
1

ECE 364

Software Engineering Tools Lab

Lecture 3

Python: Introduction

1

Lecture Summary

▪ Introduction to Python

▪ Common Data Types

▪ If Statements

▪ For and While Loops

▪ Basic I/O

2

What is Python?

▪ Python is a flexible programming language
▪ Procedural like C

▪ Object-oriented like C++, Java and C#

▪ Functional like LISP, Haskell, Scheme, Scala

▪ Python is a high-level language

▪ Has a rich set of high-level data types and functions
(standard library)

▪ Runs on many platforms and operating systems
▪ Windows, Linux/Unix, Mac OS and much more…

3

What is Python?

▪ Python is designed to be simplistic

▪ Very simple and consistent syntax

▪ Easy to read and write

▪ Interactive like a shell

4

What is Python?

▪ Most Python implementations have an interactive
mode
▪ Some implementations provide more interactive features

than others

▪ Examples: IDLE, IPython

5

Syntax and Features

▪ No braces { }

▪ Indentation is used to indicate code blocks

▪ No semicolon at the end of a statement

▪ Unless needed to separate multiple statements on one

line

▪ No $ preceding variable names

6

2

Making a Python Script

▪ Put the Shebang: #! on the first line

#! /usr/bin/env python3.4

▪ This line invokes the env program to get the path to python

▪ Comments are indicated using a # mark.

7

The Traceback

▪ When Python crashes, you will see a message like

Traceback (most recent call last):

File "./tables.py", line 12, in <module>

x_start = float(sys.argv[3])

ValueError: invalid literal for float(): c

▪ Read it carefully, starting from the bottom and working
upwards.
▪ It is usually very accurate in pinpointing errors

▪ It can save you a lot of time debugging

▪ Debugging Python is easy compared to Bash

8

Interactive Mode

▪ Interactive Python:
▪ Useful for testing out things you're not sure about

▪ Useful for prototyping algorithms

▪ Invoke at the command line with:
python
ipython
idle (graphical version)

Comes with a built in help function:
>>> help(list)
>>> import sys
>>> help(sys)

9

Data Types and Dynamic Typing

▪ Unlike C, variables are not declared with types
▪ The C language uses “static typing”

▪ All variables must be given an explicit type during before you
can compile your program

▪ Semantics are defined by the set of functions and
properties of the object
▪ No need to define variable, nor define their type.

▪ “If it looks like a duck and quacks like a duck, it must be a
duck”1

▪ Check the data-type of any variable using the type()
function

1. Source: http://docs.python.org/glossary.html#term-duck-typing

10

Built-in Constants

▪ Python defines several constants

▪ True – true value

▪ False – false value

▪ None – indicates the absence of value, like NULL

▪ Do NOT mistake with strings:

▪ 'True', 'False', 'None'

11

Built-in Numeric Data Types

▪ int – Unlimited magnitude integer
▪ 1234567890123456789012345678901234567
▪ Size only limited by available memory (and your time)

▪ float - Floating point number
▪ 64-bit double precision numbers

▪ complex – Complex numbers
▪ Represented as two floating point values

▪ Z = 1.2 + 7.5j

12

3

Truthiness

▪ Python will evaluate any object for truth in the
context of a conditional or Boolean operation

▪ The following values will evaluate to False
▪ False
▪ None
▪ 0, 0.0, 0j
▪ (), [], ''

13

Truthiness (2)

▪ Anything that does not evaluate to False evaluates
to True

▪ Just because it evaluates to False does not mean it
is False
▪ An empty tuple () is not an empty list []
▪ None evaluates to False but False != None
▪ But 0.0 is 0

14

Comparison Operators

Operator Function

A == B True if A is equal to B

A != B True if A is not equal to B

A < B True if A is less than B

A <= B True if A is less than or equal to B

A > B True if A is greater than B

A >= B True if A is greater than or equal to B

A in B True if A is an element in B

A not in B True if A is not an element in B

A is B True if A has the object identity B

15

Note: the in operator only works with collections

Boolean Operators

Operator Function

A and B True if A and B are both True

A or B True if either A or B is True

not A True if A is False

16

Do NOT confuse with bitwise operators:

&, |, and ~

Operator Precedence

▪ Precedence is listed from highest to lowest

▪ *, /, %

▪ +, -

▪ <, <=, >, >=, !=, ==

▪ in, not in

▪ not

▪ and

▪ or

▪ Parenthesis are used to change the evaluation

order, or improve readability.

17

Strings

▪ Single quotes in pairs allow " without escaping

▪ Double quotes in pairs allow ' without escaping

▪ Triple quotes (single or double) in pairs allow either
single or double quotes and newlines with escaping

▪ There are no other differences in quote types.

