
1

ECE 364

Software Engineering Tools Laboratory

Lecture 7

Python: Object Oriented Programming

1

Lecture Summary

 Object Oriented Programming Concepts

 Object Oriented Programming in Python

2

Object Oriented Programming

 OOP is a programming style that emphasizes

interaction between objects

 Objects represent things in the universe

 Car, Plane, Phone, TV, Computer etc.

 Objects can represent abstract things also

 Mathematical system, tree (data structure), file

stream/network channel, web page, etc.

3

Composition

 Objects can be composed of other objects

 Ex: Car (Engine, Transmission, Wheels etc.)

 Ex: GUI (Window, Text Box, Button etc.)

 Ex: Operating System (Process Scheduler, File System,

Memory Manager etc.)

 We call this the HAS-A relationship

 Car HAS-A engine

 Bank Account HAS-A Balance

4

Encapsulation

 Objects hide their complex behaviour from the

outside world by exposing only a small set of

functions and properties

 We call this encapsulation

 Example: Car

 Complicated actions take place when a car is started

 But with no (or limited) knowledge of the internals of the

car you can change the state

5

Member Variables

 Objects have state (most of the time)

 State is stored in member variables

 A member variable is similar to a field in a C structure

 Example: Persons age, particle mass, account balance,

read position in file

 Member variables can also store complex objects

 This is composition

 Object state can be changed by modifying member

variables directly or by invoking a function

6

2

Member Functions

 Objects have functions (most of the time)

 Called member functions

 A member function belongs to an object

 When called it has access to the internal state of an object

 Member functions do not necessarily affect the state

of an object

 Example: ListVar.pop()

 If the list ListVar is empty nothing changes

7

Inheritance

 Objects can inherit properties and functions from

other objects

 We call this inheritance

 Inheritance expresses the IS-A relationship

 A derived object is an object that inherits from one or

more base objects

 Student is derived from Person

 Student inherits from Person

 Student IS-A Person

8

Inheritance (2)

 Inheritance expresses a hierarchy of IS-A

relationships

 Directed edge indicates IS-A

9

Person

Student Professor

Tenured ProfessorECE Student ME Student

Inheritance (3)

 The “direction” of inheritance is strictly upwards

towards the parent

 ECE Student IS-A Student

 ECE Student IS-A Person

 The IS-A relationship does NOT hold across or

downwards

 Can NOT say ECE Student IS-A Professor

 Can NOT say Person IS-A Student (Not All Are)

10

Function Overriding

 When a derived object inherits from a base object it

can choose to keep the original behavior of a

member function or implement different behavior

 Function overriding enables a derived class to

replace or enhance the behavior of a function of the

same name from its parent class

11

Polymorphism

 An object can behave like (be treated the same as)

a different object if both objects implement the same

interface

 We call this polymorphism

 An interface is a well defined set of functions and

attributes that are implemented by objects

 A derived object can be treated as if it were the

same as its base object without having to know what

the specific object type is ahead of time

12

3

Polymorphism (2)

 An easier way to view polymorphism:

 Consider various kinds of Students: GoodStudent,

AvgStudent, BadStudent

 All Student objects implemented a Study() function

but each type varies in behavior

13

Polymorphism (3)

 for Student s in Class.getStudents():

 s.Study()

 From the viewpoint of a Student we can call the

correct Study() function without knowing the specific

type of student ahead of time

14

Function Overloading

 Function overloading allows the definition of multiple

functions with the same name but different

arguments

 Reduces the number of different function names

 Avoids creating function names that encode the
arguments (e.g. print_2float, print_1int)

 Example:

 print(s) # s is a string

 print(i) # i is an integer

 print(r) # r is a float

15

Operator Overloading

 Operator overloading is a feature of many object

oriented languages that allow the functionality of

built-in operators to apply to programmer defined

objects

 Example: Matrix Object

 M3 = M1 * M2 vs. M3 = M1.multiply(M2)

 Poorly designed operator semantics can lead to

confusing behavior (e.g. + performs *)

 Need to consider mutability of operands also!

