ECE 364
Software Engineering Tools Laboratory

Lecture 6
Python: Regular Expressions

i

Lecture Summary

= Regular Expressions in Python

I

Python Regular Expressions

= Python provides very sophisticated regular
expression functionality

= Searching and matching
= Ability to specify named “groups” to get values of matched strings
= Substitution/Find-Replace

= Pattern Splitting

Ll

Regular Expressions (2)

= The most basic regex is just the characters of a
string we want to match

= Avery simple regex: blue
= Will match the string “blue”

= Another very simple regex: 1a2b3c
= Will match the string “1a2b3c”

(sl

Regular Expressions (3)

= Boolean “or”: Choose between 2 or more
alternatives
= Avertical bar (pipe) “|” indicates an “or”

= Example: red|green|blue
= Will match “red” or “green” or “blue”

£

Regular Expressions (4)

= Grouping: Assign precedence and scope to regular
expressions
= Use parenthesis “ (<regex>) " to form a group

= Example can|r|t
= Matches string “can” or “r’ or “t”

= Example: ca (n|r|t)
= Matches strings “can” or “car” or “cat”

o

Regular Expressions (5)

= Quantifiers: Express the number of repetitions of a
preceding element
= Zero or one repetitions: ?
= Zero or more repetitions: *
= One or more repetitions: +

» Example: card?
= Matches “car” or “card”
= Example: ab*c
= Matches “ac” or “abc” or “abbc” or “abbbc” or ...
= Example: be+f
= Matches “bef” or “beef” or “beeef” or “beeeef” or...

i

Regular Expressions (6)

= Range Quantifier: Express the number of repetitions of a
preceding element
= {m,n} —between m and n repetitions
= {m, } —atleastm repetitions
= {n} —exactly n repetitions

= Example: fo{1l,5}
= Will match “fo” or “foo” or “fooo” or “foooo” or “fooo00”

= Example: 60{3,}
= Will match “6000” or “60000” or “600000” or ...

= Example: 60{2}
= Will match “600”

Regular Expressions (7)
= Quantifiers and groups can be used together

= Example: (ca(t|r))+

= Matches “cat” or “car” or “catcat” or “catcar” or “carcar” or
“catcarcat” or ...

= Example: EC?E((112]3)+)*

= Matches “EE” or “ECE” or “EE 111" or “ECE 2” or “EE 13
2" or“ECE 1233217 or ...

Ll

Regular Expressions (8)

= Character Set: A compact representation to represent a
set of characters to match
= Use square brackets to denote a set: [<characters>]

= How could we match all integers?
" (0111213141516171819)+

= Another way is to match characters in a set
= [0123456789]+

= An even shorter way is to take advantage of the regular
ordering of the digits
. [0-9]+

% 10

Regular Expressions (9)

= |f a set of characters can form a natural range (e.g. 0 —
9, a-z) then you can use <start><dash><end>
notation
= Multiple ranges can be placed inside the square brackets
= Ranges can be used in conjunction with single characters
= Can invert the set using a ”* character at the beginning

= Example: [a-z0-9]+
= Will match any alphanumeric string

= Example: [aeiou0-9]*
= Will match any string containing only vowels and numbers

= Example [*a-z0-9]+
= Willmatch 1 or more characters that are NOT a-z or 0-9.

% 11

Regular Expressions (10)

= To match any single character use a period “.”
= Will match all characters including whitespace

= Example: ..
= Will match “abc” or “a 1’ or “ 3" or ...

= Example: . *
= Will match: “any string of any length”

% 12

Regular Expressions (11)

= Escaping: Characters that have special meaning
must be escaped when used in a regex
= Prepend a backslash character (\)

= Example: [0-9]*\.[0-9]+
= Will match “.345” or “12.4” or “9.11111" or ...

= Example: [a-£0-9]1+ (\+[a-£0-9]+)?
= Will match: “a4f” or “beef+abb” or ...

% 13

Regular Expressions (12)

= Search vs. Match: An implementation detail of the
regex functionality provided

= Search refers to finding a match somewhere in a string
(substring)

= Match refers to checking if the entire string matches
= Some regex engines will preform search by default

= Check documentation to find out
= Try out some basic examples

% 14

Regular Expressions (13)

= Start of String: the position right before the first character
= Can be matched using the ‘*’ character

= End of String: the position right after the last character
= Can be matched using the ‘$’ character

= Example: [0-9]+
= A search would match: “abc 012 def” or “999 bbb” or ...
= A match would match: “123” or “999” or ...

