Homework 3

Question 1

(Change-of-variable formula, Klenke Theorem 4.10) Let (Q,.A) and (', A’) be
measurable spaces, let u be a measure on (2,.4) and let X : Q — Q' be mea-
surable. Let 4/ = o X! be the image measure of i under the map X, i.e., for
every E € A, we define

W (E) & p(X1(E)).
Assume that f: Q" — R is p/-integrable. Show that f o X is u-integrable and

J(foX)du= [ fdy.
(Hint: You can follow the proof of Theorem 1.6.9 in Durrett, but you need to
write the answer in your own words.)
Solution:

We will prove this result by verifying it in four increasingly general special
cases.

Case 1: Indicator functions. If £ € A’ and f = 1 then

J(FoX)dn = [ 1p(X (@))du(w) = (X~ (E)) = () = [ 1pdy’ = [ fdu.

Case 2: Simple functions. If f(x) = X ,¢;1g, where ¢; € R, E; € A’ then

JUoX)di = [ Sy, (X (@) = B2y ci [ L, (X (@)t = Siyci [ 1,y =
[ X eilpdy = [ fdu'.

Case 3: Nonnegative functions. Now if f > 0 and we let

fal@) = (2" F(2)]/2") An

where [x] = the largest integer < 2 and a A b = min{a, b}, then the f, are
simple and f, T f, so using the result for simple functions and the monotone
convergence theorem:

J(f o X)dp = lim, [(fn o X)dp =lim, [ fody' = [ fdu'.

Case 4: Integrable functions. The general case now follows by writing f(z) =
f(x)* — f(x)~ where f(x)" and f(x)~ are nonnegative functions. Then

(o X)dp = [(F+ o X)du— [(~ 0 X)du= [ f¥dp — [ f~du’ = [ fd'.

In addition, [ |foX|du = [(fToX)du+[(f~oX)du= [ frdy/'+ [ f~dy' =
J1fldy < .

So f o X is p-integrable.

Question 2

(Klenke exercise 4.2.1) Let (2, A, 1) be a measure space and let f € L'(p).
Show that for any € > 0, there is an A € A with u(A) < co and



| [ f du— [ fdu| <e
Solution:

// We can answer this question without using Markov inequality, or MCT, or
DCT.

// We note that this question is trivial if (£2, A, 1) is a probability space, because
in this case we can simply take A = €.

Sketch of proof.

We can first assume that the function f is non-negative and [ f dy is finite.
Let ¢ denote the value of [ f du. By the definition of Lebesgue integral for
nonnegative function, ¢ is the supremum of f h du, with h ranging over all
simple functions such that 0 < h < f. For any € > 0, we can find a simple
function A in the form

h(w) =", a;1a,(w), so that 0 <h < f, a; > 0 for all i, and

c—e< [hdu<e

With this choice of h, we get

() [fdu—[hdu<e.

The measure of A; could not be infinite, otherwise the integral of A would
be infinite, violating the assumption that [ f dp is finite. We take A to be the
union of A;, for i = 1,2,...,m. As each A; has finite measure, the union A also
has finite measure.

We next use the fact that the simple function h is less than or equal to f on
the set A. By monotone property of Lebesgue integral,

Jhdu= [yhdu< [, fdu

Combining this with (*), we obtain

0< [fdu—[,fdu<e.

This proves the statement in the question for non-negative function f.

For general real-valued f, we apply the above argument for the positive and
negative parts of f. Because f is assumed to be p-integrable, [ f* du and
| f~ dp are both finite. Take A to be the union of all the sets appearing in the
indicator functions that approximate the positive and negative part.

