
Homework 3

Question 1

(Change-of-variable formula, Klenke Theorem 4.10) Let (Ω,A) and (Ω′,A′) be
measurable spaces, let µ be a measure on (Ω,A) and let X : Ω → Ω′ be mea-
surable. Let µ′ = µ ◦X−1 be the image measure of µ under the map X, i.e., for
every E ∈ A′, we define

µ′(E) , µ(X−1(E)).
Assume that f : Ω′ → R̄ is µ′-integrable. Show that f ◦X is µ-integrable and∫

(f ◦X) dµ =
∫
f dµ′.

(Hint: You can follow the proof of Theorem 1.6.9 in Durrett, but you need to
write the answer in your own words.)
Solution:

We will prove this result by verifying it in four increasingly general special
cases.

Case 1: Indicator functions. If E ∈ A′ and f = 1E then∫
(f ◦X)dµ =

∫
1E(X(ω))dµ(ω) = µ(X−1(E)) = µ′(E) =

∫
1Edµ

′ =
∫
fdµ′.

Case 2: Simple functions. If f(x) = Σn
i=1ci1Ei

where ci ∈ R, Ei ∈ A′ then∫
(f◦X)dµ =

∫
Σn

i=1ci1Ei(X(ω))dµ = Σn
i=1ci

∫
1Ei(X(ω))dµ = Σn

i=1ci
∫

1Eidµ
′ =∫

Σn
i=1ci1Eidµ

′ =
∫
fdµ′.

Case 3: Nonnegative functions. Now if f ≥ 0 and we let
fn(x) = ([2nf(x)]/2n) ∧ n
where [x] = the largest integer ≤ x and a ∧ b = min{a, b}, then the fn are

simple and fn ↑ f , so using the result for simple functions and the monotone
convergence theorem:∫

(f ◦X)dµ = limn

∫
(fn ◦X)dµ = limn

∫
fndµ

′ =
∫
fdµ′.

Case 4: Integrable functions. The general case now follows by writing f(x) =
f(x)+ − f(x)− where f(x)+ and f(x)− are nonnegative functions. Then∫

(f ◦X)dµ =
∫

(f+ ◦X)dµ−
∫

(f− ◦X)dµ =
∫
f+dµ′ −

∫
f−dµ′ =

∫
fdµ′.

In addition,
∫
|f◦X|dµ =

∫
(f+◦X)dµ+

∫
(f−◦X)dµ =

∫
f+dµ′+

∫
f−dµ′ =∫

|f |dµ′ <∞.
So f ◦X is µ-integrable.

Question 2

(Klenke exercise 4.2.1) Let (Ω,A, µ) be a measure space and let f ∈ L1(µ).
Show that for any ε > 0, there is an A ∈ A with µ(A) <∞ and
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|
∫
A
f dµ−

∫
f dµ| < ε.

Solution:
// We can answer this question without using Markov inequality, or MCT, or
DCT.
// We note that this question is trivial if (Ω,A, µ) is a probability space, because
in this case we can simply take A = Ω.
Sketch of proof.

We can first assume that the function f is non-negative and
∫
f dµ is finite.

Let c denote the value of
∫
f dµ. By the definition of Lebesgue integral for

nonnegative function, c is the supremum of
∫
h dµ, with h ranging over all

simple functions such that 0 ≤ h ≤ f . For any ε > 0, we can find a simple
function h in the form

h(ω) =
∑m

i=1 ai1Ai(ω), so that 0 ≤ h ≤ f , ai > 0 for all i, and
c− ε ≤

∫
h dµ ≤ c.

With this choice of h, we get
(*)

∫
f dµ−

∫
h dµ ≤ ε .

The measure of Ai could not be infinite, otherwise the integral of h would
be infinite, violating the assumption that

∫
f dµ is finite. We take A to be the

union of Ai, for i = 1, 2, . . . ,m. As each Ai has finite measure, the union A also
has finite measure.

We next use the fact that the simple function h is less than or equal to f on
the set A. By monotone property of Lebesgue integral,∫

h dµ =
∫
A
h dµ ≤

∫
A
f dµ.

Combining this with (*), we obtain
0 ≤

∫
f dµ−

∫
A
f dµ ≤ ε .

This proves the statement in the question for non-negative function f .
For general real-valued f , we apply the above argument for the positive and

negative parts of f . Because f is assumed to be µ-integrable,
∫
f+ dµ and∫

f− dµ are both finite. Take A to be the union of all the sets appearing in the
indicator functions that approximate the positive and negative part.

