
CS420 – Lecture 2

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 2 Fall 2018 1 / 26

Machine code may have different dependences

#i n c l u d e < s t d l i b . h>
#d e f i n e N 25
#d e f i n e s 27
i n t main () {
i n t i ;
i n t a [N] ;
a [0] = 1 ;
f o r (i =1; i<N; i ++)
a [i]= s+a [i −1] ;
e x i t (a [N−1]) ;
}

Marc Snir CS420 – Lecture 2 Fall 2018 2 / 26

ARM assembly

main :

s t r l r , [sp , #−4]!
sub sp , sp , #108
add r3 , sp , #104
mov r2 , #1
s t r r2 , [r3 , #−100]!
add r1 , sp , #100
. L2 :
l d r r2 , [r3]
add r2 , r2 , #27
s t r r2 , [r3 , #4]!
cmp r3 , r1
bne . L2
l d r r0 , [sp , #100]
b l e x i t

Marc Snir CS420 – Lecture 2 Fall 2018 3 / 26

. L2 : // i n s t r u c t i o n l a b e l
l d r r2 , [r3] // l o a d r e g i s t e r r2 from memory l o c a t i o n

// at t he a d d r e s s i n r3
add r2 , r2 , #27 // r2 = r2 + 27
s t r r2 , [r3 , #4]! // i n c r e m e n t r3 by 4 and s t o r e v a l u e o f r2

// at t he r e s u l t i n g a d d r e s s
cmp r3 , r1 // compare r3 and r1 ; t he r e s u l t goes i n t o

// a t e s t b i t r e g i s t e r
bne . L2 // i f t e s t b i t shows l a s t compar i son r e s u l t

// was ”not−e q u a l ” go to i n s t r u c t i o n L2 ;
// o t h e r w i s e , c o n t i n u e w i t h n e x t i n s t r u c t i o n

Marc Snir CS420 – Lecture 2 Fall 2018 4 / 26

.L2:
ldr r2, [r3]

add r2, r2, #27

str r2, [r3, #4]!

cmp r3, r1

bne .L2

true dependence

anti
dependence

control
 dependence

Main performance bottleneck is dependence on load (load can take 100’s of instruction cycles)

Marc Snir CS420 – Lecture 2 Fall 2018 5 / 26

Avoid memory accesses

source code

temp = a [0] ;
f o r (i =1; i<N; i ++) {

temp = s+temp ;
a [i]=temp

}

Running time improved by x4. Do
not need to wait for store to complete
before starting next operation.

Compiler does this transformation on its own
(with -O3 optimization)

main :
mov r2 , #28
s t r l r , [sp , #−4]!
sub sp , sp , #108
add r3 , sp , #4
add r1 , sp , #100
. L2 :
s t r r2 , [r3 , #4]!
cmp r3 , r1
add r2 , r2 , #27
bne . L2
l d r r0 , [sp , #100]
b l e x i t

Marc Snir CS420 – Lecture 2 Fall 2018 6 / 26

Register renaming

1 . l d r r1 , [# 1 0 2 4]
2 . add r1 , r1 , #2
3 . s t r r1 , [#148]
4 . l d r r1 , [#2090]
5 . add r1 , r1 , #4
6 . s t r r1 [#3000]

have false (WAR) dependence on register r1
Compiler can solve problem by using another
register

1 . l d r r1 , [# 1 0 2 4]
2 . add r1 , r1 , #2
3 . s t r r1 , [#148]
4 . l d r r2 , [#2090]
5 . add r2 , r1 , #4
6 . s t r r2 [[# 3 0 0 0]

4-5-6 can execute concurrently with 1-2-3

Problem: Number of registers small (e.g., 16)
– compiler runs out of registers for more
complicated code.
Solution: Hardware uses ”hidden” registers
during execution

1 . l d r r1 , [# 1 0 2 4]
2 . add r1 , r1 , #2
3 . s t r r1 , [#148]
\\ hardware a l l o c a t e s a new copy
\\ o f r1 ; new copy used s u b s e q u e n t l y
4 . l d r r1 , [#2090]
5 . add r1 , r1 , #4
6 . s t r r1 [[# 3 0 0 0]

