
Homework 6

Question 1

Let X be a binomially distributed random variable. For i = 0, 1, . . . , n, P (X =
i) =

(
n
i

)
pi(1− p)n−i for some probability p between 0 and 1. Suppose that Y is

Poisson distributed with mean X. Find the conditional expectation E[X|Y ].
Solution: When X = 0, the random variable Y is equal to 0 with probability
1. When X = i, the probability of the event that Y equals k is

P (Y = k|X = i) =
ik

k!
e−i (1)

for k = 0, 1, 2, 3, 4, ...
Consider the conditioning on the event Y = 0. For i = 0, 1, . . . , n, the

probability of X = i and Y = 0 is

P (X = i, Y = 0) =

{(
n
i

)
pi(1− p)n−i if i = 0,(

n
i

)
pi(1− p)n−i · i

0

0! e
−i if i ≥ 1.

(2)

(We avoid the ambiguity of 00 by distinguishing two cases.)
The expectation of X given Y = 0 is

1∑n
i=0

(
n
i

)
pi(1− p)n−ie−i

n∑
i=0

i

(
n

i

)
pi(1− p)n−ie−i (3)

Using identities

(1 + x)n =

n∑
i=0

(
n

i

)
xi

nx(1 + x)n−1 =

n∑
i=0

(
n

i

)
ixi,

we can simplify the answer to

np/e

(1− p+ p/e)
(4)

For k > 0, the expectation of X given Y = k is
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1∑n
i=1

(
n
i

)
pi(1− p)n−i ikk! e−i

n∑
i=1

i

(
n

i

)
pi(1− p)n−i i

k

k!
e−i

=

∑n
i=1

(
n
i

)
ik+1Ki∑n

i=1

(
n
i

)
ikKi

where K represents the constant p
(1−p)e .

Question 2

We flip a biased coin, which is head with probability p, and tail with probability
1−p. If the coin turns up head, let Y be a Gaussian distributed random variable
with mean 1 and variance 1. Otherwise, if the coin turns up to be tail, let Y be
Gaussian with mean 0 and variance 1. Find the conditional probability of head
given that the value of random variable Y is y, for y ∈ R.
Naive solution: Apply the mixed version of Bayes theorem. Denote the con-
ditional pdf of random variable Y given the event of seeing a head by

fY |H(y) =
1√
2π
e−(y−1)

2/2, (5)

and the the conditional pdf of random variable Y given the coin toss is tail by

fY |T (y) =
1√
2π
e−y

2/2. (6)

The conditional probability of head given Y = y is

P (H|Y = y) =
fY |H(y)p

fY |T (y)(1− p) + fY |H(y)p

=
p exp(−(y − 1)2/2)

(1− p) exp(−y2/2) + p exp(−(y − 1)2/2)
.

Solution according to the abstract definition of conditional expectation. We
can model the experiment by a product probability space Ω = {H,T} × R. A
probability measure P is defined in a way that

(i) event {(x, y) : x = H, y ∈ [a, b]} has probability

p

∫ b

a

1√
2π
e−(t−1)

2/2 dt. (7)

(ii) event {(x, y) : x = T, y ∈ [a, b]} has probability

(1− p)
∫ b

a

1√
2π
e−t

2/2 dt. (8)
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We check that the function

g(y) =
fY |H(y)p

fY |T (y)(1− p) + fY |H(y)p
(9)

is indeed the solution. Firstly g(y) is a function of y, and hence is σ(Y )-
measurable.

Let 1H(x, y) denote the indicator function of the event that the coin toss
result is head, i.e.,

1H(x, y) =

{
1 if x = H

0 if x = Y.
(10)

It remains to check that∫
B

g(y) dP (x, y) =

∫
B

1H(x, y) dP (x, y) (11)

for all σ(Y )-measurable sets. By the π − λ theorem, and the fact that closed
intervals generate the Borel algebra on R, it suffices to check it for B in the
form {H,T} × [a, b].

R.H.S. =

∫
{H,T}×[a,b]

1H(x, y) dP (x, y)

=

∫
{H}×[a,b]

1H(x, y) dP (x, y)

=

∫ b

a

pfY |H(y) dy

=

∫ b

a

g(y)(fY |T (y)(1− p) + fY |H(y)p) dy

=

∫ b

a

g(y) fY |T (y)(1− p) dy +

∫ b

a

g(y) fY |H(y)p dy

=

∫
{T}×[a,b]

g(y) dP (x, y) +

∫
{H}×[a,b]

g(y) dP (x, y)

=

∫
{H,T}×[a,b]

g(y) dP (x, y) = L.H.S.

Question 3

We pick a random point in unit square with vertices (0, 0), (0, 1), (1, 1), and
(1, 0). Let X and Y be the x- and y-coordinates, respectively. If the random
point lies within the inscribed circle, let Z be equal to 1, otherwise let Z be
0. Compute the conditional probability distribution of the Y given X and Z.
Justify your answer.
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Solution: The random variable Z takes two values. We shall only consider
conditioning on the event that Z = 1 below. The case for Z = 0 is analogous.