Question 3

(Minkowski’s inequality, Durrett Exercise 1.5.3) Let (Ω,A, µ) be a measure
space and f, g be real-valued µ-measurable functions. Suppose that p ∈ (1,∞).
The p-norm of function f , denoted by ‖f‖p is defined as (

∫
|f |p dµ)1/p. The

inequality |f + g|p ≤ 2p(|f |p + |g|p) shows that if ‖f‖p and ‖g‖p are finite, then
so is ‖f + g‖p. Apply Holder’s inequality to |f | |f + g|p−1 and |g| |f + g|p−1 to
show
‖f + g‖p ≤ ‖f‖p + ‖g‖p.

(Hint: See Theorem 7.17 in Klenke)
Solution:
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‖f + g‖pp =

∫
(f + g)pdµ =

∫
f(f + g)p−1dµ+

∫
g(f + g)p−1dµ

≤ ‖f‖p · ‖(f + g)p−1‖q + ‖g‖p · ‖(f + g)p−1‖q
= (‖f‖p + ‖g‖p) · ‖f + g‖p−1p .

(1)

Note that in the last step, we used the fact that p− p/q = 1. Dividing both
sides by ‖f + g‖p−1p yields the result.

Question 4

(Durrett Exercise 1.6.11) Prove that if E[ |X|k ] < ∞, then for 0 < j <
k,E[ |X|j ] <∞, and furthermore E[ |X|j ] ≤ E[ |X|k ]j/k .
(The purpose of this question is to show that the j-norm of a random variable
is less than or equal to the corresponding k-norm for j < k.)
Solution:
// The asserted inequality is false in general when the measure of the whole
space is not 1
Apply Jensen’s inequality with the function φ(x) = xk/j , which is a convex
function on the nonnegative real numbers when k ≥ j. Suppose that E|Xk| is
finite.

E[ |X|k ] = E[φ(|X|j) ]

≥ φ(E[ |X|j ])

= E[ |X|j ]k/j .

This is the same as E[ |X|j ] ≤ E[ |X|k ]j/k .
Because E[ |X|k ] is finite, the right-hand side of the above inequality is finite.
The left-hand side is finite as well.
// For finite measure space, we can still prove that finite Lk norm implies finite
Lj norm. See this wikipedia page. This uses the Holder inequality.

Question 5

(Lebesgue integral with counting measure) Let Z denote the set of integers and
µ be the counting measure, i.e., for subset S ⊆ Z,

µ(S) =

{
|S| if |S| is finite

∞ otherwise.

For any function f : Z → R, let S+ be the the set {x ∈ Z : f(x) > 0} and S−
be the the set {x ∈ Z : f(x) < 0}.
(We may call S+ the positive support of f and S− the negative support of f .)
If f ∈ L1(µ), show that
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∫
f dµ = sup{

∑
x∈A f(x) : |A| <∞, A ⊆ S+}− sup{−

∑
x∈B f(x) : |B| <

∞, B ⊆ S−}.
The first supremum is taken over all finite subset A ∈ Z such that f(x) > 0 for
all x ∈ A. Likewise, the second supremum is taken over all finite subset B such
that f(x) < 0 for all x ∈ B.
Solution:

Consider the positive part f+ of the function f first. By definition, the
Lebesgue integral of f+ with counting measure on Z is the supremum of the set

S1 = {
∫
Z g dµ : 0 ≤ g ≤ f+, g simple}.

For simple function g,
∫
Z g dµ is just a finite summation.

This question is suggesting that it suffices to consider the set
S2 = {

∑
x∈S1

f(x) : |S1| <∞, f(x) > 0 ∀x ∈ S1}, which may look simpler
than S1.

Let s1 = supS1 and s2 = supS2. Because S2 is a subset of S1. We have
s2 ≤ s1. Our goal is to prove the reverse inequality. Because it is assumed that
f is in L1(µ), s1 is a finite number.

We claim that s2 ≥ s1 − ε for every arbitrarily small positive real numbers
ε. Since s1 − ε is strictly less than s1, s1 − ε is no longer an upper bound of S1.
This means that we can find a simple function g(x) in the form

g(x) =
∑k

i=1 ci1Ai (x) for some positive constant ci and subset Ai of Z,
such that 0 ≤ g(x) ≤ f+(x) for all x, and

∫
g(x) dµ ≥ s1 − ε. Because s1 is

assumed to be finite, Ai’s are all finite sets.
From g, we can construct a larger function h by taking A to be the union of

A1, . . . , Ak and let
h(x) = f(x)1A (x).
Because the sample space Z is discrete and A is finite, the function h(x) is

a simple function. Thus∫
g(x) dµ ≤

∫
h(x)dµ =

∑
x∈A f+(x). We observe that

∑
x∈A f+(x)

is an element in S2, the supremum s2 of S2 must be larger than or equal to∑
x∈A f+(x), and hence larger than or equal to

∫
g(x) dµ. This proves that

s2 ≥ s1 − ε.
Since s2 ≥ s1 − ε holds for arbitrarily small positive real number ε, we must

have s2 ≥ s1. This proves that s2 = s1.
The proof for the negative part is the same as above. This completes the

proof.
// There are two messages from this exercise.
// The first message is that there is no ”conditional convergence” in Lebesgue
measure.
// Summation like

∑∞
n=1 (−1)n/n does not exist in the Lebesgue sense.

