 7.41a, we obtain

1
do = —dp (7.41b)
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Then, Equation 7.40 can be rewritten as

WnT) = Z%TJ H()™di

| @m+)m (7.42a)
= H ing
2T 2 J (p)e"dep
@2m-1)x
Define
Q=¢—2zm (7.43)

Substituting into Equation 7.42a yields

h(nT) = ﬁ 3 JH(Q + 27m)e" dQ

Mm=—00
-

B (7.42b)
1 o~ H(Q+22m) .,
= zﬂj > - " dQ

m=—0oo
-

To better appreciate how aliasing affects the sampling process, we first return to the
definition of the z-transform in Equation 7.8. Recall that the mapping between
the s-domain and the z-domain is given by Equation 7.7. If we are interested in
determining how the frequency response of a continuous-time system translates
to the frequency response of its equivalent discrete-time system, what we would do
is to evaluate the z-transform of the discrete-time system along the contour of the
unit circle in the z-domain, that is,

7=’ (7.44)
Thus, the z-transform of the discrete-time impulse response becomes
Hy(Q) = > hp(nT)e ™ (7.45)

Note that Equation 7.45 says that the frequency response of the discrete-time system
is given by the discrete-time Fourier transform of its impulse response. Conversely,
we can represent the discrete-time impulse response as the inverse of the Fourier
transform of its frequency response:

ha(nT) = % J Hp(Q)&*dQ (7.46)
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Since h(nT) in Equation 7.42b is equal to ip(nT) in Equation 7.46, we can equate the
term within the integral on the right-hand-side of Equation 7.42b to the corre-
sponding term in Equation 7.46:

Hy( Q)= ) w (7.47)

From Equations 7.41a and 7.43, we see that

_Q+27rm

T (7.48)

Substituting Equation 7.48 into Equation 7.47, we obtain the following result:

Hy(Q) = i w (7.49)

Equation 7.49 is highly significant in that it shows the fundamental relationship
between the frequency response of a continuous-time system and the corresponding
frequency response of its discrete-time equivalent derived by sampling the impulse
response of the continuous-time system. This is best understood by presenting
the concept in graphical form, as displayed in Figure 7.2. Figure 7.2a shows the
frequency response (magnitude) plot of the continuous-time system, with the
abscissa representing angular frequency . Since the (absolute) sampling frequency
is 1/T, where T'is the sampling interval, the angular sampling frequency w; is related
to T in the following way:

2n

= 7.50
w0 =7 (7.50)

Figure 7.2b displays the frequency response (magnitude) of the corresponding
discrete-time system. Equation 7.49 shows that this frequency response is a
reduced-amplitude version of the original frequency response. In addition, the
frequency response of the continuous-time system is duplicated an infinite number
of times and centered around multiples of 2zm, where m =0, +1, +2, and so on.
Figure 7.2 highlights another important detail that appears in Equation 7.49: That
the magnitude of the frequency response of the continuous-time system H(w)
(Figure 7.2a) is scaled by the factor 7'in the frequency response of the corresponding
discrete-time system Hp(Q) (Figure 7.2b). The scaled duplicates of the original
frequency response are known as aliases. The relationship between H(w) and
Hp(Q) is best understood if we recall from Equation 7.7 that the sampling process is
equivalent to mapping the imaginary axis (jw) of the s-plane into the unit circle of
the z-plane, that is,

&2 = T (7.51)
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FIGURE 7.2 (a) Frequency response of a continuous-time system. (b) Frequency response
of the discrete-time equivalent of the above continuous-time system derived using impulse
invariance. wg = highest frequency associated with dynamics of the continuous-time system;
oy =sampling frequency.

As illustrated in Figure 7.3, the segment of the jw axis from w = —z/Tto w =n/T
gets mapped to the unit circle of the z-plane from Q=-7z to Q=x in the
anticlockwise direction. What about the segment of jo from w=#/T to @ =3xr/
T in the s-plane? One can surmise from Figures 7.2 and 7.3 that this next segment is
mapped into the z-plane as another anticlockwise wrap around the unit circle, from
Q= —xto Q= x. Similarly, each “strip” of length 27/T of the jw axis gets wrapped
around the unit circle in the z-plane.

