
ECE 364

Software Engineering Tools Lab

Lecture 8

Python: Advanced I

1

Lecture Summary

 Python Variables

 Namespaces and Scope

 Modules

 Exceptions

2

More on Python Variables

 All variables in Python

are actually pointers

>>> A = [10, 80, -3]

>>> B = "Foobar"

>>> C = A

 This is represented in

memory like this:

3

A

C

B

List:

0 | 1 | 2

Int:

10

Int:

80

Int:

-3

String:

“Foobar”

More on Python Variables

 Whenever you use =, you are reassigning a pointer,
not making a copy or altering a value.

 This can lead to side effects

 Example:
>>> A = [10, 80, -3]

>>> B = A

>>> B.append('Z')

>>> print(A)

[10, 80, -3, 'Z']

4

Making Copies

 The assignment B = A only points B to A

A={"foo":1024, 10:"qwerty", -7.2:42}

5

A Dictionary

"foo" | 10 | -7.2

Int:

1024

Str:

"qwerty"

Int:

42
B

Making Copies (Shallow)

 Use the copy() function

 A shallow copy only duplicates the keys!

B = A.copy()

6

A Dictionary A

"foo" | 10 | -7.2

Int:

1024

Str:

"qwerty"

Int:

42
B

Dictionary B

"foo" | 10 | -7.2

Making Copies (Deep)

 The copy module provides deepcopy()

 Copies keys and values

import copy

B = copy.deepcopy(A)

7

A Dictionary

"foo" | 10 | -7.2

Int

1024

Str

"qwerty"

Int

42

Int

1024

Str

"qwerty"

Int

42

B Dictionary

"foo" | 10 | -7.2

Namespaces

 A namespace is “a mapping from names to objects”
 e.g. “x” maps to the value 5 or “A” maps to [1, 2, 3]

 Python creates namespaces at different times

 The built-in namespace is created when Python starts and
is never deleted

 A namespace is created for a function when the function is
called and deleted when the function returns

8

Scope

 A scope is "a textual region of a Python program where a
namespace is directly accessible"

 A new local namespace is created whenever a function is
called

 Python resolves identifiers by searching their current scope
in the following order
1. Local namespace

2. Global namespace within the module

3. “Built-in" namespace

If the name can not be resolved a NameError exception is raised

9

Scope (2)

Y=0 # X and Y are part of the __global__ namespace

X=0

def foo():

X = 10 # X and Y are part of a new namespace

Y = 40 # __global__.foo, and are distinct from

print("{}, {}".format(X, Y))# X and Y in the global namespace

def bar():

X = 30 # Python will search for names within

print("{}, {}".format(X, Y))# the local namespace upwards to the

__global__ namespace. Y is found _
_global__

print("{}, {}".format(X, Y)) # prints 0 0

foo() # prints 10 40

print("{}, {}".format(X, Y)) # prints 0 0

bar() # prints 30 0

print("{}, {}".format(X, Y)) # prints 0 0

10

Comparison: Scope in C

 Scope in C is defined by blocks
 Created using curly braces

void foo(void *bar) {

int i = 0;

while (bar[i] != ’\0’) {
i++;

}

return i;

}

11

Global Variables

 To write to a variable that is in any namespace other
than the current, local namespace you must declare it
as global in the current namespace

12

def ChangeA():

global A

A = 25

A = 404

ChangeA ()

print(A)

>>> 25

def ChangeA():

A = 25

A = 404

ChangeA ()

print(A)

>>> 404

Modules

 A python module is a file containing function
definitions and statements that enables code reuse
and provides modular structure to your programs
 See Pro_Set.py in the example scripts

 An import statement loads the module and makes
it’s functions and variables visible to the current
namespace
 sys and os are commonly used modules

 A module’s name is specified by it’s file name
 e.g. The module Pro_Set exists in the file Pro_Set.py

13

Modules (2)

 A module must be imported into the current
namespace using an import statement

 import mod_name

 When accessing a function or variable from the

module you must prepend the module name
 e.g. os.access(…) or sys.argv

14

Modules (3)

