Homework 3

Question 1

(Change-of-variable formula, Klenke Theorem 4.10) Let (Ω, \mathcal{A}) and (Ω', \mathcal{A}') be measurable spaces, let μ be a measure on (Ω, \mathcal{A}) and let $X : \Omega \to \Omega'$ be measurable. Let $\mu' = \mu \circ X^{-1}$ be the image measure of μ under the map X, i.e., for every $E \in \mathcal{A}'$, we define

$$\mu'(E) \triangleq \mu(X^{-1}(E)).$$

Assume that $f: \Omega' \to \mathbb{R}$ is μ' -integrable. Show that $f \circ X$ is μ -integrable and $\int (f \circ X) d\mu = \int f d\mu'$.

(Hint: You can follow the proof of Theorem 1.6.9 in Durrett, but you need to write the answer in your own words.)

Solution:

We will prove this result by verifying it in four increasingly general special cases.

```
Case 1: Indicator functions. If E \in \mathcal{A}' and f = 1_E then \int (f \circ X) d\mu = \int 1_E(X(\omega)) d\mu(\omega) = \mu(X^{-1}(E)) = \mu'(E) = \int 1_E d\mu' = \int f d\mu'. Case 2: Simple functions. If f(x) = \sum_{i=1}^n c_i 1_{E_i} where c_i \in \mathbf{R}, E_i \in \mathcal{A}' then \int (f \circ X) d\mu = \int \sum_{i=1}^n c_i 1_{E_i}(X(\omega)) d\mu = \sum_{i=1}^n c_i \int 1_{E_i}(X(\omega)) d\mu = \sum_{i=1}^n c_i \int 1_{E_i} d\mu' = \int \sum_{i=1}^n c_i 1_{E_i} d\mu' = \int f d\mu'. Case 3: Nonnegative functions. Now, if f > 0 and we let
```

Case 3: Nonnegative functions. Now if $f \ge 0$ and we let

$$f_n(x) = ([2^n f(x)]/2^n) \wedge n$$

where [x] = the largest integer $\leq x$ and $a \wedge b = min\{a, b\}$, then the f_n are simple and $f_n \uparrow f$, so using the result for simple functions and the monotone convergence theorem:

```
\int (f \circ X) d\mu = \lim_n \int (f_n \circ X) d\mu = \lim_n \int f_n d\mu' = \int f d\mu'. Case 4: Integrable functions. The general case now follows by writing f(x) = f(x)^+ - f(x)^- where f(x)^+ and f(x)^- are nonnegative functions. Then \int (f \circ X) d\mu = \int (f^+ \circ X) d\mu - \int (f^- \circ X) d\mu = \int f^+ d\mu' - \int f^- d\mu' = \int f d\mu'. In addition, \int |f \circ X| d\mu = \int (f^+ \circ X) d\mu + \int (f^- \circ X) d\mu = \int f^+ d\mu' + \int f^- d\mu' = \int |f| d\mu' < \infty. So f \circ X is \mu-integrable.
```

Question 2

(Klenke exercise 4.2.1) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f \in L^1(\mu)$. Show that for any $\epsilon > 0$, there is an $A \in \mathcal{A}$ with $\mu(A) < \infty$ and

```
|\int_A f \ d\mu - \int f \ d\mu| < \epsilon. Solution:
```

// We can answer this question without using Markov inequality, or MCT, or DCT.

// We note that this question is trivial if $(\Omega, \mathcal{A}, \mu)$ is a probability space, because in this case we can simply take $A = \Omega$. Sketch of proof.

We can first assume that the function f is non-negative and $\int f d\mu$ is finite. Let c denote the value of $\int f d\mu$. By the definition of Lebesgue integral for nonnegative function, c is the supremum of $\int h \ d\mu$, with h ranging over all simple functions such that $0 \le h \le f$. For any $\epsilon > 0$, we can find a simple function h in the form

```
h(\omega)=\sum_{i=1}^m\ a_i\mathbf{1}_{A_i}(\omega), so that 0\leq h\leq f , a_i>0 for all i, and c-\epsilon\leq\int h\ d\mu\leq c.
```

With this choice of h, we get

(*)
$$\int f \ d\mu - \int h \ d\mu \le \epsilon \ .$$

The measure of A_i could not be infinite, otherwise the integral of h would be infinite, violating the assumption that $\int f d\mu$ is finite. We take A to be the union of A_i , for i = 1, 2, ..., m. As each A_i has finite measure, the union A also has finite measure.

