
ECE 364 Prelab Assignment 03
Basics of Python

Due: September 9, 2018

Passing this lab will satisfy course objectives CO3

Instructions

• Work in your Prelab03 directory.

• Copy all files from ∼ee364/labfiles/Prelab03 into your Prelab03 directory. You may use the following
command:
cp -r ∼ee364/labfiles/Prelab03/* ./

• To submit, commit your files to SVN. We will only grade the version of the file that is in SVN.

• Make sure you file compiles. You will not receive any credit if your file does not compile.

• You must meet all base requirements in the syllabus to receive any credit.

• Name and spell the file, and the functions, exactly as instructed. Your scripts will be graded by an
automated process. You will lose some points, per our discretion, for any function that does
not match the expected name.

• Make sure your output from all functions match the given examples. You will not receive points
for a question whose output mismatches the expected result.

• Unless otherwise specified, you cannot use any external library, but you can use any module in the
Python Standard Library to solve this lab.

• Make sure you are using Python 3.4 for your project. If you are using PyCharm, go to:

File Menu → Settings → Project Interpreter

And make sure that Python 3.4 (/usr/local/bin/python3.4) is selected.

1



Basics of Python

Create a Python file named simpleTasks.py, and do all of your work in that file. This file should only consists
of function blocks, and, optionally, a conditional main block, (i.e. if __name__ == "__main__":). Do not
include any loose Python statements, but you can, however, write any number of additional utility/helper
functions that you might need.

Implementation Requirements

1. [20 pts] Consider the string "1547896154321687984" containing a sequence of digits. If you search for
"154" you can find that the string contains two instances of that number. If you search for the pattern
"1XX7", where "X" is a placeholder representing any digit, you can find the two numbers "1547" and
"1687" that match that pattern, and searching for the pattern "X8XX8X" will result in only a single
match, "687984".

Write a function called find(pattern) that reads the file sequence.txt given to you, searches for the
provided input pattern string throughout, and returns a list of all number sequences that match the
given pattern.

Notes:

• The pattern can be of arbitrary size, but it can only contain digits and placeholders.

• There can be an arbitrary number of the placeholders anywhere in the pattern string.

• The pattern provided will have at least one digit and one placeholder.

• If the pattern results in a single match, return a list of one string element, and if it does not result
in any matches, return an empty list.

• The returned results must be in the order of their presence in the file, and can contain overlapping
digits. For example, search for the pattern "X38X" in the sequence "138389" should return "1383"
and "8389".

• Do not use Regular Expressions to solve this question, or you will receive no points.

2. [20 pts] Consider the string "54789654321687984" containing a sequence of digits. The sequence "547"
is the only one whose digital product (the product of its individual digits) is equal to 140, while the
sequences "32168" and "984" have a digital product of 288.

Write a function called getStreakProduct(sequence, maxSize, product) that searches the string
sequence for all sub-sequences, whose size is between 2 and maxSize, inclusively, and returns a list of
all sequences whose digital product is equal to product.

Notes:

• If there is only one match, return a list containing one element, and if there are no matches, return
an empty list.

• The returned results must be in the order of their presence in the input sequence, and can contain
overlapping digits. For example, searching for sequences of max size 3, with digital product equals
to 32 in the sequence "14822" should return "148", "48" and "822".

3. [20 pts] Write a function called writePyramids(filePath, baseSize, count, char) that saves one
or more pyramid-shaped sequence of characters in file, separated by a single space at the base. The
filePath is the full path of the file to save the pyramids to, baseSize is an odd integer representing
the size of the pyramid’s base, count is the number of horizontally-concatenated pyramids to create,
and char is the character used to build the pyramids with. For example, the files pyramid13.txt and
pyramid15.txt have been obtained using the commands:

Page 2



>>> writePyramids('pyramid13.txt', 13, 6, 'X')
>>> writePyramids('pyramid15.txt', 15, 5, '*')

Notes:

• The files you generate must be an exact match to the ones provided, if you use the same arguments.

• The first line of the file always contain the tips of the pyramids, where each tip is only one
character.

• The last line of the file always contain the bases of the pyramids, separated by a space.

4. [10 pts] Consider the string "AAASSSSSSAPPPSSPPBBCCCSSS" containing a sequence of uppercase letters.
Write a function called getStreaks(sequence, letters) that takes in a string similar to the example
shown, and returns a list of the streaks, in the order of their appearance in the sequence, of the letters
provided. For example:

>>> sequence = "AAASSSSSSAPPPSSPPBBCCCSSS"
>>> getStreaks(sequence, "SAQT")
['AAA', 'SSSSSS', 'A', 'SS', 'SSS']
>>> getStreaks(sequence, "PAZ")
['AAA', 'A', 'PPP', 'PP']

Notes:

• Return an empty list if no matches were found of any of the letters passed.

• As shown in the example, the order of letters in the input argument letters is arbitrary, and not
all letters may be present.

5. [10 pts] Write a function called findNames(nameList, part, name) that takes in a list of strings
nameList, where each string contains the first and last name of a person. The function should search
for the name passed, and return a list of matches, based on the constraint string part, where part can
be "F", for searching in first names only, "L" for searching in last names only, or "FL" for searching in
both. For example:

>>> names = ["George Smith", "Mark Johnson", "Cordell Theodore", "Maria Satterfield",
"Johnson Cadence"]

>>> findNames(names, "L", "johnson")
["Mark Johnson"]
>>> findNames(names, "F", "JOHNSON")
["Johnson Cadence"]
>>> findNames(names, "FL", "Johnson")
["Mark Johnson", "Johnson Cadence"]

Notes:

• Return an empty list if no matches were found, or if the part string contains anything other than
the options mentioned above. You may assume you will always receive uppercase letters.

• As shown in the example, the name to search for can have different letter casing from the ones in
list.

6. [10 pts] The number 9 can be represented in binary as 1001, and if we convert it to a list of Booleans
we will have [True, False, False, True]. Write a function called convertToBoolean(num, size)
that takes in a positive integer and returns a list of Booleans representing the number num, where the
length of the list is a minimum of size. For example:

Page 3



>>> convertToBoolean(135, 12)
[False, False, False, False, True, False, False, False, False, True, True, True]

>>> convertToBoolean(9, 3)
[True, False, False, True]

Notes:

• If the requested size is not sufficient, you need to expand the list to satisfy the needs of the input
number as shown in the second example.

• Verify that the input parameters are integers, and return an empty list if they are not.

7. [10 pts] Write a function called convertToInteger(boolList) that does the opposite of the previous
function, i.e. it takes in a list of Booleans, and returns their equivalent integer. For example:

>>> bList = [True, False, False, False, False, True, True, True]
>>> convertToInteger(bList)
135

>>> bList = [False, False, True, False, False, True]
>>> convertToInteger(bList)
9

Notes:

• Verify that the input parameter is list, and return None if it is not.

• Verify that all elements are Booleans, and return None otherwise.

• Verify that the list is not empty, and return None if it is.

Page 4