Based on the considerations illustrated in Figures 7.2 and 7.3, it is not too
difficult to understand why Hp(€2) contains multiple aliases of H(w). However, it
is important to note that each alias of Hp(Q) takes the exact form of H(w) under
certain constraints. In Figure 7.2, H(w) is shown to have a bandwidth (highest
frequency) of wg, and wg is less than #/T. Since the (angular) sampling frequency
sy 1s equal to 27/T,

wp <2 (7.52)
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s-plane z-plane
o =1Im(s)
———————————— ft/_’_
f Q
0 Re(s) Q==
Q=-n Q=0
____________ —H/T

oT =Q

FIGURE 7.3 Schematic illustration of how the s-plane (associated with continuous-time
system) maps to the z-plane (associated with discrete-time system), according to the

relationship z=¢*".

Figure 7.4 shows an example when the condition specified in Equation 7.52 does
not hold. Here, because wg > w¢/2, the ends of the frequency responses of the main
transfer function and its aliases run into one another, causing distortion in the regions
where there is overlap. When this happens, parts of the system response with
frequencies higher than wy/2 appear as components in frequencies lower than /2.
This phenomenon is known as aliasing. w/2 is also known as the Nyquist frequency
or folding frequency. Equation 7.52 represents the concise version of the Nyquist—
Shannon sampling theorem, namely, that a continuous-time signal can be fully
reconstructed from its discrete-time equivalent only when the sampling frequency is
greater than or equal to twice the highest frequency component of original signal. A
corollary of this theorem is that if one samples a periodic phenomenon at the primary
frequency of the process, then the aliasing effect will make the dynamic phenomenon
appear static. This is the principle by which the stroboscopic effect works.

7.4 DIGITAL SIMULATION: STABILITY AND
PERFORMANCE CONSIDERATIONS

In this section, we compare how well the various methods of converting
continuous-time systems to discrete-time systems work when they are imple-
mented in MATLAB. We use the example of the first-order system discussed in
Section 7.3. Assuming the associated time constant 7 to be equal to 1 s, we will
consider how the dynamics of the equivalent discrete-time systems derived from
the four methods of discrete-to-continuous-time conversion compare with the
dynamics of the original continuous-time system. The MATLAB program
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FIGURE 7.4 Aliasing occurs when the bandwidth or the highest frequency of the
continuous-time system is greater than half the sampling frequency, that is, wg > @wy/2.
This is equivalent to ws < 2wsg, thus violating the sampling theorem.

CT2DTsys_impresp.m implements the four methods of conversion discussed
in the last section:

%% Continuous time
h = 1/tau * exp(-tc/tau);

o°

% Discrete time

= zeros(size(t));

(t==0) = 1; %input = unit impulse x(n=0) =1
n0 = find(t==0); %n=0

XX

$Method 1: impulse invariance
yii = nan(size(t));
yii(t<0) = 0; %y(n<o0)
for nn=n0:length(t)
yii(nn) = exp(-T/tau) * yii(nn-1) + x(nn)/tau; %y (n>0)
end

$Method 2: forward difference
yfd = nan(size(t));
yfd(t<0) = 0; %y (n<o0)
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for nn=n0:length(t)

yfd(nn) = (1 - T/tau)*yfd(nn-1) + (T/tau)*x(nn-1);
end
yid = y£d/T; % scaling factor

$Method 3: backward difference
ybd = nan(size(t));

ybd (£t<0) = 0; %y (n<0)
Ky = 1/(1 + T/tau); $%scaling factor of y
Kx = (T/tau)/(1 + T/tau); %$scaling factor of x

for nn=n0:length(t)

ybd (nn) = Ky*ybd(nn-1) 4+ Kx*x(nn) ;
end
ybd = ybd/T; % scaling factor

$Method 4: bilinear transformation
ybt = nan(size(t));

ybt (£<0) = 0; %y (n<o0)
Ky = (1 - T/(2*tau)) / (1 + T/(2*tau)); %scaling factor of y
Kx = (T/(2*tau)) / (1 4+ T/(2*tau)); %scaling factor of x

for nn=no0:length(t)

ybt (nn) = Ky*ybt(nn-1) + Kx*(x(nn) + x(nn-1));
end
ybt = ybt/T; % scaling factor

