
ECE 364

Software Engineering Tools Lab

Lecture 8

Python: Advanced I

1

Lecture Summary

 Python Variables

 Namespaces and Scope

 Modules

 Exceptions

2

More on Python Variables

 All variables in Python

are actually pointers

>>> A = [10, 80, -3]

>>> B = "Foobar"

>>> C = A

 This is represented in

memory like this:

3

A

C

B

List:

0 | 1 | 2

Int:

10

Int:

80

Int:

-3

String:

“Foobar”

More on Python Variables

 Whenever you use =, you are reassigning a pointer,
not making a copy or altering a value.

 This can lead to side effects

 Example:
>>> A = [10, 80, -3]

>>> B = A

>>> B.append('Z')

>>> print(A)

[10, 80, -3, 'Z']

4

Making Copies

 The assignment B = A only points B to A

A={"foo":1024, 10:"qwerty", -7.2:42}

5

A Dictionary

"foo" | 10 | -7.2

Int:

1024

Str:

"qwerty"

Int:

42
B

Making Copies (Shallow)

 Use the copy() function

 A shallow copy only duplicates the keys!

B = A.copy()

6

A Dictionary A

"foo" | 10 | -7.2

Int:

1024

Str:

"qwerty"

Int:

42
B

Dictionary B

"foo" | 10 | -7.2

Making Copies (Deep)

 The copy module provides deepcopy()

 Copies keys and values

import copy

B = copy.deepcopy(A)

7

A Dictionary

"foo" | 10 | -7.2

Int

1024

Str

"qwerty"

Int

42

Int

1024

Str

"qwerty"

Int

42

B Dictionary

"foo" | 10 | -7.2

Namespaces

 A namespace is “a mapping from names to objects”
 e.g. “x” maps to the value 5 or “A” maps to [1, 2, 3]

 Python creates namespaces at different times

 The built-in namespace is created when Python starts and
is never deleted

 A namespace is created for a function when the function is
called and deleted when the function returns

8

Scope

 A scope is "a textual region of a Python program where a
namespace is directly accessible"

 A new local namespace is created whenever a function is
called

 Python resolves identifiers by searching their current scope
in the following order
1. Local namespace

2. Global namespace within the module

3. “Built-in" namespace

If the name can not be resolved a NameError exception is raised

9

Scope (2)

Y=0 # X and Y are part of the __global__ namespace

X=0

def foo():

X = 10 # X and Y are part of a new namespace

Y = 40 # __global__.foo, and are distinct from

print("{}, {}".format(X, Y))# X and Y in the global namespace

def bar():

X = 30 # Python will search for names within

print("{}, {}".format(X, Y))# the local namespace upwards to the

__global__ namespace. Y is found _
_global__

print("{}, {}".format(X, Y)) # prints 0 0

foo() # prints 10 40

print("{}, {}".format(X, Y)) # prints 0 0

bar() # prints 30 0

print("{}, {}".format(X, Y)) # prints 0 0

10

Comparison: Scope in C

 Scope in C is defined by blocks
 Created using curly braces

void foo(void *bar) {

int i = 0;

while (bar[i] != ’\0’) {
i++;

}

return i;

}

11

Global Variables

 To write to a variable that is in any namespace other
than the current, local namespace you must declare it
as global in the current namespace

12

def ChangeA():

global A

A = 25

A = 404

ChangeA ()

print(A)

>>> 25

def ChangeA():

A = 25

A = 404

ChangeA ()

print(A)

>>> 404

Modules

 A python module is a file containing function
definitions and statements that enables code reuse
and provides modular structure to your programs
 See Pro_Set.py in the example scripts

 An import statement loads the module and makes
it’s functions and variables visible to the current
namespace
 sys and os are commonly used modules

 A module’s name is specified by it’s file name
 e.g. The module Pro_Set exists in the file Pro_Set.py

13

Modules (2)

 A module must be imported into the current
namespace using an import statement

 import mod_name

 When accessing a function or variable from the

module you must prepend the module name
 e.g. os.access(…) or sys.argv

14

Modules (3)