= Example: ~[0-9]+S
. V\IIiII match only strings that contain digits 0 to 9 and nothing
else
= A match would match: “123” or “999” or ...
= Asearch would match: “123” or “999” or ...

% 15

Symbol Summary

= Or: |

= Grouping: ()

= Quantifiers: ? 0+
» Range Quantifiers: {,}

= Character Set: [1]

= A Single Character:

= Start & End: n $

% 16

Special Sequences in Python

= Commonly used expressions have shorthand
sequences

\d Equivalentto [0-9]

\D Equivalentto [~0-9]

\w Equivalentto [a-zA-20-9_]

\W Equivalentto [*a-zA-20-9]

\s Equivalent to any whitespace character

\s Equivalent to any non whitespace character

\\ Matches a literal backslash

\b Match the empty string the forms the boundary of a word

Special Sequences (2)

= Special sequences in Python regex conflict with
escaped characters
= \b Backspace in a string literal
= \b Word boundary in a regex

= To avoid this conflict, regular expressions are written
as “raw” strings
= Typical String: "this is a string"
= Raw String: r"this is a raw string"

Groups

= Agroup is formed by parenthesizing (part of) the
regular expression
= (la-z]+|[0-9]+)
" hello (worldl|ee364)

= In Python, a group also specifies the text you want
to extract from a matched string
= Python reserves the 0" group as the entire string that
matches the regular expression

% 19

Groups (2)

= Example: Search for an email address and get the
username and domain

Regex: ([\w.-1+)@ ([\w.-]+)
Input: "foo mgoldfar@purdue.edu baz"

Group 0: mgoldfar@purdue.edu

Group 1: mgoldfar
Group 2: purdue.edu

Groups (3)

= Groups can be given names
(?P<GroupName> ..)

Regex: (?P<user>[\w.-]+)@ (?P<domain>[\w.-
1+)
Input: "foo mgoldfar@purdue.edu baz"

Group 0: mgoldfar@purdue.edu
Group “user”: mgoldfar
Group “domain”; purdue.edu

% 21

Greedy and Non-greedy

= Quantifiers in a regex match as much as possible
= 2 is appended to the quantifier to indicate non-
greedy behaviour
= A non-greedy match will match as little as possible

Greedy Non-Greedy
(pattern) + (pattern) +?
(pattern) * (pattern) *?
(pattern)? (pattern) ??
(pattern) {n} (pattern) {n}?
(pattern) {n,m} (pattern) {n,m}?

I

Greedy vs. Non-greedy (2)

= Example: Match an HTML tag name:

Regex: < (.*)>
Input: "<h1>ECE 364</h1>"

Group 0: "<h1>ECE 364</h1>"
Group 1: "h1>ECE 364</hl"

= None of the groups contain what we want because
the * is greedy

%H? 23

Greedy vs. Non-greedy (3)

= Example: Match an HTML tag name:

Regex: < (.*?)>
Input: "<h1>ECE 364</h1>"

Group O: "h1"
Group 1: "h1"

= Non-greedy *? operator results in the correct
behavior

%E! o

re Module
= The re module provides access to regular

expression functionality

= Always remember to import re before using any
regular expressions

Match and Search

®* re.match (<pattern>, <string>)

= |If zero or more characters at the beginning of <string>
match the regex <pattern>, return a MatchObject

= Return None if the string does not match the pattern

" re.search (<pattern>, <string>)

= Scan through <string> looking for a location where the regex
<pattern> produces a match, and return a corresponding
MatchObject

= Return None if no position in the string matches the pattern

% 26

Match and Search (2)

input = "foo bar@baz.bin 923"
expr = r" ([\w.=1+)@([\w.=]1+)"

if re.match(expr, input):

print ("The input starts with an email!")
elif re.search(expr, input):

print ("The input contains an email.")
else:

print ("No email found.")

