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CS420/ECE492/CSE402 – Parallel Programming for Science &
Engineering – 3 and 4 units

WELCOME

Who we are:

Name Office Office housr email

Instructor Marc Snir SC 4232 Wed 2-3 pm snir@illinois.edu

TA Omri Mor SC 0207 Mon 2-3 pm omrimor2@illinois.edu

TA Shibi He SC 0207 Thu ?? shibihe@illinois.edu
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Who the course is for:

People that need to develop parallel codes – especially for scientific computations

Focused on practical skills needed to achieve better performance via parallelism

Not for CS majors

Graduates are required to take 4 units (do final project); undergraduates may also, if they
wish so. (Need to change registration.)

Marc Snir CS420 – Lecture 1 Fall 2018 4 / 27



Curriculum

The course will discuss approaches to improving program performance by

Leveraging compilers and tools

Improving locality

Using vector operations and pipelining

Using shared memory parallelism with OpenMP

Using GPU accelerators with OpenMP

Using distributed memory parallelism with MPI

Using map-reduce frameworks

Course requires C++, C or Fortran
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Course is full and there are people who could not register: If you decide to drop the
course, please do so ASAP

Slides are posted on piazza: piazza.com/illinois/fall2018/cs420cse402ece492/home

Lecture slides are posted before the lecture and (usually) corrected after the lecture

Lecture recordings are posted on Echo: echo360.org

Quizzes, homeworks, grades will be on Compass

MPs are submitted using GIT
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Grading

Type Frequency %
Quizzes every 2 weeks 5%
MPs every 3 weeks 25%
Midterm Exam (Tentative: 10/12) 25%
Final Exam 35%

If taking 4 point option then above determines 75% of grade and final project determines
25%

All (but the final project) require individual work. You can discuss an MP before starting
to program, but you program on your own.

See The CS Dept Honor Code at http://cs.illinois.edu/academics/honor-code

No credit for late assignments
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INTRODUCTION
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Related Research Areas

Distributed Computing Multiple systems cooperating to solve a loosely coupled problem;
systems can be geographically distributed. Examples: WWW, SETI@home

Concurrent Computing Coordination of independent activities that use shared resources;
system is often reactive. Could run on a single processor. Usually
nondeterministic. Examples: Online Transaction Processing, OS

Parallel Computing The use of multiple threads in order to speed up a computation; system is
usually transformative. Can be deterministic – nondeterminism can be part of
the solution, but is not usually, part of the problem

Division is fuzzy: Cloud Computing combines aspects of distributed computing and parallel
computing
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Topics Include

parallel algorithms Only briefly covered in this course. See CS 498

parallel architecture Briefly covered, so as to understand performance bottlenecks of parallel
systems. See also CS 533

parallel programming Main focus of course; see also CS 483/ ECE 408, CS 484

Marc Snir CS420 – Lecture 1 Fall 2018 10 / 27



Topics Include

parallel algorithms Only briefly covered in this course. See CS 498

parallel architecture Briefly covered, so as to understand performance bottlenecks of parallel
systems. See also CS 533

parallel programming Main focus of course; see also CS 483/ ECE 408, CS 484

Marc Snir CS420 – Lecture 1 Fall 2018 10 / 27



Topics Include

parallel algorithms Only briefly covered in this course. See CS 498

parallel architecture Briefly covered, so as to understand performance bottlenecks of parallel
systems. See also CS 533

parallel programming Main focus of course; see also CS 483/ ECE 408, CS 484

Marc Snir CS420 – Lecture 1 Fall 2018 10 / 27



Topics Include

parallel algorithms Only briefly covered in this course. See CS 498

parallel architecture Briefly covered, so as to understand performance bottlenecks of parallel
systems. See also CS 533

parallel programming Main focus of course; see also CS 483/ ECE 408, CS 484

Marc Snir CS420 – Lecture 1 Fall 2018 10 / 27



Do you care about performance?
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Waiting for computers to become faster is not an option
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Technology Evolution

Number of transistors per chip continues to increase (likely to stop in a few years)

⇒ Cannot increase anymore power consumption of chip – cooling

⇒ Therefore, cannot increase clock speed (unchanged since 2004)

Cannot increase Instructions per Cycle (IPC) - instruction level parallelism provides
diminishing returns.

⇒ Only road to faster execution is explicit program parallelism
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Levels of parallelism

Single Instruction, Multiple Data (SIMD): One instruction processes a vector of operands.
E.g., (Intel) 512 bits = 16 single precision (32 bit) words, or 8 double precision
words.

Shared memory parallelism: Multiple physical threads, each executing its own instruction
stream, run simultaneously. E.g. Intel Xeon Phi up to 72 cores; each core runs
up to 4 simultaneous threads; 72×4=288.

Threads within core share compute resources; threads in distinct cores only
share memory
288 is number of simultaneous physical threads. System may have
thousands of concurrent software threads, but they do not run all the time.

Distributed Memory Parallelism: Many processors (nodes) are connected together with a fast
network; parallel application can utilize many nodes at once. E.g., Summit
(Current top supercomputer) has 2,282,544 cores and peak performance of 187
Pflop/s.