Question 3

(Minkowski’s inequality, Durrett Exercise 1.5.3) Let (9,4, 1) be a measure
space and f, g be real-valued py-measurable functions. Suppose that p € (1, 00).
The p-norm of function f, denoted by ||f|, is defined as ([ |f[P du)'/P. The
inequality |f + g|P < 2P(|f|P + |g|”) shows that if || f||, and | g||, are finite, then
so is ||f + gll,- Apply Holder’s inequality to |f| |f + g|P~* and |g| |f + g[P~! to
show

1f +gllp < Ifllp + llgllp-
(Hint: See Theorem 7.17 in Klenke)
Solution:



If+gllb =/(f+g)pdu=/f(f+g)”‘1du+/g(f+g)”‘1du

<l - 1CF + 977l + gl - 1CF + )Pl (1)
= (1 llp + llglly) - 11 + glz~™.

Note that in the last step, we used the fact that p — p/q = 1. Dividing both
sides by || f 4 g[[5~" yields the result.

Question 4

(Durrett Exercise 1.6.11) Prove that if E[|X|*] < oo, then for 0 < j <
k, E[|X}7] < oo, and furthermore E[|X|7] < E[|X|F]7/* .

(The purpose of this question is to show that the j-norm of a random variable
is less than or equal to the corresponding k-norm for j < k.)

Solution:

// The asserted inequality is false in general when the measure of the whole
space is not 1

Apply Jensen’s inequality with the function ¢(x) = xF/7 | which is a convex
function on the nonnegative real numbers when k£ > j. Suppose that E|X¥| is
finite.

E[|1X|*] = E[¢(1X)7)]
> ¢(E[|1X[7])
= B[ X ]V

This is the same as E[|X|7] < E[|X|F]//* .

Because E[|X|*] is finite, the right-hand side of the above inequality is finite.
The left-hand side is finite as well.

// For finite measure space, we can still prove that finite Lj norm implies finite
L; norm. See this wikipedia page. This uses the Holder inequality.

Question 5

(Lebesgue integral with counting measure) Let Z denote the set of integers and
1 be the counting measure, i.e., for subset S C Z,

u(S) = [S] if |S| is. finite
oo  otherwise.
For any function f :Z — R, let S; be the the set {x € Z: f(x) > 0} and S_
be the the set {x € Z: f(x) < 0}.

(We may call S the positive support of f and S_ the negative support of f.)
If f € L*(p), show that



S Fdp=sup{Y,en F@): Al <00, AC Sy} —sup{— Y,y f(2): |B| <
00, BC S_}.

The first supremum is taken over all finite subset A € Z such that f(x) > 0 for
all z € A. Likewise, the second supremum is taken over all finite subset B such
that f(z) <0 for all z € B.

Solution:

Consider the positive part f+ of the function f first. By definition, the
Lebesgue integral of f* with counting measure on Z is the supremum of the set

S1={), gdu:0<g<f*t gsimple}.

For simple function g, fZ g du is just a finite summation.

This question is suggesting that it suffices to consider the set

Sy ={>pes, f(@):]S1] <oo, f(x)>0Vzre S}, which may look simpler
than Sl-

Let s; = sup.S; and sy = sup Ss. Because S5 is a subset of S;. We have
so < s1. Our goal is to prove the reverse inequality. Because it is assumed that
fisin L'(u), s; is a finite number.

We claim that so > s; — € for every arbitrarily small positive real numbers
€. Since s1 — € is strictly less than s, s; — € is no longer an upper bound of S.
This means that we can find a simple function g(z) in the form

g(z) = Zle ¢ily, (x) for some positive constant ¢; and subset A; of Z,
such that 0 < g(z) < f*(z) for all z, and [g(x) du > s; — e. Because s; is
assumed to be finite, A;’s are all finite sets.

From g, we can construct a larger function h by taking A to be the union of
Aq,..., A and let

B(w) = f(@)14 (@),

Because the sample space Z is discrete and A is finite, the function h(zx) is
a simple function. Thus

Jog(x) dp < [h(x)dp = Y ,ca fT(x). We observe that > _, fT(x)
is an element in Sy, the supremum s, of So must be larger than or equal to
> wca fT(x), and hence larger than or equal to J g(x) du. This proves that
S92 Z S1 — €.