As displayed in Figure 7.5a and b, the thick black curve represents the impulse
response of the continuous-time system, that is, 4(f) in Equation. 7.12. The impulse
invariance method consists of simply sampling A(f) at uniform time intervals of T;
the mathematical representation is given in Equation 7.13a. Figure 7.5 displays the
sampled points as closed black circles that lie on the trajectory of A(f) at two different
sampling intervals: 7=0.1 s (Figure 7.5a) and 7= 1 s (Figure 7.5b). This is cleatly the
reason why this method is known as “impulse invariance.” With the forward difference
method, the impulse response of the discrete-time equivalent is described by Equations
7.25a and 7.25b. As shown in Figure 7.5 (upright triangles), the peak of the impulse
response is delayed by one point. In the case for T=0.1, since the impulse response
begins with magnitude zero at time zero, the discrepancy between the discrete-time and
continuous-time impulse responses is largest before 1=0.5s, but both responses
converge subsequently. However, when 7'= 1, the impulse response of the discrete-
time system generated using forward difference oscillates between values of —2 and 2.
Thus, clearly, with relatively large 7' (with respect to 7), the stable continuous-time
system gets converted into an unstable discrete-time equivalent. On the other hand,
with the backward difference method (inverted triangles, Figure 7.5), the impulse
response of the discrete-time system converges toward the trajectory of A(f), regardless
of whether T is 0.1 or 1s, following an initial period of discrepancy. Similarly, the
impulse response of the discrete-time equivalent obtained by using the bilinear
transformation (open squares, Figure 7.5) converges toward h(f) after the second



214 DIGITAL SIMULATION OF CONTINUOUS-TIME SYSTEMS
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FIGURE 7.5 Impulse responses of discrete-time systems derived from a first-order low-
pass continuous-time system using various methods of CT-DT conversion: impulse
invariance (closed circles), forward difference (upright triangles), backward difference
(inverted triangles), and bilinear transformation (squares), using time step (7) of (A) 0.1s
and (B) 1s.
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point. Note that, in the code for CT2DTsys impresp.m (displayed above), a scaling
factor of 1/T is applied to the solutions corresponding to the forward difference,
backward difference, and bilinear transformation systems in order to make the
magnitudes of the discrete-time impulse responses comparable to that of the continu-
ous-time system. This scaling factor stems from the fundamental difference between
continuous-time systems and discrete-time systems. In continuous time, the “impulse”
takes the form of an infinitely high and infinitely thin “spike,” but the total area under
the spike is one. In discrete time, the “impulse” simply takes on the value of 1 at time
zero. While the discrete-time system generated using impulse invariance has an
impulse response function whose values fall on the impulse response of the continu-
ous-time system, its step response needs to be scaled appropriately to match the step
response of the continuous-time system.

The relationship between 7, which reflects the dynamics of the continuous-time
system, and the sampling interval 7 used in developing the discrete-time equivalent is
simply another manifestation of the relationship between the system bandwidth wg and
the sampling frequency ws, as we had discussed in Section 7.3. When the sampling
frequency is less than twice the bandwidth of the continuous-time system in question,
aliasing occurs. Equivalently, when the ratio of 7 to = becomes too large, aliasing
introduces “distortion” into the dynamics of the discrete-time system vis-a-vis the
original continuous-time system. This is the reason why the impulse responses of the
discrete-time systems become progressively more different from that of the parent
continuous-time system as 7 increases. On the other hand, the unstable behavior of the
discrete-time system generated via the forward difference method with large 7T is
derived from a different source. Recall, from Chapter 6, that the poles of a stable
continuous-time system are always located on the left-hand side of the s-plane, that is,
the real parts of the poles must be negative. Now, consider Figure 7.3 that shows how
the s-plane gets mapped into the z-plane. Notice that the left-hand side of the s-plane
maps into the area within the unit circle in the z-plane (shaded regions in Figure 7.3).
Thus, discrete-time equivalent of a continuous-time system will be stable as long as the
poles of the discrete-time system fall within the unit circle. Now, consider Equation.
7.26b, the transfer function corresponding to the discrete-time system derived using the
forward difference method. This transfer function can be rewritten as

T/t
2= (1=(T/7))

Thus, the pole at s = —1/z in the continuous-time system gets mapped into a pole at
z=1—T/zin the discrete-time equivalent derived using forward difference method.
Note that, when T ranges between zero and 27, the pole of the discrete-time system
falls within the unit circle (i.e., —1 <z<1). But when T> 2z, this pole will lie
outside the unit circle — This is when the discrete-time equivalent of the stable
continuous-time system becomes unstable. Similar considerations can be applied to
the backward difference and bilinear transformation methods — But in these cases,
the corresponding discrete-time system always remains stable.