16

Do not abuse operator overloading

 Operator overloading should only be used if the behavior of

the operator will closely fit the original semantics of the

operator.

 + means "add"

 - means "subtract"

 * means "multiply"

 | means "or" (e.g., bitwise or)

 ^ means "and" (e.g., bitwise and)

 ▒[▒] means "get item" by key (if ▒ is str) or by 0-based index (if ▒ is int)

 Meaning of operation should be understable to any

programmer, without seeing your impelementation or reading

your comments/documentation.

17

Classes

 A class is the definition of an object

 A class specifies member functions and member variables

that belong to an object

 An object is an instance of a class

 Creating a new object is called instantiation

 A class can have many instances

18

4

Constructors

 A constructor is a special member function that is

called to instantiate a class

 The constructor is only called once during the

lifetime of an object

 The constructor is responsible for initializing the

state (member variables) of an object

 May also invoke constructors of other objects

19

Destructors

 A destructor is a special member function that is

called right before an object goes out of existence or

is explicitly de-allocated

 Destructors are used to release resources or finalize

the object

 Objects may have open files or network streams that must

be closed

 Can also be used to notify other objects about destruction

20

OOP in Python

 Almost everything in Python is an object

 Numbers, strings, list, dictionary, tuple, etc.

 File streams, network sockets, GUI elements etc.

 Up to this point you have only made use of existing

objects and their functions

 Now you will learn how to extend or create new objects in

Python

21

Pass Statement

 Python contains a special pass statement that

performs no operation or changes of state

 Used when you do not want to specify any functionality or

behavior but syntactically need a statement

22

def empty_function():
pass

class empty_class:
pass

Classes

class ClassName:
<statements>

 Instantiation of a new object:

foo = ClassName()

bar = Mod_Name.ClassName() # class is in module Mod_Name

 foo is an object that is an instance of ClassName

 bar is an object that is an instance of ClassName

 Notice that to instantiate a class the name of the class is
called like a function

23

Classes (2)

 Classes can be placed in module or directly in your

script file

 Consider using a module to organize or group

similar classes together

 Classes are imported just like functions

24

5

Member Variables

 Member variables represent the state of an object

 Accessing a member variable from outside of the class:

ObjA.my_var = 10

ObjB.my_var = 20

 Each instance of the above objects maintains it’s own
copy of a member variable called my_var
 Member variables can be mutable types so a single value can be

shared between many objects

ObjA.my_list = range(10)

ObjB.my_list = ObjA.my_list # my_list refers to the same list in

ObjB.my_list.append(“hello”) # both objects

25

Member Variables (2)

class Cat:

def __init__(self, name, age):

self.name = name

self.age = age

 The class Cat is defined with two member variables: name
and age

 All member variables should be initialized explicitly in the

constructor

 self is a special reference to the specific object that is being instantiated by

the constructor

 See the next section for more details of the self reference

26

Member Variables (3)

Instantiate a new instance of Cat
kitty = Cat("Garfield", 32)

Print the values of its member variables
Print('My name is {}.'.format(kitty.name))
Print('I am {} years old.'.format(kitty.age))

>>> My name is Garfield.
>>> I am 32 years old.

27

Methods

 Methods (aka "member functions") are declared just

like normal Python functions

def function(self, arg1, arg2, …):

<function body>

 The first argument to a member function is a special

“self” value

 self is a reference to a specific instance

 self is required for any member function

28

Methods (2)

 So why do we need the self argument?

 When we define a class we are specifying the
member variables and member functions for every
possible instance of an object
 At any time there are multiple objects of the same class

that exist

 To differentiate between all of the potential objects
that exist a reference to a specific object is provided
 State for a particular object can then be modified or

accessed through the self reference

29

Methods (3)

 Two ways to invoke member functions

ClassName.method(Var, args…)

ob.method(args…)

 Most of the time the second method is used and ob

is implicitly passed as the first argument of the

function

30

6

Member Functions (4)

class Cat:
def __init__(self, name, age):

self.name = name
self.age = age

def speak(self):
print('My name is {}.'.format(self.name))
print('I am {} years old.'.format(self.age))

Instantiate a new instance of Cat
kitty = Cat("Garfield", 32)

Invoke the speak member function
kitty.speak()

>>> My name is Garfield.
>>> I am 32 years old.