Since sy > s1 — € holds for arbitrarily small positive real number €, we must
have sy > s1. This proves that s, = s1.

The proof for the negative part is the same as above. This completes the
proof.
// There are two messages from this exercise.
// The first message is that there is no ”conditional convergence” in Lebesgue
measure.
// Summation like Y7 | (—=1)"/n does not exist in the Lebesgue sense.
// See https://math.stackexchange.com/questions/1472173 /no-conditional-convergence-
in-lebesgue-integration
// and https://math.stackexchange.com/questions/1095666/lebesgue-integral-
and-absolute-value
// The second one is the proof technique of ”Give yourself an epsilon of room”.
// This is a common trick in real analysis



// See https:/ /terrytao.wordpress.com/2009/02/28 /tricks-wiki-give-yourself-an-
epsilon-of-room/

Question 6

(Improper Riemann integral) In Lecture 10 we demonstrated the relationship
between Riemann integral f; f(z) dx and Lebesgue integral jimb] f(z)d\(x).
The purpose of this question is to consider the the case of improper Riemann
integral.

Suppose that f: R — R is a measurable function satisfying

(i) fab f(z) dz is Riemann integrable for any a and b s.t. —oo < a < b < o0;

(ii) The double limit lim, o limp 00 f; |f(x)| dx exists.

The double limit above is usually denoted as [*_ |f ()| da.

In this question we denote the Lebesgue measure on R by A.

(a) For positive integer n, define the truncated function g, (z) £ | f(2)|1[—n (2),
where 1{_,, ) is the indicator function of [-n,n]. From the second theorem in
lecture 10, we obtain

S 19a(@)] dA@) = [, |f()] d.

The LHS is the Lebesgue integral of |g, (x)| on the integral [—n,n] w.r.t. the
Lebesgue measure A, and the RHS is the Riemann integral of |f(z)| from —n to
n.

Verify that g, is an increasing sequence of non-negative functions converging
pointwise to | f|. Prove that

Jo @) @) = [, |f(@)] do < oo,

and hence show that f(x) is A-integrable .

(Hint: Use monotone convergence theorem.)

(b) For positive integer n, define hy,(z) £ f(z)1_, . (z). Verify that the func-
tions h,(x)’s are dominated by |f(z)| for all n, and converge to f(z) as n
increases. By applying dominated convergence theorem, prove that

Ju F@) dr(z) = =, f(z)da.

Solution:

(a) The function g, is increasing because it is a product of two nonnegative
functions | f(z)| and 1y, 5}, and (1, 5))n>1 is an increasing sequence of functions.
It is assumed that the Riemann integral of g,, from —n to n exists for all n. Using
Theorem 2 in lecture 10, we have

[ gn(z) dX\(z) = f[nm] gn(z) dX\(z) = ffn gn(z) dz. If we take limits as
n — oo, the left-hand side approaches the Lebesuge integral [ |f(z)| dA(x) by
MCT. The right-hand side approaches [*_|f(z)| dx.

Since [*_|f(z)| dx is finite by assumption, ['|f(z)| dA is also finite. There-
fore f(z) is A-integrable.

(b) For each n, the function h,(z) is dominated by f(x) because

on ()] < [ (@)] - [ L,y (2)] < [f(2)].

For a given x, h,(x) is equal to f(z) for all n > z, and hence converges to
f(z) as n — oo.



By dominated convergence theorem,

(1) lim, [ hn(z) dX = [lim, h,(z) dX = [ f(z) d\.

Since h,, has finite support, by Theorem 2 in lecture 10,

[ () dX\(z) = f[n’n] ho(z) dN(z) = [" hn(2) da.

So

(2) limy, [ Ay (z) = lim, f: h(z) do = ffooo f(z) dz. (The second equality
comes from the definition of improper Riemann integral.)

Putting (1) and (2) together, we get

[ F@) d\ = [, f(x) da.