Hp(z) = (7.26¢)
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7.5 PHYSIOLOGICAL APPLICATION: THE INTEGRAL
PULSE FREQUENCY MODULATION MODEL

A major motivation for converting a model containing continuous-time systems
and signals into a representation in which these systems and signals are now
expressed in discrete time is that this allows for more convenient estimation of the
model parameters, especially when the measurements employed for estimation are
collected on a sample-by-sample basis. This is essentially what happens anyway
since analog signals have to be digitized before being acquired on any computer.
However, when sampling frequency is very high relative to the dynamics of the
system under study, we can still employ continuous-time models (e.g., in the form
of differential equations) but use a wide plethora of numerical integration
techniques to solve these equations. But there are many instances in which the
physiological variables under study occur naturally on a sample-by-sample basis.
The obvious examples are cardiac variables, such as heart period and stroke
volume, both of which can be quantified on a beat-to-beat basis. Respiratory
variables can be expressed on a per-breath basis. Physiological oscillations are so
ubiquitous that it is not unusual to quantify the underlying time base in units of
“cycles.” Since arterial blood pressure fluctuates between systolic and diastolic
levels within each cardiac cycle, one can define new descriptors such as the cycle-
averaged blood pressure, systolic pressure, and diastolic pressure on a beat-by-
beat basis.

Neural signals are another excellent example of the kind of model where
continuous-time inputs can yield outputs that may be approximated as discrete
“spikes.” In this case, the underlying “drive” may be continuous, but the output is in
the form of a train of neural impulses. Generally, when the “drive” is high, the
neural system would depolarize more rapidly and generate an action potential
more quickly — As such, a high drive would produce a high rate of neuronal firing.
The integral pulse frequency modulation (IPFM) model, introduced by Bayly
(1968), has been employed in many theoretical studies of neuronal dynamics.
Figure 7.6 displays a schematic diagram that highlights how the IPFM model
works. The following equations specify the operations of each of the modules in

So +5(1) Integrator y(®)
> +
— f x(n)
Comparator |————»
Resetting A—] —
signal Threshold

FIGURE 7.6 Schematic diagram of the integral pulse frequency modulation (IPFM)
model. (Adapted from Chiu and Kao (2001).)
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the IPFM model:

t

¥0) = J[(So T ()] (7.53)

I
where ¢, <t<t,,1, and
y(tn+1) - y(tn) =A (754)

Note, in Equation 7.53, that s, represents the intrinsic drive, while s(f) represents
the modulated component of the drive. The square brackets [ . . . ] operate by
disallowing any negative values to occur; if the argument becomes negative, the
square brackets will function as a thresholding operation, setting everything to
zero if the argument within the square brackets goes negative. A represents a
threshold that determines the intrinsic frequency of the generated pulses when s(f)
is equal to zero. The output of the integral in Equation 7.53 is constantly compared
to the selected threshold A, and once the difference between y at time 7, and y at
time 7, equals A, a spike is generated at the output of the comparator module. At
that same instant, a signal is sent to the integrator to reset and start integrating the
input again.