Let µ denote the measure function on the unit square. Let’s denote the
inscribed circle (x − 0.5)2 + (y − 0.5)2 ≤ 0.25 by C. The area of C is µ(C).
Conditioned on the event Z = 1, the probability that a random point falls in a
measurable set E is given by

1

µ(C)

∫
E

1C dµ. (12)

We use the short-hand notation

f(x) = 0.5−
√

0.25− (x− 0.5)2

g(x) = 0.5 +
√

0.25− (x− 0.5)2

to represent the lower semi-circle and the upper semi-circle, respectively.
Conditioned on Z = 1, the x-coordinate is a continuous variable with density

pX|Z=1(x) = (g(x)− f(x))/µ(C). (13)

Suppose 0 < a < b < 1. The conditional probability P (a ≤ X ≤ b|Z = 1) is
equal to ∫ b

a

pX|Z=1(x) dx. (14)

If we can find a function h(y, x) such that

1

µ(C)

∫
R

1Cdµ =

∫ b

a

∫ d

c

h(y, x)pX|Z=1(x) dy dx, (15)

for all a, b, c and d satisfying 0 < a < b < 1, 0 < c < d < 1, where R is the
rectangle {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, then we can say that h(y, x) is the
conditional probability distribution function of Y given X = x and Z = 1.

To this end, we write 1
µ(C)

∫
R
1Cdµ as a double integral

1

µ(C)

∫ b

a

∫ g(x)∧d

f(x)∨c
dydx =

∫ b

a

g(x)− f(x)

µ(C)

∫ g(x)∧d

f(x)∨c

1

g(x)− f(x)
dydx

=

∫ b

a

pX|Z=1(x)

∫ d

c

1[f(x),g(x)](y)

g(x)− f(x)
dydx.

In the last line, 1[f(x),g(x)] is the indicator function of the interval [f(x), g(x)].
We can write the conditional pdf as

pY |X=x,Z=1(y) =

{
1

g(x)−f(x) if y ∈ [f(x), g(x)],

0 otherwise.
(16)

This is the pdf of the uniform distribution between f(x) and g(x).
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Question 4

Compute the characteristic function of
(i) an exponentially distributed random variables with mean 1/λ.
Solution: This is a continuous-type random variable with pdf λe−λx1x≥0.

The characteristic function is

∫ ∞
0

eitxλe−λx dx =

∫ ∞
0

λe(it−λ)x dx

=
[ λ

it− λ

]∞
0

=
λ

λ− it
.

https://en.wikipedia.org/wiki/Exponential_distribution

(ii) a geometrically distributed random variable with mean 1/p.
Solution: This is a discrete-type random variable with pmf

P (X = n) = (1− p)n−1p (17)

for n=1,2,3,...
The characteristic function is

∞∑
n=1

eitn(1− p)n−1p = peit
∞∑
n=1

((1− p)eit)n−1

=
peit

1− (1− p)eit
.

https://en.wikipedia.org/wiki/Geometric_distribution

Question 5

(Azuma’s inequality, Klenke ex. 9.2.4) Show the following.
(i) If X is a random variable with |X| ≤ 1 a.s., then there is a random variable
Y with values in {−1,+1} and with E[Y |X] = X.
Solution: Given a realization of the random variable X = x, we define the
conditional probability of Y given X = x by

P (Y = 1) = (1 + x)/2, P (Y = −1) = (1− x)/2. (18)

Since X is between bounded between −1 and 1, both (1+x)/2 and (1−x)/2
are between 0 and 1. The conditional expectation of Y given X is

1 +X

2
· 1 +

1−X
2
· −1 = X. (19)
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The above information is sufficient for constructing a product probability space
on which X and Y are defined.
(ii) For X as in (i) with E[X] = 0, infer that (using Jensen’s inequality)

E[eλX ] ≤ cosh(λ) ≤ eλ
2/2 (20)

for all λ ∈ R.
Solution: The function eλx is a convex function of x, taken values eλ at x = 1
and e−λ at x = −1. We can upper bound the function eλx by a linear function

1− x
2

e−λ +
1 + x

2
eλ (21)

for −1 ≤ x ≤ 1.
By the monotone property of integral, we obtain

E[eλX ] ≤ E[
1−X

2
e−λ +

1 +X

2
eλ] =

1

2
e−λ +

1

2
eλ = cosh(λ). (22)

(We have used the assumption that E[X] = 0 in this step.)
The second inequality can be seen by comparing the power series expansions

cosh(λ) = 1 +
1

2!
λ2 +

1

4!
λ4 +

1

6!
λ6 +

1

8!
λ8 + · · ·

eλ
2/2 = 1 +

λ2

2
+

1

2!

λ4

4
+

1

3!

λ6

23
+

1

4!

λ8

24
+ · · ·

(iii) If (Mn)n∈N0
is a martingale with M0 = 0 and if there is a sequence (ck)k∈N

of nonnegative numbers with |Mn −Mn−1| ≤ cn a.s. for all n ∈ N, then

E[eλMn ] ≤ exp(
1

2
λ2

n∑
k=1

c2k). (23)

Solution: The argument in part (ii) can be modified if X has zero mean and
is between ±c with probability 1,

E[eλX ] ≤ exp(
1

2
λ2c2). (24)

We proceed by induction. For n = 0, we have E[e0λ] = 1. Using the

convention that empty summation is 0, exp( 1
2λ

2
∑0
k=1 c

2
k) = 1 as well.