31

__init__(self, …)

 __init__ is reserved for defining the constructor

 See previous slides for an example

 __init__ is not called explicitly, the class name is used

instead

 Unless you are calling the constructor of a parent object

(inheritance)

some_obj = ObjType(arg1, arg2, …)

my_pet = Cat("Spot", 12)

32

Returning Objects

 Many functions you write may produce an object as

the return value

 You can return the result of a constructor

def make_foo(i):

Return a new Foo object

return Foo(i)

my_foo = make_foo(10)

33

Special Member Functions

 Some member functions are “special”
 Begin and end with two (2) underscores

 Already saw the constructor __init__

 Most of them provide convenience and help

integrate your objects naturally into Python

34

Special Member Functions (2)

__add__(self, other) Overloads the + operator

__sub__(self, other) Overloads the - operator

__mul__(self, other) Overloads the * operator

__truediv__(self, other) Overloads the / operator

__lt__(self, other) Overloads the < operator

__gt__(self, other) Overloads the > operator

__ge__(self, other) Overloads the >= operator

__le__(self, other) Overloads the <= operator

__eq__(self, other) Overloads the == operator

__ne__(self, other) Overloads the != operator

35

Special Member Functions (3)

__str__(self) Returns a string representation

Overloads str(obj)

__int__(self) Returns an integer representation

Overloads int(obj)

__float__(self) Returns a float representation

Overloads float(obj)

__len__(self) Returns a lengths

Overloads len(obj)

__getitem__(self, k) Overloads the [] operator

e.g. obj[k]

__setitem__(self, k, v) Overloads the [] operator

e.g. obj[k] = v

__contains__(self, item) Overloads the in operator

e.g. item in obj

36

7

Inheritance

class Base:

def __init__(self, name):

self.name = name

Base class name is in () after class name

class Derived(Base):

def __init__(self, name, age):

Need to call parent constructor!

Base.__init__(self, name)

self.age = age

37

Inheritance (2)

 When an object inherits from another object the
derived constructor should call the parent
constructor

super().__init__(name)

 The explicit function call must be used to disambiguate the
__init__ because it is a member function of both objects

 This ensures that all of the member variables
inherited from the parent are initialized in the most
derived object

38

Inheritance (3)

Base class is Student
class Student:

def __init__(self, name):
self.name = name
self.knowledge_level = 0

def study(self, hours):
self.knowledge_level += hours * 0.01

def print_knowledge_level(self):
print("{} has a knowledge level of {}".
format(self.name, self.knowledge_level)

class GoodStudent(student):
def __init__(self, name):

student.__init__(self, name)

def study(self, hours):
Entirely replace the behavior of study
Function override
self.knowledge_level += hours * 10

39

Inheritance (4)

class BadStudent(student):

def __init__(self, name):

initialize the member variables of Student

student.__init__(self, name)

def study(self, hours):

Enhance behavior of study

Implemented in terms of Student study()

hours = hours – 1

Calling the base class functionality

student.study(self, hours/5)

40

Inheritance (5)

class AvgStudent(student):

def __init__(self, name):

student.__init__(self, name)

Avg student will not specialize Study so no need

to re-define study

 Methods of a class may call methods of the same

name from an inherited class

 Allows you to extend the functionality or completely

redefine functions in other classes

41

Inheritance (6)

good = GoodStudent("Goldfarb") # instantiate various
bad = BadStudent("Mike") # Student objects
avg = AvgStudent("Foo") # Always use the most derived object name

good.study(1)
bad.study(1)
avg.study(1)

good.print_knowledge_level()
>>> "Goldfarb has a knowledge level of 10"

bad.print_knowledge_level()
>>> "Mike has a knowledge level of 0"

avg.print_knowledge_level()
>>> "Foo has a knowledge level of 0.01"

42
Note: Do not use names like a for objects except for examples in lectures and tutorials.

8

Polymorphism

 Polymorphism in Python comes directly from

dynamic typing

 As long as an object has a function with the same

name and arguments it can be treated in a uniform

way

 Even if the objects do not inherit from a common parent!