 You can omit the module name when referring to

functions or variables defined in the module when

using an alternative import style

 from mod_name import func_name

 The from style import makes the function or

variable name directly visible to the current name

space

15

Modules (4)

from sys import argv, stderr

if len(argv) != 2:

stderr.write("usage: script.py <arg1>\n")

argv and stderr do not have a sys. prefix

because they are directly imported from the sys

module into the current namespace

16

Modules (5)

 An asterisk in the from style import allows you to

import all functions and variables in the module into

the current namespace

from sys import *

if len(argv) != 2:

stderr.write("usage: script.py <arg1>\n")

 You should avoid using this for more than one module

 It clutters the namespace and may cause name conflicts

17

Modules (6)

 Modules can be imported almost anywhere within a

python program

 Typically done at the very beginning of a file

 But can be done elsewhere…

def print_usage():

import sys # sys only visible in print_usage()

sys.stdout.write("usage: %s\n" % (sys.argv[0],))

 When importing into a lower namespace the module is only

accessible from within that namespace

18

What is an Exception?

 An exception is a program branch executed when an
invalid operation or state is detected

 Each statement in a python program my cause an
exception to occur, immediately changing the execution
path

 Exceptions are used in many other high level languages
 C++, Java, C# etc.

 In C there are no exceptions
 Programmer must resort to using error codes and other

mechanisms

19

What is an Exception?

 An exception is the error

 Python is literally throwing the error at you

 You can either catch it or let it knock you out

 Exceptions contain helpful details about what
went wrong in the program

 Error messages, function name, argument values etc.

 Much more useful than error code

 Not as simple as an error code but the number
10 does not tell much about what went wrong

20

Built-In Exceptions

 ValueError – indicates a value is not properly formed

 IOError – indicates a problem when preforming I/O

 OSError – indicates an error raised by the operating system

 IndexError – indicates an index lookup failed or was out of
bounds

 KeyError – indicates an lookup by key failed or the key was
not found

 TypeError– indicates an function or operation is applied to
a type that does not support it

21

Handling Exceptions

 There are two things a program can do with exceptions

 Ignore them – will result in early termination

 Catch them – examine the exception and perform some
action to correct the problem

 It is not always possible to correct errors at runtime

 But you can display a user friendly error message and
possibly log the error

try:

… statements …

except:

… exception handling statements …

22

Handling Exceptions (2)

 There are many different types of exceptions.

 Many times you will want to handle them in a different way depending
on the type.

try:

… statements that may raise an exception …

except (IOError, ValueError):

… handle IO errors or value errors …

except <ExType> as e:

… handle <ExType> error referenced as the variable e…

except:

… handle all other errors …

else:

… statements to run if no exception was raised …

finally:

… Always run after handling error …

23

Handling Exceptions (4)

 except IOError:

 No reference to the IOError exception is available.

 except IOError as e:

 The IOError exception and its details are available

in the local variable e.

 Newer syntax that is preferred for new programs.

 except IOError, e: (In Python 2)

 Equivalent to the above statement.

24

Handling Exceptions (5)

value = raw_input('Prompt: ')

try:

int() Raises a ValueError exception

result = proc_integer(int(val))

except ValueError:

result = proc_other(val)

print(value)

25

Handling Exceptions (6)

 To ignore an exception the pass statement can be
used to indicate not action is taken

value = raw_input('Prompt: ')

try:

result = proc_integer(int(val))

except ValueError:

pass # do nothing…

print(value)

26

Handling Exceptions (7)

import sys

try:

fp = open(sys.argv[1], "r")

except IOError as e:

sys.stderr.write("Reason: %s\n" % (e,))

sys.exit(1)

for line in fp:

print(line)

fp.close()

sys.exit(0)

27

Raising Exceptions

 There are often many times when you want to signal

an error to your program

 Typically you will raise exceptions from your own

modules and functions to indicate errors or

malformed arguments

 Exceptions are “raised” by the program using the
raise <Exception> statement

28

Raising Exceptions (2)

def dotProduct(row, column):
if type(row) is not list or type(column) is not list:

raise TypeError("Row & Column must be lists.")

if ((len(row) == len(column)) and (len(row) > 0)):
raise ValueError("Row & Column must be of the same size.")

Continue execution.
…

row2 = [3, 7, 1, 8]; column2 = [2, 5, 6]

These will raise an exception.
dotProduct(row2, column2)
dotProduct(9, column2)

29