X = "This isn't \"funny\" -- \\' not needed"
X = 'This isn\'t "funny" -- \\\' needed'
Y = "Don't quote \"me\" -- \\\" needed"
Y = 'Don\'t quote "me" -- \\" not needed'
Z = """Don't quote "me""""
Z = '''Don't quote "me"'''

18

4

Strings (1)

▪ str – A string of characters

▪ My_string = "Hello World!"

▪ Name = "Goldfarb"

▪ Use the len() function to get the length of

any string
▪ len(My_String) # 12

▪ len(Name) # 8

19

Strings (2)

▪ Strings can be easily concatenated using the
addition (+) operator

▪ Var1 = "Hello" + " World"

▪ Var2 = Var1 + ", how is the weather?"

20

Strings (3)

▪ StrVar.rstrip()

returns a new copy of the string with whitespace removed

from the right side.

▪ StrVar.lstrip()

returns a new copy of the string with whitespace removed

from the left side.

▪ StrVar.strip()

returns a new copy of the string with whitespace removed

from both sides.

21

Strings (4)

▪ StrVar.split()

splits StrVar into a list on whitespace

Q: What is the difference between:

StrVar.split() and StrVar.split(" ") ?

▪ StrVar.split(delim)

splits StrVar into a list on the string delim

▪ StrVar.split(delim, n)

splits StrVar into a list on the first n occurrences of the

string delim

22

Strings (5)

Data = " mgoldfar,ee364a01,10.6 "

Clean off any extra whitespace

Data = Data.strip()

Split into list of strings

Cols = Data.split(",")

Cols[0] is 'mgoldfar'

Cols[1] is 'ee364a01'

Cols[2] is the string '10.6'

23

Strings (6)

▪ delim.join(StrList)
returns a string with each string in StrList separated
by the string delim

Sep = "?"
Items = ["Baz", "Foo", "Bar"]
ItemsStr = Sep.join(Items)

ItemsStr is "Baz?Foo?Bar"

You can inline the separator string also!
ItemsStr = ",".join(Items)

ItemsStr is "Baz,Foo,Bar"

24

5

Lists

▪ list is a built-in Python data type

▪ Much more powerful than plain old arrays

▪ Can also be used to implement stacks and queues

▪ Lists are containers of things (objects)

▪ Items need not be of the same data type

A = [1, 2, 3, 4]
B = [1, "Big Deal", [1, 2], 6.7J]

25

Lists (2)

▪ Lists are mutable, elements can be reassigned:

A = [1, 2, 3]

A[0] = "First"

▪ Use the len(X) function to return the length of a list

len(A) # Returns 3

▪ Lists are not sparse – an index must exist

A[9] = "foo" # Illegal - causes a runtime error

26

Indexing

Negative indices are allowed in Python
X = ["1st", "2nd", "3rd"]
X[0] = X[-3] = "1st"
X[1] = X[-2] = "2nd"
X[2] = X[-1] = "3rd"

▪ 0 is the index of the leftmost item

▪ -1 is the index of the rightmost item

27

Slicing

▪ Slicing is a way to extract multiple elements from
lists, tuples and strings.

28

A[M:N] A slice of elements starting from index M and
ending at index N-1

A[M:N:S] A slice of elements starting from index M and
ending at index N-1, with a step S

A[M:] A slice of elements starting from index M

A[:N] A slice of elements starting from index 0 and
ending at index N-1

A[:] A slice containing all elements of A

Slicing (2)

▪ Many things in Python can be sliced.

▪ List, tuples and strings just to name a few

A = [1, 2, 3, 4, 5]

B = "ECE 364 is only 1 credit hour."

29

A[2:4] is [3, 4]

A[:3] is [1, 2, 3]

B[4:7] is '364'

List Functions

▪ list.append(x): Add an item to the end of the list.

l = [2, 5]

l.append(13) # l = [2, 5, 13]

▪ list.extend(L): Extend the list by appending all the items in the given list.

l = [2, 5]

g = [7, -6]

l.extend(g) # l = [2, 5, 7, -6]

▪ Another way to extend a list is to use the addition operator (+)

▪ Note: You must use a list on both sides of the operator!

T = ["Mike", "Greg"]

T = T + ["Sudhir"] # Or T += ["Sudhir"]

T is ['Mike', 'Greg', 'Sudhir']

30

6

List Functions (2)

▪ list.insert(i, x): Insert an item at a given position.

▪ list.remove(x): Remove the first item from the list whose value is x. It is

an error if there is no such item.

▪ list.clear():Remove all items from the list. Equivalent to del a[:].

▪ list.index(x): Return the index in the list of the first item whose value is

x. It is an error if there is no such item.

▪ You can use the in operator to test for membership.

m = [3, 2, 6, 11, 2, 15, 77]

9 in m # Result in False

11 in m # Result in True

▪ list.count(x): Return the number of times x appears in the list.

31

List Functions (3)

▪ list.sort(): Sort the items of the list in place.

▪ list.reverse(): Reverse the elements of the list in place.