We next use the fact that the simple function h is less than or equal to f on the set A. By monotone property of Lebesgue integral,

```
\int h \ d\mu = \int_A h \ d\mu \le \int_A f \ d\mu.
Combining this with (*), we obtain
0 \le \int f \ d\mu - \int_A f \ d\mu \le \epsilon.
```

This proves the statement in the question for non-negative function f.

For general real-valued f, we apply the above argument for the positive and negative parts of f. Because f is assumed to be μ -integrable, $\int f^+ d\mu$ and $\int f^- d\mu$ are both finite. Take A to be the union of all the sets appearing in the indicator functions that approximate the positive and negative part.

Question 3

(Minkowski's inequality, Durrett Exercise 1.5.3) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and f, g be real-valued μ -measurable functions. Suppose that $p \in (1, \infty)$. The p-norm of function f, denoted by $||f||_p$ is defined as $(\int |f|^p d\mu)^{1/p}$. The inequality $|f+g|^p \leq 2^p (|f|^p + |g|^p)$ shows that if $||f||_p$ and $||g||_p$ are finite, then so is $||f+g||_p$. Apply Holder's inequality to $|f| ||f+g||^{p-1}$ and $|g| ||f+g||^{p-1}$ to show

```
||f + g||_p \le ||f||_p + ||g||_p.
(Hint: See Theorem 7.17 in Klenke)
Solution:
```

$$||f+g||_p^p = \int (f+g)^p d\mu = \int f(f+g)^{p-1} d\mu + \int g(f+g)^{p-1} d\mu$$

$$\leq ||f||_p \cdot ||(f+g)^{p-1}||_q + ||g||_p \cdot ||(f+g)^{p-1}||_q$$

$$= (||f||_p + ||g||_p) \cdot ||f+g||_p^{p-1}.$$
(1)

Note that in the last step, we used the fact that p - p/q = 1. Dividing both sides by $||f + g||_p^{p-1}$ yields the result.

Question 4

(Durrett Exercise 1.6.11) Prove that if $E[|X|^k] < \infty$, then for $0 < j < k, E[|X|^j] < \infty$, and furthermore $E[|X|^j] \le E[|X|^k]^{j/k}$.

(The purpose of this question is to show that the j-norm of a random variable is less than or equal to the corresponding k-norm for j < k.)

Solution:

// The asserted inequality is false in general when the measure of the whole space is not $1\,$

Apply Jensen's inequality with the function $\phi(x) = x^{k/j}$, which is a convex function on the nonnegative real numbers when $k \geq j$. Suppose that $E|X^k|$ is finite.

$$E[|X|^k] = E[\phi(|X|^j)]$$

$$\geq \phi(E[|X|^j])$$

$$= E[|X|^j]^{k/j}.$$

This is the same as $E[\,|X|^j\,] \le E[\,|X|^k\,]^{j/k}$.

Because $E[|X|^k]$ is finite, the right-hand side of the above inequality is finite. The left-hand side is finite as well.

// For finite measure space, we can still prove that finite L_k norm implies finite L_j norm. See this wikipedia page. This uses the Holder inequality.

Question 5

(Lebesgue integral with counting measure) Let $\mathbb Z$ denote the set of integers and μ be the counting measure, i.e., for subset $S\subseteq \mathbb Z$,

$$\mu(S) = \begin{cases} |S| & \text{if } |S| \text{ is finite} \\ \infty & \text{otherwise.} \end{cases}$$

For any function $f: \mathbb{Z} \to \mathbb{R}$, let S_+ be the set $\{x \in \mathbb{Z} : f(x) > 0\}$ and S_- be the set $\{x \in \mathbb{Z} : f(x) < 0\}$.