43

Polymorphism (2)

class Dog:
def bark(self, s="woof woof"):

print("Dog Bark: {}".format(s))

class Duck:
def bark(self, s="quack quack"):

print("Duck Bark: {}".format(s))

"a" behaves like a Dog or a Duck depending on the
object
for a in [Dog(), Duck(), Dog()]:

a.bark()

>>> Dog Bark: woof woof
>>> Duck Bark: quack quack
>>> Dog Bark: woof woof

44
Note: Do not use names like a for objects except for examples in lectures and tutorials.

Function Overloading

 Python does not support traditional function
overloading, rather, the special *args and **kwargs
function arguments are used instead. These are not
keywords, but used by convention.

 *args – Represents a variable number of function
arguments.
 Stored as a tuple. The * acts as an “unpacking” operator.

 **kwargs – Represents a variable number of named
arguments
 Stored as a dictionary

 Arguments are specified as arg_name=arg_value

45

Function Overloading (2)

def foo(*args):
args is a tuple of values
print("Num args = {}".format(len(args)))
if len(args) >= 2:
print("Arg2: {}".format (str(args[1]))

foo("bar", [1,2,3], "hello")
>>> "Num args = 3"
>>> "Arg2: [1,2,3]"

Foo()
>>> "Num args = 0"

46

Function Overloading (3)

def foo(**kwargs):

kwargs is a dictionary of arguments

if "val" in kwargs:

print("val = {}".format((str(kwargs["val"])))

print(kwargs.keys())

print(kwargs.values())

foo(a="bar", val=[1,2,3], bar="hello")

>>> "val = [1,2,3]"

>>> ['a', 'val', 'bar']

>>> ['bar', [1,2,3], 'hello']

47

Operator Overloading

 Many of the special member functions are actually

called using the built in operators

 +, -, *, /, in, <, >= etc.

 Use only if it makes code easier for others to

understand. Effect of an operation should be obvious

 Be very careful about how you implement the

operator

 Arithmetic operators could potentially induce side affects

that are not intended

 If your object should be immutable then operators should

always return a new object

 Forgetting to return a result of addition may also make

usage confusing
48

9

Operator Overloading (2)

class FooNum:
def __init__(self, i):

self.i = int(i)

def __add__(self, o):
Provide + to FooNumber
Addition creates a new FooNum
Self and o are never changed!
tmp = FooNum((self.i + o.i) * 2)

return tmp

a=FooNum(1)
b=FooNum(2)
c = a + b # c.i is 6, a.i is 1, b.i is 2

49
Note: Do not use names like a, b, c, except for examples in lectures and tutorials.

Operator Overloading (3)

class BarNum:
def __init__(self, i):

self.i = int(i)

def __add__(self, o):
Self is modified!
Side effect in + might confuse people!

self.i = (self.i + o.i)

Even if we create a new BarNum
return BarNum(self.i*2)

a=BarNum(1)
b=BarNum(2)
c = a + b # c.i is 6, a.i is 3, b.i is 2

50
Note: Do not use names like a, b, c, except for examples in lectures and tutorials.

Operator Overloading (4)

class BarNum:
def __init__(self, i):

self.i = int(i)

def __eq__(self, o):
Support == operator
return self.i == o.i

def __lt__(self, o):
Support < operator
return self.i < o.i

def __gt__(self, o):
Other comparison operators can be defined in terms on == and <
return not self.__lt__(o) and not self.__eq__(o)

def __ge__(self, o):
return self.__gt__(o) or self.__eq__(o)

def __ne__(self, o):
return not self.__eq__(o)

51

Operator Overloading (5)

class MySet:

def __init__(self):

self.items=[]

def append(self, item):

if item not in self.items:

self.items.append(item)

def __len__(self):

Add support for len(x) function

return len(self.items)

def __contains__(self, item):

Add support for in operator

return item in self.items

S = MySet()

S.append(2)

S.append("bar")

if "bar" in S: # Prints 2

print(len(S))

52

