
1

ECE364

Software Engineering Tools Lab

Lecture 0

Course Introduction

“There are two types of people in the world:

those who cannot extrapolate from incomplete data.”*

*From ThinkGeek

Outline

Most days we will not use slides. Today is special.

2

Outline

 Administrative Issues

 About the Lab

 Version Control: Subversion (SVN)

 Review: Unix File Permissions

3

Course Staff / Contact Info

 Alexander J. Quinn Instructor

 Alex Gheith TA (labs)

 Reshef “Chef” Haim Elisha TA (labs)

 V.K. Chaithanya Manam TA (scoring)

 Dr. Mark Johnson Lab Admin

 Undergrad TAs: TBA

 Contact the TAs: Post on Piazza, as a private post.

4

Important URLs

Piazza

https://piazza.com/purdue/fall2018/ece364/home

Announcements, Syllabus, Lecture Notes, TA office hours,
contact info, useful links, assignments,

Discussion, Q & A

Course Website

http://engineering.purdue.edu/ee364

Course Calendar

Blackboard (Learn)

https://mycourses.purdue.edu

Grades

Some of this will be updated in the next few days. 5

Getting Help

 Office Hours: Check Piazza under the “Staff” Tab.

 All technical questions should be addressed during

office hours.

 Do not email us for technical questions.

 You are encouraged to use the Piazza Q & A Forum

among yourselves.

 Do NOT post your code on Piazza.

 If someone uses the code, it is plagiarism.

 The TAs will NOT answer questions on Piazza.

 Only during office hours.

6

https://piazza.com/purdue/fall2018/ece364/home
http://engineering.purdue.edu/ee364
https://mycourses.purdue.edu

2

Emergency Preparedness

Emergency preparedness is your personal responsibility. Purdue University
is actively preparing for natural disasters or human-caused incidents with the
ultimate goal of maintaining a safe and secure campus. Let’s review the
following procedures:

 For any emergency call 911.

 300 Emergency Telephone Systems throughout campus connect directly
to the Purdue Police Department (PUPD). If you feel threatened or need
help, push the button and you will be connected to the PUPD.

 If we hear a fire alarm we will immediately evacuate the building and
proceed to the MSEE atrium in bad weather or front of MSEE facing
Northwestern in good weather (location).

 Do not use the elevator.

 Proceed to nearest exit. Front doors for EE117. Back door by vending
machines for EE215, EE206, and EE207.

7

Emergency Preparedness

 If notified of a Shelter in Place requirement for a tornado
warning we will shelter in the lowest level of this building
away from windows and doors. Our preferred location is
the ground floor of EE away from windows

 If notified of a Shelter in Place requirement for a
hazardous materials release we will shelter in our
classroom shutting any open doors and windows.

 If notified of a Shelter in Place requirement for a civil
disturbance such as a shooting we will shelter in a room
that is securable, preferably without windows. Our
preferred location is this classroom, after securing or
barricading doors.

8

About the Structure

9

Lecture

Prelab

Lab

Lecture N

Prelab N

Lab N Lecture N+1

Prelab N+1

Lab N+1 Lecture N+2

Prelab N+2

Lab N+2 Lecture N+3

Lab N-1

• For a given lecture, you will be given a week

to practice and complete the lab assignment.

• The assignment is released on Monday and

is due on the following Sunday, by Midnight.

Legend

About the Lab

 Each lab consists of two parts: A prelab assignment, and a lab exercise.

 The prelab assignment must be completed by Sunday evening.

 The lab exercise must be completed in your lab session.

 The lab session is 1 Hour and 50 Minutes. Please show up a couple of

minutes early and always Logout before leaving.

 If you miss a lab, you will need to have a makeup. (Check syllabus for

policy.)

10

About the Lab

 Lab exercise handouts are collected at the end of the session.

 Always read the instructions to identify what you need to submit to

SVN, for both the assignment and the lab exercise. We will only

grade what’s in SVN.

 In Python labs, verify you are using Python 3.4. You will lose points

if you are using a different version.

11

Controlling Access to Your Code

 Sharing code with your colleagues is considered

cheating, the giver and the receiver are equally so.

 Do not publish (i.e. make public) your code on the

web (e.g., home page, GitHub, etc.)

 If someone finds and uses your code, you are responsible.