▪ list.copy(): Return a copy of the list. Equivalent to b=a[:].

Note: copy creates a shallow copy.

If you do c = l instead of using copy(), then c & l both

point to ['IN', 'MI', 'OH', 'IL', 'CA'].

If you change l, c will also change.

▪ del ListVar[i:j]: Removes the items i to j-1 from the list. (You can also

use del with/without indexing.

32

File I/O

▪ The preferred method to open files is using the with

keyword.

▪ The with keyword is a shorthand for a lot of work in the

background to ensure resources are claimed by the system

when done.

▪ Can be used for both reading and writing.

33

File I/O (2)

Example 1: Reading the file as a list of lines.

This is called a "with-block"
The "myFile" below is called the file alias.
'lines' is a list of strings.

with open('textFile.txt', 'r') as myFile:
lines = myFile.readlines()

Example 2: Reading the file as a single string.

'content' is a single string of the whole file.

with open('textFile.txt', 'r') as myFile:
content = myFile.read()

34

File I/O (3)

Example 3: Writing a list of strings.

The list of strings must already contain the "\n"

with open('textFile.txt', 'w') as myFile:
myFile.writelines(lines)

Example 4: Writing a single string.

Construct the string before you write it.

with open('textFile.txt', 'w') as myFile:
myFile.write(content)

35

Type Conversion

▪ There is no casting from one type to another in Python

▪ New values can be created from other values of different types

▪ If a new value can not be created python will raise an exception

36

int(x) Attempts to create a new integer from x

float(x) Attempts to create a new float from x

str(x) Attempts to create a new string from x

complex (re, im) Attempts to create a complex number.

7

Type Conversion (2)

str(Var)

Create a new string from Var.

int(StrVar)

Create a new integer from StrVar.

int(StrVar, base)

Create a new integer from StrVar in base base

float(StrVar)

Create a new floating point number from StrVar

37

if Statement

▪ Behaves just like any other if statement you have encountered

▪ Colons are required at the end of each conditional expression

if <condition1>:
statements

elif <condition2>:
statements

else:
statements

▪ Note: Python does not have a switch statement.

38

for Loops

▪ Python supports only one style of for loop:

for <variable> in <sequence>:
statements

▪ Example:
Sum = 0
for Item in [2, 4, -2, 5]:

Sum = Sum + Item
print(Sum)

▪ Loop execution can be modified with break and
continue

39

while Loops

while <condition>:
statements when condition is true

j = 10

while j > 0:

print(j)

j -= 1

40

• Avoid using while loops in place of for loops, as it is

harder to debug.

range Function

▪ Range can generate a lists of integers

41

range(N) Generates a list of integers between 0 and N-1

range(6)  [0, 1, 2, 3, 4, 5]

range(M, N) Generates a list of integers between M and N-1

range(5, 10)  [5, 6, 7, 8, 9]

range(M,N,S) Generates a list of integers between M and N-1

with a stride of S.

range(10,50,10)  [10, 20, 30, 40]

range Function (2)

▪ Try your absolute best NOT to use the index, and

operate on the elements directly.

▪ This is the Pythonic Style. Works with all collection types:

for item in someList:

Do Something with the item.

▪ Works only with lists & tuples. (NOT Recommended):

for index in range(10):

Get the item from the list.
Do Something.

42

8

Printing

▪ Use print(someString) to write data to stdout

print("Hello World!")

▪ New way to control printing is by using format()
▪ Old Style (with %) can still be used, but not recommended.

▪ Examples:
▪ Print one or more elements in order.
>>> print('I am "{}" and I am "{}".'.format('Smart', 'Happy'))
I am "Smart" and I am "Happy".

▪ Print one or more elements out of order.
>>> print('I am "{1}" and I am "{0}".'.format('Smart', 'Happy'))
I am "Happy" and I am "Smart".

43

Printing (2)

▪ Examples:
▪ Printing with keywords.
>>> print('Today is "{day}" and it is "{weather}"!'

.format(weather='Sunny', day='Monday'))
Today is "Monday" and it is "Sunny".

▪ Print one or more elements out of order.
>>> print('I am "{1}" and I am "{0}".'.format('Smart', 'Happy'))
I am "Happy" and I am "Smart".

▪ Print an integer with leading 0s.
>>> print("{:05d}".format(23))
'00023'

▪ Check string formatting specs for more details:

https://docs.python.org/3/library/string.html#formatstrings

44

Python Modules

▪ Python has a few built-in functions

▪ Many more are found in modules

▪ A module is like a header file, it provides access to new

functions

▪ Common modules: sys, string, os, and math

▪ When you want to use a function from a module,

you must first import that module
import sys
import os, math
from enum import Enum
from pprint import pprint as pp

45

Python Modules (2)

▪ A common problem is not importing a module when

it is used

▪ Python will raise an error if you forget to import something

▪ Example: (Solution: add import sys)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'sys' is not defined

46