A SIMULINK implementation of the IPFM model (IPFM. s1x) is displayed in
Figure 7.7. Figure 7.7a shows the IPFM model as a subsystem that receives the
neural drive input and outputs the corresponding response in the form of a spike
train. Figure 7.7b shows the internal workings of the IPFM. The “neural drive”
takes the form of a continuous-time signal with mean value sy and fluctuating
component s(f). It has units of impulses (or cycles) per second — Hence, it
represents the instantaneous neural firing frequency. This continuous-time signal
is first integrated and compared with the threshold A. When the integral has risen to
the point at which it attains the value of the threshold, the model generates a
“spike.” This “process” may be thought of as being analogous to the depolarization
of the nerve cell membrane prior to the point at which an action potential is
generated. The SIMULINK implementation shown here assumes a threshold value
of 1, and we can consider this example as a model of how the totality of autonomic
input to the heart generates the surge of electrical activity that triggers ventricular
contraction (observable via the electrocardiogram as the “R-wave”). The “neural
drive” in this case would be the instantaneous heart rate. In the SIMULINK
implementation, the instantaneous heart rate (in cycles per second) is integrated
continuously until the integral attains the value of 1. At this point, the “hit crossing”
block generates a unit impulse (spike), the integrator is reset to zero, and integration
of the input (instantaneous heart rate) resumes, starting from zero. The total
duration over which each cycle of integration takes place equals the heart period for
that beat. In the SIMULINK implementation, the tracking of the “R-to-R interval”
is taken care of through the use of the second integrator, which integrates a constant
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(a) Neural firing frequency (imp s™')

x(t) running integration of time

x(n) delayed pulse interval p >

Neural drive
P=[50-+5(t) neural drive x(¢) running integral x(n) as spikes
x(n) as spikes Scops
IPFM
s0+5(t)
(b) neural drive
x(t) running integral
x(n) as spikes

K

Time constant Running

1 H't. integration
crossing r of time
Threshold (delta)
f -

ol=
I

Integrator1

v »i+ | 2 Compare
to zero Y

ol

> £

Integrator

and hold

x(n) delayed pulse interval

FIGURE 7.7 SIMULINK implementation of IPFM model. (a) Overall model showing
IPFM subsystem with input (neural drive or neural firing frequency) and outputs. (b)
SIMULINK structure of IPFM mechanism (see text for explanation).

input value of 1 until it is reset to zero by the next “spike” issued by the “hit
crossing” block:

x(n) = J 1 dt (7.55)

ty

Figure 7.8 displays the results of running IPFM. s1x with a constant level of cardiac
autonomic input equivalent to a heart rate of 0.5 beat s ™' (or 30 beats min™~") for the
first 30s and a different constant level of 1 beats™' (or 60 beatsmin™') for the
following 30 s (part (a)). Figure 7.8b shows, for each beat, the running time count
(output of the second integrator) that occurs in parallel with the integration of the
cardiac autonomic input signal (accomplished through the first integrator in
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Figure 7.7). Recall that the first integrator resets to zero once the integral attains
the value of 1. The second integrator resets to zero simultaneously, but in this case,
the highest value of the integral achieved before it is reset yields the duration
of time elapsed since the previous beat. In this example, this time interval equals 2 s
in the first half of the simulation and 1 s in the second half. Figure 7.8c displays the
main output of the IPFM model, that is, the “spikes” of unit amplitude that are
generated with periodicities consistent with the input neural drive. In this first half of
this simulation, the heart rate is 0.5 beats™', equivalent to a heart period of 2s,
whereas in the second half, the heart rate of 1 beats™" yields a heart period of 1.
Figure 7.9 shows another simulation, but this time, the autonomic input to the heart
fluctuates sinusoidally with an amplitude of 0.5 beats™' around a mean level of 1
beat s™'. This input represents an oscillatory drive that should make instantaneous
heart rate vary between 0.5 and 1.5 beatss™'. When it is sent through the IPEM,
the output is a train of spikes (beats) that varies in interbeat interval between 0.6 and
1.8 s (Figure 7.9b and c).

PROBLEMS

P7.1. Consider a saline-filled catheter that has been inserted into the brachial artery
of a patient so that the proximal tip of the catheter is exposed to blood flowing
through the artery at pressure P,. The distal tip of the catheter is connected to
a pressure transducer. The transducer works by means of an internal thin
diaphragm that deflects by an amount proportional to the difference between
the pressure in the transducer chamber (P,,,) and the ambient pressure (which
we will consider to be equal to zero). This arrangement is displayed in
Figure P7.1. Under static conditions, P, should be exactly equal to P,.
However, this will not be true if P, varies dynamically. How much P, differs

Flexible

Arterial blood flow .
diaphragm

Pm

17

Pa —

Saline-filled catheter

FIGURE P7.1 Schematic illustration of catheter—transducer system for measuring arterial
pressure.
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P7.2.
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from P, at any given time would depend on the response characteristics of the
catheter—transducer system. If the mechanical properties of the transducer
diaphragm and the dynamics of fluid motion in the catheter are known (based
on prior testing), it is possible to employ a simple model to determine how the
true arterial pressure signal is likely to be distorted dynamically by the
measurement process.