 If you choose to use a hosted repository (e.g.,

GitHub), make sure your repsository is private.

 GitHub has a free educational license for private

repositories. Non-educational accounts are public.

 BitBucket is private by default.

12

3

The Syllabus

 Read the course syllabus!

 It covers important course information

 Grading, and lab make-up policy

 Course Objectives, Academic Integrity

 etc..

13

Why Learn Bash and Python?

 Bash is a widely used scripting language for Unix/Linux
environments

 Python because is a great general purpose language for
scripting and application development
 (Lots of companies look for Python experience)

 Why not C?
 It's hard to debug and takes a long time to write

 You are constantly dealing with unimportant/annoying details like
memory allocation and pointers

 Unless your program is flying an airplane or processing streaming HD
video it doesn’t really matter that it takes 90ms or 9ms to execute…

14

Topics in ECE364

 An introduction to several new programming styles,

concepts and tools

 Bash and Python

 Software Automation

 Regular Expressions and Text Processing

 Programming a GUI

 Object Oriented Programming

 All stuffed into 1 credit hour!

15

Prerequisite Knowledge

 Everything from ECE 264!

 Variables, data types, I/O, functions (recursion), scope,

call stack, pointers, arrays, structures, lists, queues, trees

…

 Basics on using the command line

 Running commands, navigating directories …

16

About the Lab

 This lab is NOT about the syntax. It is about:

1) software engineering process.

2) Tools: Design, Problem Solving, Debugging, etc.

 Set aside C-efficiency; learn the software process.

 Workload

 Lecture

 Prelab

 Practice

17

About the Lab

// You have some array 'n'.

int length = sizeof(n) / sizeof(n[0]);

int total = 0;

for (int i = 0; i < length; i++) {

total += n[i];

}

double avg = total / length;

You have some list 'n'.

length = len(n)

total = 0

for i in range(length):

total += n[i]

avg = total / length

18

 Do NOT translate the syntax. Learn the language.

 Consider finding the average of an array:

C Python

 In Python, this is how this is done:

avg = sum(n) / len(n)

4

Version Control System (VCS)

19

The Need For Version Control

 Source code for programs may contain multiple
directories with many files
 A small program may have 1 file

 A large program may have thousands of files

 How would you track changes between files?
 Make backups or copies after every change?

 Maintain a single “CHANGES” file that lists what was
done?

 What would happen if you made a mistake last week
and now just found out?

20

Subversion (SVN)

 Is a version control system

 Manages changes to files and directories

 Can handle multiple users concurrently

 Supports local or remote storage of repository data

 SVN is REQUIRED for ALL assignments

 This is how you will upload code for grading

 No code often results in a zero!

 Lab 0 will cover the basics of SVN

21

SVN Terminology

 Repository - a central store that contains all distinct copies

(revisions) of your work.

 Revision – a unique snapshot of the repository contents at

a specific point in time

 A revision is identified by a unique number

 A revision represents the state of all files at a point in time

 Working Copy – a copy of what is stored in the repository.

 Modifications to file and directories are made to a working copy

 Usually the working copy is located on your local machine

22

SVN Terminology (2)

 Checkout - the act of creating a new working copy

 Downloads whatever is stored in the repository

 You can checkout specific revision, not just most recent

 Committing - the act of uploading changes from your

working copy to the repository

 Creates a new revision in the repository

 Updating - the act of downloading changes from the

repository to your working copy

 Your working copy could be several revisions old

 Synchronizes the working copy to the repository

23

SVN Basic Commands

 svn checkout <repo-url> <working-dir>

 Creates a new working copy of the specified repository

 Making changes to a file or set of files in the working copy

does not change the contents of the repository

 svn commit

 When you are satisfied with your changes you must

commit them to the repository

 All changes to your working copy will be uploaded as a

new revision of your repository

 A text message is usually added to indicate what changes

were made for this commit

24

5

SVN Basic Commands (2)

 svn update

 Synchronizes your working copy with the most recent

revision of the repository

 Other programmers may have made changes to other files

and committed them to the repository

 What happens if two programmers made a change

to the same line of the same file?

