
ECE 364 Prelab 02 Handout
Bash File I/O

August 27, 2018

Name: ID: ee364

Passing this lab will satisfy course objective CO1.

Instructions

• Work in your Prelab02 directory

• Copy all files from ∼ee364/labfiles/Prelab02 into your Prelab02 directory. You may use the following
command: cp -r ∼ee364/labfiles/Prelab02/* ./

• To submit, commit your files to SVN. We will only grade the version of the file that is in SVN.

• You must meet all base requirements in the syllabus to receive any credit.

• To verify your SVN submission, you may run the following sequence of commands:

svn update

svn list

1



1 Sorting Processor Performance (50 pts)

Introduction

As part of your prelab, you ran a suite of benchmarks on AMD and Intel processors by changing parameters
such as cache sizes and issue widths. You are provided with a file called simulations.txt that contains
results of processor simulations for the different parameters, in terms of the resulting CPI and execution
time. The format of the file is as follows:

<Processor name>,<Cache size>,<Issue width>,<CPI>,<Execution time>

Implementation Details

You have been assigned the task of sorting results from simulations.txt outlined in the five different ways
stated below. You decide to write a script called sort.bash that meets the given requirements.

1. The script should accept a single argument, a filename.

2. If the correct number of arguments is not provided, print an appropriate message and exit with a
return code of 1.

3. If the first argument is a non-existent file, print an error message and exit with a return code of 2.

4. Print the 5 fastest performing CPUs (determined by lowest execution time)

5. Print the 3 most efficient CPUs (determined by lowest CPI)

6. Print all CPUs that have a cache size of 4, in order of increasing execution time.

7. Print the n slowest CPUs (determined by highest execution time), where n should be an integer that
you prompt the user. (You may assume that the user will always enter a valid integer.)

8. Print to a file called sorted_CPI.txt a list of all AMD CPUs (in order of increasing CPI), followed
by all Intel CPUs (in order of increasing CPI) Hint: Don’t use numeric sort.

Sample Output

Note: Your output must match the sample output exactly. Your script may be tested with a different data
file.

$ ./sort.bash

Usage: ./sort.bash <filename>

$ ./sort.bash asdf

Error: asdf does not exist.

$ ./sort.bash simulations.txt

The 5 fastest CPUs:

Intel Core i7,32,16,1.456,4368

Intel Core i7,16,16,1.512,4537

Intel Core i7,8,16,1.625,4875

Intel Core i7,4,16,1.850,5550

Intel Core i7,32,8,1.956,5868

The 3 most efficient CPUs:

Intel Core i7,32,16,1.456,4368

Intel Core i7,16,16,1.512,4537

Page 2



Intel Core i7,8,16,1.625,4875

The CPUs with cache size 4:

Intel Core i7,4,16,1.850,5550

Intel Core i7,4,8,2.350,7050

AMD Opteron,4,16,2.150,7740

Intel Core i7,4,4,2.600,7800

Intel Core i7,4,2,2.725,8175

Intel Core i7,4,1,2.788,8362

AMD Opteron,4,8,2.650,9540

AMD Opteron,4,4,2.900,10440

AMD Opteron,4,2,3.025,10890

AMD Opteron,4,1,3.088,11115

Enter a value for n: 2

The 2 slowest CPUs:

AMD Opteron,1,1,4.738,17055

AMD Opteron,1,2,4.675,16830

$ cat sorted_CPI.txt

AMD Opteron,32,16,1.669,6007

AMD Opteron,16,16,1.738,6255

AMD Opteron,8,16,1.875,6750

...

...

...

Intel Core i7,1,4,3.950,11850

Intel Core i7,1,2,4.075,12225

Intel Core i7,1,1,4.138,12412

Page 3



2 I/O Redirection (50 pts)

SCRIPT NAME: run.bash

INPUT: None

OUTPUT: To STDOUT and to file

NUMBER OF ARGUMENTS: 0

ARGUMENTS: None

RETURN CODE: 0 for success

Introduction

You have been provided with a directory called c-files, which, as the name states, contains several different
.c files. You task is to compile and execute all of these files. You decide to write a short script called run.bash
that performs this task.

Implementation Details

Your script must meet the following requirements:

• For each of the files in c-files, compile it using the command gcc -Wall -Werror -std=c99 <filename>

and print the message “Compiling file <filename>”.

• Direct STDERR to /dev/null. This means that if you get any errors while compiling, suppress them
from the terminal and direct them to /dev/null.

• Check the return code of the gcc command to see if compilation succeeded. If it didn’t, print the
message “Error: Compilation failed.”

• However, if gcc was successful, print the message “Compilation succeeded.” and execute the compiled
code in a.out. If execution produces any output, send it to a file called <filename>.out, where
<filename> is the name of the .c file you compiled.

Sample Output

The following session gives an example of the output format that is expected.

$ ./run.bash

Compiling file err.c... Compilation succeeded.

Compiling file helloWorld.c... Compilation succeeded.

Compiling file sel_sort.c... Compilation succeeded.

Compiling file shift.c... Error: Compilation failed.

$ cat err.out

Running file err.c

$ cat helloWorld.out

Hello World

$ cat sel_sort.out

The array was:

4 2 32 26 94

53 3 10 24 17

The sorted array is:

2 3 4 10 17

24 26 32 53 94

Page 4


