
Pintos Overview
November 20, 2018

Welcome to Pintos World!
● What is Pintos?

○ An instructional operating system
■ Developed by Stanford University

○ A real OS for the 80x86 architecture
■ Run on a regular IBM-compatible PC or an x86 emulator.

○ Written in C language
■ You will need only code in C.

● What is our task?
○ Understand the underlying design of Pintos OS and add more functions to extend it and make it

complete.

● These projects are hard. Hang on!
○ “CS 140 is the hardest coding class you'll take at Stanford. It might be the hardest CS class you take at

Stanford.”

Environments
● QEMU

○ Emulator provides the full emulation of 80x86 physical cpu and its peripheral devices.
○ We will run Pintos on this emulator.
○ Qemu makes it easy to develop and debug Pintos projects(refer to Pintos Guide).

● Linux + QEMU
○ Compile the os kernel in linux environment and then run it on QEMU emulator.

Working with Pintos
● Each of the four projects has its own main directory:

○ Project 1: src/threads
○ Project 2: src/userprog
○ Project 3: src/vm
○ Project 4: src/filesys

● Each project consists of two parts:
○ Programming
○ Design Document

● For each project, type ‘make’ in the project’s main directory to compile your
project
○ E.g. Type ‘make’ in src/threads
○ This will create a new directory ‘build/’ (linux kernel is inside it)

Working with Pintos...
● Type ‘make check’ to run all the tests in the ‘build/’

directory
○ You can also run a single test directly.

● Please refer to Pintos Guide to know how to debug on
Pintos.

How does Pintos work?
● Booting

○ Entry point(Boot loader) of Pintos is threads/start.S(this is an assembly file)
○ start.S will initialize operating system resources, and call main() in threads/init.c

● main() will parse command line arguments, setup kernel memory, initialize the
interrupt system, and call thread_start() in ‘threads/thread.c’ for the main
thread
○ The main thread is the ancestor of all later derived thread.

How does testing work?
● After you finish one part of Pintos, you want to test if it works properly.

○ E.g. pintos -q run my-test

● Principle under testing
○ The main thread will run the test file you provide in the command parameter.
○ The pintos kernel command line is stored in the boot loader.

■ The pintos command actually modifies a copy of the boot loader on disk each time it runs
the kernel, inserting the command line the user supplies into the loader.

■ Then at boot time, the kernel(main thread) reads those arguments out of the load loader.
■ Not elegant, but simple and effective.

Run “hello world” on your Pintos OS
● Simple task

○ Write a test that prints “Hello World!”

● Hints
○ The files that will be modified under “src/tests/threads/”

■ test.h
■ test.c
■ add new file“hello-world.c”
■ Make.tests

○ Use ‘msg()’ function to print.
○ Clean and recompile the kernel under “src/threads/” after above steps
○ Run ‘pintos -q run hello-world’

Basic of Pintos: Threads
1. Every thread has the struct thread to store some

basic information
a. This struct is also be used as the stack.

2. The Pintos is a single processor system.
a. Alhough support multi-thread(multi-programming), everytime

only one thread is running.
b. Preemptible kernel

3. The whole system is motivated by the timer interrupt.
a. Round-robin: every thread has the fixed time slice(e.g. 4 time

ticks) to execute on CPU.
b. At every timer tick, the running thread is interrupted by the

timer interrupt handler.
c. Time interrupt handler increases the system time, checks if the

time slice of running thread expires, and if so, schedule next
thread to execute.

Programming on Pintos: Utilities
● Position: ‘src/lib/kernel/’
● List

○ Initialize(), insert(), delete()
○ Looping through Lists

■ list_begin(), list_end(), list_next(); Like STL

● Hash table
○ Initialize(), hash_insert(), hash_delete()

● Bitmap
○ bitmap_set(), bitmap_set(), bitmap_reset()..

First part of Project 1: Alarm Clock
● Reimplement void timer_sleep(int64_t ticks)

○ Defined in ‘devices/timer.c’
○ Requirement: avoid busy waiting.

● Original implementation
○

Alarm Clock: test cases
● Five test cases to test alarm clock.
● Two test cases of them

○ Alarm-negative: Test timer_sleep(-100), only requirement is
that it does not crash.

○ Alarm-simultaneous: create N threads, each of which sleeps
a different, fixed duration, M times. Records the wake-up
order and verifies that it is valid.

Alarm Clock: overview of my solution
● Not wake up during sleeping period

○ Create a new linked list to store sleeping thread.
■ Every time a thread calls timer_sleep(), put it into the sleeping_thread list, and set its

state as blocked.
○ Since the scheduler only schedules the threads on the ready queue, the thread will not wake

up during sleeping period.

● Wake up(put it on the ready queue) at x timer_ticks
○ Timer interrupt handler

■ At every timer interrupt, the handler traverse the sleep_thread list to check if the thread
has slept enough, if so, put it on the ready queue.

Alarm Clock: my implementation
● void timer_sleep

○ If ticks <= 0, directly return
○ Record current_time and waitting_time in

the current thread struct.
○ Invoke sema_sleep()

■ Put current thead into a linked list
and then shcedule other threads.

■ How to synchronize the access to
the shared linked list?(Appendix
A.3)

● void timer_interrupt
○ Timer interrupt handler
○ Invoke sema_wake(), check and wake up

the threads who has slept enough.

Overview of All Projects
● Project 1: Threads
● Project 2: User Programs
● Project 3: Virtual Memory
● Project 4: File Systems

Project 1: Threads
1. Alarm Clock

a. Reimplement timer_sleep().

2. Priority Scheduling
a. In the ready queue, the thread who has the highest priority should execute first.
b. Problem: priority inversion

i. Thread H(high priority) must wait for the lock held by thread L(low priority). But thread L
may never get the CPU.

ii. Solution: priority donation H->L, L gives up the donation after lock release

3. Advanced Scheduler
a. Multi-level feedback queue scheduler(4.4BSD scheduler)
b. Not include priority donation

Project 2: User Programs
1. Setup Stack

a. Load a executable file to the memory and set up initial stack for the
new process.

2. System call handler
a. System call: allow a user program to perform a kernel level task.
b. Systems calls

i. Process execution
1. exit()
2. exec(char *cmd_line)
3. wait(pid_t pid)

ii. File operation
1. create(), remove()
2. open(), read(), write(), close()
3. Denying writes to process’s executable

Project 3: Virtual Memory
1. Project 3 and 4 are the hardest parts of Pintos projects

a. Collaboration with group members.

2. Part 1: Growing the Stack
a. If the process wants to have more memory-> page fault
b. Validate the address, allocate new page
c. Data strucutre: Page table, frame table....

3. Part 2: Swap, Eviction, and Reclamation
a. Access more memory than available physical memory

i. Solution: Swap
b. Eviction: Least recently used(LRU) policy, clock policy
c. Reclamation: read the page in swap back to memory

4. Part 3: Memory mapping
a. mapid_t mmap(int fd, void* addr)
b. void munmap(mapid_t mapping)

Project 4: File System
1. Part 1: Buffer Cache

a. The bridge between memory and disk.

2. Part 2: Indexed and Extensible Files
a. Last question in your final exam
b. To support file growth.

3. Part 3: Subdirectory
a. Implement a hierarchical name space

i. Basic file system: all files are at root
b. Upate and add system calls

i. open(), close(), remove()
ii. mkdir(), chdir()
iii. relative path, absolute path.

Suggestions
● Read pintos guide(ours), pintos document(Stanford) and design document

before you start coding.
● Useful tools

○ GDB, version control system(Github)

Thank you!

Q&A