 Called a conflict

 We will not worry about this but SVN has tools for

resolving conflicts

25

SVN Basic Commands (3)

 svn add <file/directory>

 Stages a file or directory for addition into the SVN repository

 Important: Files are not added until the next svn commit

 svn rm <file/directory>

 Stages a file or directory for deletion from the SVN repository

 Important: Files are not deleted until the next svn commit

 *** Changes to the working copy are not reflected in

the repository until you commit! ***

26

SVN Basic Commands (4)

 svn cp <source> <destination>

 Copies a file or directory from a source to destination

 Important: New files are not added until the next svn commit

 svn mv <source> <destination>

 Moves a file or directory from a source to destination

 Important: New files are not added and old files are not

removed until the next svn commit

 *** Always use SVN commands to perform basic

directory operations ***

27

SVN Revisions

 SVN creates a new revision each time you commit changes

 You can revert individual files or entire directories to a

specific revision using the update command

 svn update –r<revision> <file/directory>

 <revision> as a number: 1234

 <revision> as a date: ‘{2012-01-10 23:49}’

28

SVN Keywords

 Special keywords expand at commit time to provide

additional versioning information

 Keywords are typically placed in comments at the

beginning of a source file

29

$Author$ Username of the person committing

$Date$ Date and time this file was committed

$Revision$ The revision number of this file

$HeadURL$ The URL where this file lives in the repository

Id A combination of the above keywords

Unix File Permissions

30

6

Unix File Permissions

 Unix type operating systems control a users access

to files and directories through a set of permissions

 Read (r) – the ability read the contents of a file or list the

contents of a directory

 Write (w) – the ability to change the contents of a file or

directory

 Execute (x) – the ability to execute the contents of a file or

access the contents of known files in a directory

31

Unix File Permissions (2)

 Every file (and directory) contains three sets of

permission classes that control access for different

users

 User/Owner (u) – the individual user who owns the file

 Group (g) – the group of users associated with the file

 Other (o) – everyone else

 By combining permissions for the user, group and

other classes the ability to access a file is controlled

32

Unix File Permissions (3)

 A set of permissions can be represented as a string

 In this example

 User/Owner has all permissions

 Group has read and execute permissions

 Other only has read permissions

33

- rwx r-x r--

Unix File Permissions (4)

 The file type field does not represent a permission, it

indicates what the file is

34

File Type Description

- A regular (ordinary) file

d A directory

l A symbolic link

c A character device file

b A block device file

p A named pipe (FIFO)

Unix File Permissions (5)

 File permissions are typically represented using

octal (base-8) values rather than strings

 Each permission (r, w, x) is represented as one bit

 If a permission is set the bit value is 1

35

Binary Value Octal Value Permissions

000 0 No permissions set

001 1 Execute only

010 2 Write only

011 3 Write + Execute

100 4 Read only

101 5 Read + Execute

110 6 Read + Write

111 7 Read + Write + Execute

Unix File Permissions (6)

 A three digit octal value is used to represent the

complete set of permissions (user, group, other)

 Any octal number between 000 and 777 can be used

36

Octal Value Permissions

000 No permissions set

644 User: r+w, Group: r, Other: r

755 User: r+w+x, Group: r+x, Other: r+x

777 User: r+w+x, Group: r+w+x, Other: r+w+x

124 User: x, Group: w, Other: r

555 User: r+x, Group: r+x, Other: r+x

666 User: r+w, Group: r+w, Other: r+w

111 User: x, Group: x, Other: x

321 User: w+x, Group: w, Other: x

7

Changing File Permissions

 chmod <permissions> <file/directory>

 <permissions> the file permissions to set

 <file/directory> the path to the file or directory

 The <permissions> argument can accept the

octal representation of file permissions

 chmod 755 my_script.sh

 chmod 644 /home/ee364ta/roster.txt

37

Changing File Permissions (2)

 Permission bits can be set and cleared using a
special string: <class><op><flags>

 <class> is “u” (user), “g” (group), “o” (other) or “a” (all)

 <op> is “+” (set) or “-” (unset)

 <flags> is “r” (read), “w” (write), “x” (exec)

38

Example Result

chmod u+rwx a.out Set r, w and x for user/owner

chmod g-rw bar.txt Unsets r and w for group

chmod u+rwx,g-w,o-w /work/data Sets r, w and x for user/owner,

unsets w for group and other

chmod a+rw foo.bin Set the r and w for user/owner,

group and other