For the induction step, we write E[eλMn ] as an iterated conditional expec-
tation,

E[E[eλ(Mn−Mn−1)+λMn−1 | M1,M2, . . . ,Mn−1]] (25)

The inner conditional expectation is equal to

E[eλ(Mn−Mn−1)+λMn−1 | M1,M2, . . . ,Mn−1]

= eλMn−1 · E[eλ(Mn−Mn−1)| M1,M2, . . . ,Mn−1]
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The difference Mn −Mn−1 is between −cn and cn w.p.1. By the martingale
property, the conditional expectation of Mn−Mn−1 given M1 to Mn−1 is zero.
Hence

E[eλMn | M1,M2, . . . ,Mn−1] ≤ eλMn−1eλ
2c2n/2. (26)

Taking expectation of both sides, we get

E[eλMn ] ≤ E[eλMn−1 ]eλ
2c2n/2. (27)

(iv) Under the assumptions of (iii), Azuma’s inequality holds:

P (|Mn| ≥ a) ≤ 2 exp
(
− a2

2(c21 + · · ·+ c2n)

)
(28)

for all a ≥ 0.
Solution: The final part is a standard application of Markov inequality. We
first consider the positive part. Given any a ≥ 0, the following equality

P (Mn ≥ a) = P (eλMn ≥ eλa) (29)

holds for any λ > 0.
By Markov inequality,

P (eλMn ≥ eλa) ≤ E[eλMn ]/eλa = e
1
2λ

2(c21+···+c
2
n)−λa. (30)

The exponent is a quadratic function, taking minimum value at

λ∗ =
a

c21 + · · ·+ c2n
. (31)

By picking λ = λ∗, we get

P (Mn ≥ a) ≤ exp(− a2

2(c21 + · · ·+ c2n)
). (32)

We include the negative part by multiplying the right side by 2,

P (|Mn| ≥ a) ≤ 2 exp(− a2

2(c21 + · · ·+ c2n)
). (33)

Question 6

Question 6. (Polya’s urn model) Consider an urn containing B black balls and
W white balls initially. We carry out an iterative procedure described as follows.
In each step, we draw a ball uniformly at random from the urn. If the ball is
white, we return two white balls to the urn. If the ball is black, we return two
black balls to the urn.

Let Xn be a binary random variable that equals 1 if the n-th ball drawn
from the urn is in black color, and equal to 0 otherwise. Let Sn be the sum
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X1 +X2 + · · ·+Xn. Thus, Sn is the number of black ball drawings in steps 1
to n.
(a) Prove that, for 0 ≤ k ≤ n,

P (Sn = k) =

(
n

k

)
B(B + 1)(B + 2) · · · (B + k − 1) ·W (W + 1)(W + 2) · · · (W + n− k − 1)

N(N + 1)(N + 2) · · · (N + n− 1)
(34)

where N = B +W is the initially number of balls in the urn.
Solution: Suppose that the black ball drawings occur at time i1, i2, . . . , ik.
The probability of drawing a white ball at times j, for 1 to i1 − 1, is (W + j −
1)/(N + j−1). Drawing a black balls at time i1 has probability B/(N + i1−1).
For j = i1 + 1, . . . , i2 − 1, the probability of drawing a white ball at time j is
(W + j − 2)/(N + j − 1). Next, drawing a black ball at time i2 has probability
(B+ 1)/(N + i2− 1). Continue similarly, the probability of drawing black balls
at time i1, . . . , ik has probability

B(B + 1)(B + 2) · · · (B + k − 1) ·W (W + 1)(W + 2) · · · (W + n− k − 1)

N(N + 1)(N + 2) · · · (N + n− 1)·
.

(35)
Since this is independent of i1, . . . , ik, we multiply it by

(
n
k

)
to obtain the answer.

In terms of Gamma function, the probability that Sn = k is

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
· Γ(k +B)

Γ(B)
· Γ(n− k +B)

Γ(W )
· Γ(N)

Γ(n+N)
. (36)

(b) Show that Sn/n converges in distribution to the beta distribution with
parameters B and W .
Solution: The probability P (Sn ≤ bnxc) is equal to

bnxc∑
k=0

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
· Γ(k +B)

Γ(B)
· Γ(n− k +B)

Γ(W )
· Γ(N)

Γ(n+N)
, (37)

which can be re-written as

Γ(N)

Γ(B)Γ(W )

bnxc∑
k=0

Γ(n+ 1)

Γ(n+N)
· Γ(k +B)

Γ(k + 1)
· Γ(n− k +W )

Γ(n− k + 1)
. (38)

Use the asymptotic result

Γ(z + a)

Γ(z + b)
→ za−b (39)

for fixed a and b, as z →∞, to approximate the k-th term in the summation by

kB−1

nB−1
(n− k)W−1

nW−1
1

n
. (40)

Finally, take n to approach infinity and approximate the summation by
Riemann integral.
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