(We may call S_+ the positive support of f and S_- the negative support of f.) If $f \in L^1(\mu)$, show that

 $\int f \, d\mu = \sup\{ \sum_{x \in A} f(x) : |A| < \infty, A \subseteq S_+ \} - \sup\{ -\sum_{x \in B} f(x) : |B| < \infty, B \subseteq S_- \}.$

The first supremum is taken over all finite subset $A \in \mathbb{Z}$ such that f(x) > 0 for all $x \in A$. Likewise, the second supremum is taken over all finite subset B such that f(x) < 0 for all $x \in B$.

Solution:

Consider the positive part f^+ of the function f first. By definition, the Lebesgue integral of f^+ with counting measure on $\mathbb Z$ is the supremum of the set $S_1 = \{ \int_{\mathbb Z} \ g \ d\mu : 0 \le g \le f^+, g \ \text{simple} \}.$

For simple function g, $\int_{\mathbb{Z}} g \ d\mu$ is just a finite summation.

This question is suggesting that it suffices to consider the set

 $S_2 = \{ \sum_{x \in S_1} f(x) : |S_1| < \infty, \ f(x) > 0 \ \forall x \in S_1 \},$ which may look simpler than S_1 .

Let $s_1 = \sup S_1$ and $s_2 = \sup S_2$. Because S_2 is a subset of S_1 . We have $s_2 \leq s_1$. Our goal is to prove the reverse inequality. Because it is assumed that f is in $L^1(\mu)$, s_1 is a finite number.

We claim that $s_2 \geq s_1 - \epsilon$ for every arbitrarily small positive real numbers ϵ . Since $s_1 - \epsilon$ is strictly less than s_1 , $s_1 - \epsilon$ is no longer an upper bound of S_1 . This means that we can find a simple function g(x) in the form

 $g(x) = \sum_{i=1}^{k} c_i \mathbf{1}_{A_i}(x)$ for some positive constant c_i and subset A_i of \mathbb{Z} , such that $0 \le g(x) \le f^+(x)$ for all x, and $\int g(x) d\mu \ge s_1 - \epsilon$. Because s_1 is assumed to be finite, A_i 's are all finite sets.

From g, we can construct a larger function h by taking A to be the union of A_1, \ldots, A_k and let

 $h(x) = f(x)\mathbf{1}_A(x).$

Because the sample space $\mathbb Z$ is discrete and A is finite, the function h(x) is a simple function. Thus

 $\int g(x) d\mu \leq \int h(x)d\mu = \sum_{x\in A} f^+(x)$. We observe that $\sum_{x\in A} f^+(x)$ is an element in S_2 , the supremum s_2 of S_2 must be larger than or equal to $\sum_{x\in A} f^+(x)$, and hence larger than or equal to $\int g(x) d\mu$. This proves that $s_2 \geq s_1 - \epsilon$.

Since $s_2 \ge s_1 - \epsilon$ holds for arbitrarily small positive real number ϵ , we must have $s_2 \ge s_1$. This proves that $s_2 = s_1$.

The proof for the negative part is the same as above. This completes the proof.

- // There are two messages from this exercise.
- // The first message is that there is no "conditional convergence" in Lebesgue measure.
- // Summation like $\sum_{n=1}^{\infty} (-1)^n/n$ does not exist in the Lebesgue sense.
- // See https://math.stackexchange.com/questions/1472173/no-conditional-convergence-in-lebesgue-integration
- // and https://math.stackexchange.com/questions/1095666/lebesgue-integral-and-absolute-value
- // The second one is the proof technique of "Give yourself an epsilon of room".
- // This is a common trick in real analysis

// See https://terrytao.wordpress.com/2009/02/28/tricks-wiki-give-yourself-anepsilon-of-room/

Question 6

(Improper Riemann integral) In Lecture 10 we demonstrated the relationship between Riemann integral $\int_a^b f(x) dx$ and Lebesgue integral $\int_{[a,b]}^a f(x) d\lambda(x)$. The purpose of this question is to consider the the case of improper Riemann integral.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a measurable function satisfying

- (i) $\int_a^b f(x) dx$ is Riemann integrable for any a and b s.t. $-\infty < a < b < \infty$;

(ii) The double limit $\lim_{a\to-\infty}\lim_{b\to\infty}\int_a^b|f(x)|\ dx$ exists. The double limit above is usually denoted as $\int_{-\infty}^{\infty}|f(x)|\ dx$.