Petaflop/s = 1015 floating point operations per second.
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kilo 103

mega 106

giga 109

tera 1012

peta 1015

exa 1018

mili 10−3

micro 10−6

nano 10−9

pico 10−12

fento 10−15
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SINGLE THREAD PERFORMANCE
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What is“performance”

Compute time required to solve a problem:

Wall-clock time (assuming dedicated system)

CPU time (time shared system)

Depends on problem

Depends on input size

Depends on algorithm and code used

Depends on system used (compiler, libraries, hardware)
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Floating point rate

For much of scientific computing one cares about floating point operations (flop)

Can define floating point rate as number of flops per second achieved (for a particular
code, input size, system, etc.).

HPL: maximum floating point rate achieved for LU decomposition (direct solver for dense
matrix) on a problem as large as the user wants: LINPACK benchmark used for Top500.

Best achieved (Summit), Rmax = 122.3 Pflop/s

HPCG: maximum flop rate achieved by another benchmark code (focused on Conjugate
Gradient, sparse matrices)

Best achieved (Summit), Rmax=2.9 Pflop/s (2% of HPL on same machine)
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Uninteresting metrics

Peak performance: the maximum flop rate the machine can achieve theoretically.

AKA Never to be exceeded performance

Efficiency: The ratio between achieved flop rate and peak performance.

Efficiency is a terrible misnomer: A less “efficient” system can actually provide better
performance/cost ratio (be more efficient in reality)

It is important to use efficiently the expensive components of the system, not the cheap
ones.
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A simple processor

Instructions executed sequentially

Execution is pipelined: ALU executes
instruction i while decoder decodes
instruction i + 1 and fetcher fetches
instruction i + 2 (simplified view).

Problem: Branches break the pipeline
Partial solution: Branch prediction
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Pipelining

Pipeline increases throughput – buckets per second

Pipeline does not decrease latency (slightly increases it) – seconds for bucket transport
from source to destination

Pipeline enables more specialization (assembly line)
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Microprocessor pipeline

Reducing	Gate	Delays
Pipelined	Processor

Source:	wikibooks.org

Marc Snir CS420 – Lecture 1 Fall 2018 22 / 27



Floating-point pipeline
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Memory pipeline

Can have multiple load/stores being handled simultaneously

Marc Snir CS420 – Lecture 1 Fall 2018 24 / 27



Dependencies cause pipeline bubbles

pipeline bubble: empty
stage in pipeline

Compute
a[i]=a[i-1]*s;
assume only
constrained resource is
floating point pipeline.

Dependency distance
one implies only one
stage of the pipeline is
utilized (utilization
1/m, if pipeline has
depth m)

a[i] =a[i-1]*b

a[0]

a[0]

a[0]

a[0]

a[0]

a[1]

a[1]

…
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Dependency distance 2, utilization 2/m

1

a[i] =a[i-2]*b

a[0]

a[1] a[0]

a[1] a[0]

a[1] a[0]

a[1] a[0]

a[2] a[1]

a[3] a[2]

a[3] a[2]

a[3] a[2]

a[3] a[2]

a[4] a[3]

…

2

3

4

5

6

7

8

9

10
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Dependency distance 3, utilization 3/m; ...

1

a[i] =a[i-3]*b

a[0]

a[1] a[0]

a[2] a[1] a[0]

a[2] a[1] a[0]

a[2] a[1] a[0]

a[3] a[2] a[1]

a[5] a[4] a[3]

a[4] a[3] a[2]

a[5] a[4] a[3]

a[5] a[4] a[3]

a[6] a[5] a[4]

…
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True Dependences

f o r ( i =2; i<N; i ++)
a [ i ]= s ∗a [ i −2] ;

Loop dependence: iteration i depends on
iteration i − 2 (dependence distance 2).

⇒ Can compute at same time iteration i
and i − 1, but no more.

Need to optimize code, in order to
compute simultaneously two iterations

f o r ( i =2; i<N; i +=2) {
a [ i ]= s ∗a [ i −2] ;
a [ i +1]= s ∗a [ i −1]
}
i f (N%2) a [N−1]=s ∗a [N−3]

More efficient code: Fewer branches, can
pipeline (but need extra code to handle
odd N); good if N is large

Compiler will do this loop unrolling on its
own, if possible (with higher optimization
levels)

True Dependence: Read after write
(RAW) - producer/consumer dependence
– Later iteration uses result of previous
iteration.
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False dependences 1

f o r ( i =0; i<N; i ++)
a [ i ]= s ∗a [ i +1] ;

Anti dependence: Write after read (WAR) – Later iteration updates variable used by
earlier iteration. Seems to prevent pipelining

Not “true dependence” – can be avoided by using temporary variables:

f o r ( i =0; i<N; i +=2) {
t1=a [ i +1] ;
t2 =a [ i +2] ;
a [ i ] = s ∗ t1 ;
a [ i +1]= s ∗ t2 ;
}

Compiler will do this, using registers as temporary variables

Code can be unrolled 3,4,... times; but, if unroll too much, may not have enough registers
(register pressure)
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False dependences 2

f o r ( i =0; i<N; i ++)
s=a [ i ] ;

Output dependence: Write after write (WAW) –Updates need to occur in the right order

Can be (usually) avoided by not performing first write:

s=a [N−1] ;
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Control dependence

f o r ( i =0; i<N; i ++)
i f ( a [ i ] [ 0 ] ==key ) {
v a l u e = a [ i ] [ 1 ] ;
b r e a k
}

Whether iteration i + 1 executes depends on the result of the test in iteration i .

Can start, speculatively, to execute iteration i + 1 – e.g., load a[i+1][*] – as long as
speculation can be undone, if wrong.

Processors do branch prediction and speculate on the most likely branch
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