// See https://math.stackexchange.com/questions/1472173/no-conditional-convergence-
in-lebesgue-integration
// and https://math.stackexchange.com/questions/1095666/lebesgue-integral-
and-absolute-value
// The second one is the proof technique of ”Give yourself an epsilon of room”.
// This is a common trick in real analysis
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// See https://terrytao.wordpress.com/2009/02/28/tricks-wiki-give-yourself-an-
epsilon-of-room/

Question 6

(Improper Riemann integral) In Lecture 10 we demonstrated the relationship

between Riemann integral
∫ b

a
f(x) dx and Lebesgue integral

∫
[a,b]

f(x)dλ(x).

The purpose of this question is to consider the the case of improper Riemann
integral.
Suppose that f : R→ R is a measurable function satisfying

(i)
∫ b

a
f(x) dx is Riemann integrable for any a and b s.t. −∞ < a < b <∞;

(ii) The double limit lima→−∞ limb→∞
∫ b

a
|f(x)| dx exists.

The double limit above is usually denoted as
∫∞
−∞ |f(x)| dx.

In this question we denote the Lebesgue measure on R by λ.
(a) For positive integer n, define the truncated function gn(x) , |f(x)|1[−n,n] (x),
where 1[−n,n] is the indicator function of [−n, n]. From the second theorem in
lecture 10, we obtain∫

[−n,n] |gn(x)| dλ(x) =
∫ n

−n |f(x)| dx.

The LHS is the Lebesgue integral of |gn(x)| on the integral [−n, n] w.r.t. the
Lebesgue measure λ, and the RHS is the Riemann integral of |f(x)| from −n to
n.

Verify that gn is an increasing sequence of non-negative functions converging
pointwise to |f |. Prove that∫

R |f(x)| dλ(x) =
∫∞
−∞ |f(x)| dx <∞,

and hence show that f(x) is λ-integrable .
(Hint: Use monotone convergence theorem.)

(b) For positive integer n, define hn(x) , f(x)1[−n,n] (x). Verify that the func-
tions hn(x)’s are dominated by |f(x)| for all n, and converge to f(x) as n
increases. By applying dominated convergence theorem, prove that∫

R f(x) dλ(x) =
∫∞
−∞ f(x)dx.

Solution:
(a) The function gn is increasing because it is a product of two nonnegative

functions |f(x)| and 1[n,n], and (1[n,n])n≥1 is an increasing sequence of functions.
It is assumed that the Riemann integral of gn from −n to n exists for all n. Using
Theorem 2 in lecture 10, we have∫

gn(x) dλ(x) =
∫
[n,n]

gn(x) dλ(x) =
∫ n

−n gn(x) dx. If we take limits as

n → ∞, the left-hand side approaches the Lebesuge integral
∫
|f(x)| dλ(x) by

MCT. The right-hand side approaches
∫∞
−∞ |f(x)| dx.

Since
∫∞
−∞ |f(x)| dx is finite by assumption,

∫
|f(x)| dλ is also finite. There-

fore f(x) is λ-integrable.
(b) For each n, the function hn(x) is dominated by f(x) because
|hn(x)| ≤ |f(x)| · |1[n,n](x)| ≤ |f(x)|.
For a given x, hn(x) is equal to f(x) for all n ≥ x, and hence converges to

f(x) as n→∞.
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By dominated convergence theorem,
(1) limn

∫
hn(x) dλ =

∫
limn hn(x) dλ =

∫
f(x) dλ.

Since hn has finite support, by Theorem 2 in lecture 10,∫
hn(x) dλ(x) =

∫
[n,n]

hn(x) dλ(x) =
∫ n

−n hn(x) dx.

So
(2) limn

∫
hn(x) = limn

∫ n

n
hn(x) dx =

∫∞
−∞ f(x) dx. (The second equality

comes from the definition of improper Riemann integral.)
Putting (1) and (2) together, we get∫
f(x) dλ =

∫∞
−∞ f(x) dx.
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