In this question we denote the Lebesgue measure on \mathbb{R} by λ .

(a) For positive integer n, define the truncated function $g_n(x) \triangleq |f(x)| \mathbf{1}_{[-n,n]}(x)$, where $\mathbf{1}_{[-n,n]}$ is the indicator function of [-n,n]. From the second theorem in lecture 10, we obtain

$$\int_{[-n,n]} |g_n(x)| \ d\lambda(x) = \int_{-n}^n |f(x)| \ dx.$$

The LHS is the Lebesgue integral of $|g_n(x)|$ on the integral [-n, n] w.r.t. the Lebesgue measure λ , and the RHS is the Riemann integral of |f(x)| from -n to

Verify that g_n is an increasing sequence of non-negative functions converging pointwise to |f|. Prove that $\int_{\mathbb{R}} |f(x)| \ d\lambda(x) = \int_{-\infty}^{\infty} |f(x)| \ dx < \infty,$ and hence show that f(x) is λ -integrable.

$$\int_{\mathbb{R}} |f(x)| d\lambda(x) = \int_{-\infty}^{\infty} |f(x)| dx < \infty,$$

(Hint: Use monotone convergence theorem.)

(b) For positive integer n, define $h_n(x) \triangleq f(x) \mathbf{1}_{[-n,n]}(x)$. Verify that the functions $h_n(x)$'s are dominated by |f(x)| for all n, and converge to f(x) as n increases. By applying dominated convergence theorem, prove that

$$\int_{\mathbb{R}} f(x) \ d\lambda(x) = \int_{-\infty}^{\infty} f(x) dx.$$

Solution:

(a) The function g_n is increasing because it is a product of two nonnegative functions |f(x)| and $\mathbf{1}_{[n,n]}$, and $(\mathbf{1}_{[n,n]})_{n\geq 1}$ is an increasing sequence of functions. It is assumed that the Riemann integral of g_n from -n to n exists for all n. Using Theorem 2 in lecture 10, we have

 $\int g_n(x) \ d\lambda(x) = \int_{[n,n]} g_n(x) \ d\lambda(x) = \int_{-n}^n g_n(x) \ dx$. If we take limits as $n \to \infty$, the left-hand side approaches the Lebesuge integral $\int |f(x)| \ d\lambda(x)$ by MCT. The right-hand side approaches $\int_{-\infty}^{\infty} |f(x)| dx$.

Since $\int_{-\infty}^{\infty} |f(x)| dx$ is finite by assumption, $\int |f(x)| d\lambda$ is also finite. Therefore f(x) is λ -integrable.

(b) For each n, the function $h_n(x)$ is dominated by f(x) because

$$|h_n(x)| \le |f(x)| \cdot |\mathbf{1}_{[n,n]}(x)| \le |f(x)|.$$

For a given x, $h_n(x)$ is equal to f(x) for all $n \geq x$, and hence converges to f(x) as $n \to \infty$.

By dominated convergence theorem,

- (1) $\lim_n \int h_n(x) \ d\lambda = \int \lim_n h_n(x) \ d\lambda = \int f(x) \ d\lambda$. Since h_n has finite support, by Theorem 2 in lecture 10, $\int h_n(x) \ d\lambda(x) = \int_{[n,n]} h_n(x) \ d\lambda(x) = \int_{-n}^n h_n(x) \ dx$.
- (2) $\lim_n \int h_n(x) = \lim_n \int_n^n h_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$. (The second equality comes from the definition of improper Riemann integral.)

Putting (1) and (2) together, we get $\int f(x) d\lambda = \int_{-\infty}^{\infty} f(x) dx$.