(a) Derive the simplest linear lumped parameter model of the catheter—
transducer arrangement that relates Py, to P,. Include in the model the
effects of (i) resistance R to fluid motion along the catheter, (ii) inertance
L due to fluid acceleration along the catheter, and (iii) compliance C of
the transducer diaphragm. We will consider the saline inside the catheter
to be incompressible and the catheter wall to be nondistensible.

(b) Use the forward difference (Euler) method for converting the continu-
ous-time model above into a discrete-time model. With the resulting
difference equation, compute the responses in P, of the discrete-time
model to a unit step in P, when the time step (sampling interval) 7=0.1s
and when T=2s. Assume the following values for the model parame-
ters: R=0.05, L=0.1, and C=10.

(¢) Using SIMULINK, determine the response of the continuous-time
system to a unit step, and display this alongside the two responses
obtained in part (b).

(d) Determine an expression for the transfer function of the discrete-time
system (P,(2)/P,(z)). By examining the locations of the poles of this
system on the z-plane, explain why the stability properties of the two
discrete-time representations (7=0.1 versus 7T=2) are different.

In an experiment on humans, the ventilatory response to a single-breath
challenge of CO, was measured, that is, during one breath, the inhaled CO,
concentration was changed abruptly from O to 10% against a background
mixture of air. Subsequently, the same subjects were exposed to the same
CO, challenge, except that this was performed against a background mixture
of hypoxic gas. In all subjects, the following model was found to provide an
adequate fit to the data:

y(n) = ay(n — 1) + bx(n — M)

where x and y represent changes from the mean levels of inhaled CO,
concentration and ventilation, respectively. n represents the current breath,
and M represents the delay (in number of breaths) between exposure to CO,
and the change in ventilation that follows. Note that the measurements were
made on a breath-by-breath basis, and therefore as a first approximation, they
may be considered samples of an underlying continuous-time process that
were acquired with a sampling interval equal to the subject’s average breath
period (7).
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P7.3.

P7.4.

(a) Derive an expression for the transfer function (i.e., H(s) = Y(s)/X(s)) of
the equivalent continuous-time model, assuming impulse invariance.
Show clearly how a, b, M, and T are related to the parameters of H(s).

(b) In one subject, suppose the following values were estimated from the
data:

Normoxia: a=0.684, b=0.059, M=3,T=3.3s
Hypoxia: a=0.624,b=0257,M=2,T=2.6s

How has hypoxia affected the steady-state gain and time constant of the
underlying continuous-time model for the CO, ventilatory response for
this particular subject?

Consider the following discrete-time linear system with transfer function (z-
domain) as given below:

Z
z—0.5

H(z) =

(a) Derive the corresponding finite difference equation for this system that
will enable you to determine how the output y(n) would respond to the
input x(n) in the (discrete) time domain.

(b) Sketch as accurately as possible the response of the above system to a
unit impulse.

(c) The values tabulated below represent the output of the system to an
unknown input signal. Assume both output and input were sampled at
1 Hz. Determine the corresponding values of the input signal at the times
displayed in the table below:

Time, 7 (s) 0 1 2 3 4 5 6
(1) —4 3 8 -2 6 -7 -5 1

Combine the IPFM model, implemented in SIMULINK as I1pFM. s1x, with
the model of circulatory control introduced in Section 5.5.1 (rsa.slx), so
that the extended “RSA” model will generate simulated “R-waves,” similar
to the ECG spikes that accompany each heart beat. Then, using the
successive intervals between adjacent R-waves, produce plots of heart
period variability similar to those displayed in Figure 5.15. Generate
such plots for the “normal,” “+atropine,” and “+propranolol” conditions.
By resampling these R-to-R interval time series with a uniform sampling
interval of 0.5s and applying rsa tf.m to the resulting time series,
determine if the corresponding frequency responses are similar to the plots
displayed in Figure 5.16.
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