 You can omit the module name when referring to

functions or variables defined in the module when

using an alternative import style

 from mod_name import func_name

 The from style import makes the function or

variable name directly visible to the current name

space

15

Modules (4)

from sys import argv, stderr

if len(argv) != 2:

stderr.write("usage: script.py <arg1>\n")

argv and stderr do not have a sys. prefix

because they are directly imported from the sys

module into the current namespace

16

Modules (5)

 An asterisk in the from style import allows you to

import all functions and variables in the module into

the current namespace

from sys import *

if len(argv) != 2:

stderr.write("usage: script.py <arg1>\n")

 You should avoid using this for more than one module

 It clutters the namespace and may cause name conflicts

17

Modules (6)

 Modules can be imported almost anywhere within a

python program

 Typically done at the very beginning of a file

 But can be done elsewhere…

def print_usage():

import sys # sys only visible in print_usage()

sys.stdout.write("usage: %s\n" % (sys.argv[0],))

 When importing into a lower namespace the module is only

accessible from within that namespace

18

What is an Exception?

 An exception is a program branch executed when an
invalid operation or state is detected

 Each statement in a python program my cause an
exception to occur, immediately changing the execution
path

 Exceptions are used in many other high level languages
 C++, Java, C# etc.

 In C there are no exceptions
 Programmer must resort to using error codes and other

mechanisms

19

What is an Exception?

 An exception is the error

 Python is literally throwing the error at you

 You can either catch it or let it knock you out

 Exceptions contain helpful details about what
went wrong in the program

 Error messages, function name, argument values etc.

 Much more useful than error code

 Not as simple as an error code but the number
10 does not tell much about what went wrong

20

Built-In Exceptions

 ValueError – indicates a value is not properly formed

 IOError – indicates a problem when preforming I/O

 OSError – indicates an error raised by the operating system

 IndexError – indicates an index lookup failed or was out of
bounds

 KeyError – indicates an lookup by key failed or the key was
not found

 TypeError– indicates an function or operation is applied to
a type that does not support it

21

Handling Exceptions

 There are two things a program can do with exceptions

 Ignore them – will result in early termination

 Catch them – examine the exception and perform some
action to correct the problem

 It is not always possible to correct errors at runtime

 But you can display a user friendly error message and
possibly log the error

try:

… statements …

except:

… exception handling statements …

22

Handling Exceptions (2)

 There are many different types of exceptions.

 Many times you will want to handle them in a different way depending
on the type.

try:

… statements that may raise an exception …

except (IOError, ValueError):

… handle IO errors or value errors …

except <ExType> as e:

… handle <ExType> error referenced as the variable e…

except:

… handle all other errors …

else:

… statements to run if no exception was raised …

finally:

… Always run after handling error …

23

Handling Exceptions (4)

 except IOError:

 No reference to the IOError exception is available.

 except IOError as e:

 The IOError exception and its details are available

in the local variable e.

 Newer syntax that is preferred for new programs.

 except IOError, e: (In Python 2)

 Equivalent to the above statement.

24

Handling Exceptions (5)

value = raw_input('Prompt: ')

try:

int() Raises a ValueError exception

result = proc_integer(int(val))

except ValueError:

result = proc_other(val)

print(value)

25

Handling Exceptions (6)

 To ignore an exception the pass statement can be
used to indicate not action is taken

value = raw_input('Prompt: ')

try:

result = proc_integer(int(val))

except ValueError:

pass # do nothing…

print(value)

26

Handling Exceptions (7)

import sys

try:

fp = open(sys.argv[1], "r")

except IOError as e:

sys.stderr.write("Reason: %s\n" % (e,))

sys.exit(1)

for line in fp:

print(line)

fp.close()

sys.exit(0)

27

Raising Exceptions

 There are often many times when you want to signal

an error to your program

 Typically you will raise exceptions from your own

modules and functions to indicate errors or

malformed arguments

 Exceptions are “raised” by the program using the
raise <Exception> statement

28

Raising Exceptions (2)

def dotProduct(row, column):
if type(row) is not list or type(column) is not list:

raise TypeError("Row & Column must be lists.")

if ((len(row) == len(column)) and (len(row) > 0)):
raise ValueError("Row & Column must be of the same size.")

Continue execution.
…

row2 = [3, 7, 1, 8]; column2 = [2, 5, 6]

These will raise an exception.
dotProduct(row2, column2)
dotProduct(9, column2)

29

