
 PDB - PYTHON DEBUGGER 11/26/2018 2:36 PM

Adapted from Python documentation (partially verbatim). .pdbp aliases by Ned Batchelder. pdb complete trick by Esa-Matti Suuronen. Compiled by Alexander J. Quinn

help [command] Print help about command or, if not specified, print a list of available commands.

quit Quit from the debugger. The program being executed is aborted.

break
[[filename:]line#
 -OR-
 function]
[,condition]

Set a breakpoint at specified line# or function, or list breakpoints.

 break List all breakpoints.

 break [filename:]line# Set breakpoint at the specified line# in current (or specified) file.

 break function Set breakpoint at the first executable statement in the specified function.

If condition is specified (with line# or function), execution pauses only when condition is true.

tbreak […] Set a temporary breakpoint (removed automatically when it is first hit). Arguments are the same as for break.

clear [breakpoint# […]] Clear specified breakpoint(s). Separate multiple breakpoints with a space. If none are specified, all are cleared.

disable [breakpoint# …] Disables the specified breakpoint(s). Unlike clear, it remains in the list of breakpoints and can be (re-)enabled.

enable [breakpoint# …] Enable the specified breakpoint(s).

ignore breakpoint#
[count]

Sets the ignore count for the given breakpoint to count, or 0 if count is omitted.

This lets you ignore a breakpoint some number of time. A breakpoint becomes active when its ignore count is zero.
When the ignore count is non-zero, the count is decremented each time execution stops for that breakpoint.

condition breakpoint#
[condition]

Set or clear the condition for the specified breakpoint. Execution will pause only if condition is true.

If condition is absent, any existing condition is removed (i.e., breakpoint is made unconditional).

list [first[, last]] List lines of code.

 list List 11 lines around the current line, or continue the previous listing.

 list first List 11 lines around first.

 list first, last List code from first to last. If last is less than first, then treat last as a count.

ll List all source code for the current function or frame. Interesting lines are marked as for list. Alias: longlist

args Print the argument list of the current function.

where Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame.

up Move the current frame one level up in the stack trace (to an older frame). Execution begins at the top.

down Move the current frame one level down in the stack trace (to a newer frame). Crashes occur at the bottom.

[!] statement Execute statement in the context of the current stack frame.

Details: Only one statement is allowed. The ! can be omitted unless the statement looks like a debugger command.

p expression Print the value of expression.

pp expression Pretty-print the value of expression (using the pprint module).

whatis expression Print the type of the expression

display [expression] Display the value of the expression if it changed, each time execution stops in the current frame.

Without expression, list all display expressions for the current frame. (New in Python version 3.2)

undisplay [expression] Do not display the expression any more in the current frame.

Without expression, clear all display expressions for the current frame. (New in Python version 3.2)

next Continue execution until the next statement in this function.

step Continue execution until the next statement encountered in this or any other function (e.g., caller or callee).

until Continue execution until a line with higher line number is reached, or upon returning from current frame.

return Continue execution until the current function returns.

continue Continue execution. Stop only if a breakpoint is encountered.

jump line_number Set the next line to be executed.

This lets you jump back and execute code again, or jump forward to skip code you don’t want to run.

Details: This is only available in the bottom-most frame. Also, not all jumps are allowed. For instance, it is not possible
to jump into the middle of a for loop or out of a finally clause.

run [args...] Restart the debugged program.

History, breakpoints, actions and debugger options are preserved.

If args is supplied, the program is run with args as command line arguments.

Details: args is split with shlex. The result is used as the new sys.argv. Alias: restart [args …]

interact Start an interactive interpreter. All global and local names from the current scope will be available. (New in Python version 3.2)

source Try to get source code for the given object and display it. (New in Python version 3.2)

 PDB - PYTHON DEBUGGER 11/26/2018 2:36 PM

Adapted from Python documentation (partially verbatim). .pdbp aliases by Ned Batchelder. pdb complete trick by Esa-Matti Suuronen. Compiled by Alexander J. Quinn

Starting a debugging session (8 ways)

Command line
python -m pdb myscript.py

Manual break in code
pdb.set_trace()

Post mortem on current exception
try:
 …
except:
 pdb.post_mortem()

Call method
import pdb, mymodule
pdb.runcall(myfunction, a, b, c,…)

Run code snippet
import pdb, mymodule
pdb.run(“mymodule.test()”)

Evaluate string
import pdb, mymodule
pdb.runeval(“mymodule.getX()”)

Post mortem on last traceback
> myscript.myfunction()
Traceback (most recent call last):
…
> pdb.pm()

Post mortem on stored traceback
…
tb = sys.exc_info()[2]
…
pdb.post_mortem(tb)

Extending PDB

alias [name
[command]]

Create an alias called name that executes command. The command must not be enclosed in quotes. Replaceable parameters can
be indicated by %1, %2, and so on, while %* is replaced by all the parameters. If no command is given, the current alias for name is
shown. If no arguments are given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal pdb commands can
be overridden by aliases. Such a command is then hidden until the alias is removed. Aliasing is recursively applied to the first word
of the command line; all other words in the line are left alone.

unalias name Delete the specified alias.

commands
[breakpoint#]

Specify a list of commands for breakpoint number bpnumber. The commands themselves appear on the following lines. Type a line
containing just end to terminate the commands. An example:

(Pdb) commands 1
(com) print some_variable
(com) end
(Pdb)

To remove all commands from a breakpoint, type commands and follow it immediately with end; that is, give no commands. With
no bpnumber argument, commands refers to the last breakpoint set. You can use breakpoint commands to start your program up
again. Simply use the command, or step, or any other command that resumes execution.

Specifying any command resuming execution (currently continue, step, next, return, jump, quit and their abbreviations)
terminates the command list (as if that command was immediately followed by end). This is because any time you resume
execution (even with a simple next or step), you may encounter another breakpoint–which could have its own command list,
leading to ambiguities about which list to execute.

If you use the silent command in the command list, the usual message about stopping at a breakpoint is not printed. This may be
desirable for breakpoints that are to print a specific message and then continue. If none of the other commands print anything, you
see no sign that the breakpoint was reached.

.pdbrc
When pdb starts, any pdb commands in ~/.pdbrc and/or ./.pdbrc are executed (in that order), as if they had been typed into pdb.

Print a dictionary, sorted. %1 is the dict, %2 is the prefix for the names. (Credit: Ned Batchelder)
alias p_ for k in sorted(%1.keys()): print "%s%-15s= %-80.80s" % ("%2",k,repr(%1[k]))
alias pi p_ %1.__dict__ %1. # Print the member variables of a thing
alias ps pi self. # Print the member variables of self
alias pl p_ locals() local: # Print the locals
alias nl n;;l # Next and list
alias sl s;;l # Step and list.

Autocomplete from locals (Credit: Esa-Matti Suuronen)
import pdb, rlcompleter
pdb.Pdb.complete = rlcompleter.Completer(locals()).complete

Fix terminal if something funky happens that kills the echo (Unix only)
if sys.platform != "win32": import termios
if sys.platform != "win32": term_fd = sys.stdin.fileno()
if sys.platform != "win32": term_echo = termios.tcgetattr(term_fd)
if sys.platform != "win32": term_echo[3] = term_echo[3] | termios.ECHO
if sys.platform != "win32": term_result = termios.tcsetattr(term_fd, termios.TCSADRAIN, term_echo)