% 27

The MatchObject

= When a regular expression finds a match, a
MatchObject is returned
= None is returned if there is no match

= This object contains information about the matched
string

I

The MatchObject (2)

* m.group (g)
Returns the string contained in the g*" group

* m.group(gl, g2, g3, ..
Returns a tuple containing the g1t", g2r4, g3+4, ... groups

" m.groupdict ()
Returns the a dictionary of all named groups keyed by
group name

= Arguments to m.group () can be anindex or a
string representing the group name

% 29

The MatchObject (3)
m = re.match (r" (?P<int>\d+)\. (\d*)", "3.14")
m.group (0) returns "3.14"

group (1) returns "3"
m.group (2) returns "14"

2

m.group ("int") returns "3"
m.group (0, "int", 2) returns ("3.14", "3", "14")
m.groups () returns the tuple ("3", "14")

m.groupdict () returns {"int" : "3"}

% 30

The MatchObject (4)

pattern = r"[0-9]+ (?2P<foo>\.[0-9]+)"
m = re.search (pattern, "Hello 56.43 World")

if m:
gp = m.groupdict ()
print(gp["foo"])
else:
print ("Not found")

% 31

Split

= re.split(pattern, string, maxsplit=0)
= Split string by the occurrences of pattern
= If maxsplit is nonzero, at most maxsplit splits occur,

and the remainder of the string is returned as the final
element of the list

>>> re.split (r"\W+", "foo, bar, baz.")

['foo', 'bar', 'baz', '']

% 32

Find

" re.findall (pattern, string)
= Return all non-overlapping matches of patternin
string, as a list of strings
= The stringis scanned left-to-right, and matches are
returned in the order found.

>>> re.findall(r"[0-9]+", "hello 56.78 world 25")

['56', '78', '25')

>>> re.findall (r"[\w.]+@[\w.]+", "26 bar@biz.com baz@foo 99")
['bar@biz.com', 'baz@foo']

Ll

Substitution

®* re.sub(pattern, repl, string, count=0)

= Return the string obtained by replacing the leftmost non-
overlapping occurrences of patternin string by the
replacement repl

= [f the pattern isn’t found, string is returned unchanged

>>> re.sub(r"[0-9]+", "NUM", "Hello 267 World 8")
'Hello NUM World NUM'

>>> re.sub(r"[0-9]+", "NUM", "Hello 267 World 8", 1)
'Hello NUM World 8'

Substitution (2)

®* re.subn (pattern, repl, string, count=0)
= Performs the substitution in the same way re.sub() does

= Returns a tuple containing the new string and the number
of occurrences of pattern replaced

>>> re.subn(r"[0-9]+", "NUM", "Hello 267 World 8”)
('"Hello NUM World NUM', 2)

>>> re.subn(r"[0-9]+", ”NUM", "Hello 267 World 8", 1)
("Hello NUM World 8', 1)

Flags

= Flags can be used to modify how the regular expression
engine behaves.
= Passed to the functions covered in the previous slides
= Combine flags with a bit-wise or operator

re.I or re.IGNORECASE Perform non case-sensitive matching
re.Morre.MULTILINE Make " and $ apply to each line (not the entire string)
re.S or re.DOTALL Make . match all characters, even newline

re.X or re.VERBOSE Ignore un-escaped whitespace and comments.

% 36

Flags (2)

input = "foo bar@BAZ.com 923"
expr = r" ([\w.-]+)@([\w.-]+)"

if re.match(expr, input, re.I):

print ("The input starts with an email!")
elif re.search(expr, input, re.I):

print ("The input contains an email.")
else:

print ("No email found.")

i

Compiled Regular Expressions

= Aregular expression can be compiled into a special
object.

= Improves the performance when performing lots of
repeated matches or searches

= You should compile your regular expression if it is going to
be used multiple times (i.e. in a loop)

Reg_Exp = re.compile (expression[, flags])

= The regular expression can then be passed around like any
other Python value.

% 38

Compiled RegEXx (2)

= Functions of a compiled regex are identical to the
module level functions

Reg_Exp = re. compile (expression[, flags])
Reg_Exp.search (string)

Reg_Exp.match (string)

Reg_Exp.findall (string)

Reg Exp.split(string[, maxsplit])
Reg_Exp.sub(replacement, string[, count])

Reg_Exp.subn(replacement, string[, count])

Ll