Marc Snir CS420 – Lecture 2 Fall 2018 7 / 26

Loop fusion

f o r (i =0; i<N; i ++)
a [i]=a [i]+b [i] ;

f o r (i =0; i<N; i ++)
b [i]=b [i]∗ s ;

We fuse the two loops

f o r (i =0; i<N; i ++) {
a [i]=a [i]+b [i] ;
b [i]=b [i]∗ s ;

}

Loop fusion

reduces number of branches;

usually reduce number of loads (b[i] will
be loaded only once);

enable further optimizations

Marc Snir CS420 – Lecture 2 Fall 2018 8 / 26

Optimizations

Loop unrolling can be done manually; a good optimizing compiler will do it automatically

Register renaming is done by hardware – no need to do it

Loop fusion can be done manually; good optimizing compiler will do it automatically

Branch prediction is done by hardware

Executing loads earlier – compiler optimization

Hardware can also provide out-of-order execution: If instruction will surely execute (no
branch) and is ready to execute (no dependence) that is can be executed out of order

Hardware can provide speculative execution (e.g., with branch prediction). If speculation
turns out wrong, it is undone.

Marc Snir CS420 – Lecture 2 Fall 2018 9 / 26

It’s the memory, stupid

seq: Program assigns random values to
consecutive entries in an array of length
500,000,000. 10 measurements are made

#i n c l u d e <t ime . h>
#i n c l u d e < s t d l i b . h>
#i n c l u d e <s t d i o . h>
#d e f i n e N 500000000
#d e f i n e s 1103515245
#d e f i n e t 12345
#d e f i n e rmax 2147483648
l o n g i n t a [N] ;
i n t main () {

l o n g i n t i , j , k ;
l o n g i n t m=1;
t i m e t t ime ;

f o r (i =0; i<N; i ++)
a [i]= i ;

f o r (k=0;k<10; k++) {
t ime = c l o c k () ;
f o r (i =0; i<N; i ++) {
m = (m∗ s+t)%rmax ;
a [i]=m%N;
}
t ime = c l o c k ()− t ime ;
p r i n t f (”% l u ”,

1000∗ t ime /CLOCKS PER SEC) ;
}
p r i n t f (”/ n ”) ;
e x i t ((i n t) a [N−1]) ;
}

Marc Snir CS420 – Lecture 2 Fall 2018 10 / 26

Program variants

Original program (seq)

f o r (i =0; i<N; i ++) {
m = (m∗ s+t)%rmax ;
a [i]=m%N;
}

Assigns values to random entries in an array of
length 500,000,000 first variant (rand)]

f o r (i =0; i<N; i ++) {
m = (m∗ s+t)%rmax ;
a [m%N]= i ;
}

second variant (short)

#d e f i n e M 1000
#d e f i n e N 500000
. . .

f o r (r =0; r<M; r++)
f o r (i =0; i<N; i ++) {

m = (m∗ s+t)%rmax ;
a [m%N]= i ;
}

Same number of assignments as the second
program but using a shorter array of length
500,000

Marc Snir CS420 – Lecture 2 Fall 2018 11 / 26

Results from one experiment

First program compiled with no optimizations 10 runs

11353 10452 11317 9946 11538 10623 9772 9813 10609 12111

Repeated execution always provide same answer but execution time can vary a lot!

Standard deviation: 819

Confidence interval: 507

Marc Snir CS420 – Lecture 2 Fall 2018 12 / 26

Results

0: program compiled with no optimization; 3: program compiled with optimization level 3
(-O3)

10753.40 7845.90

54227.00

26782.50

9957.10 7878.50

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

seq0: seq3: rand0: rand3: short0: short3:

running time (ms)

Marc Snir CS420 – Lecture 2 Fall 2018 13 / 26

10753.40 7845.90

54227.00

26782.50

9957.10 7878.50

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

seq0: seq3: rand0: rand3: short0: short3:

running time (ms) -O3 helps: running time reduced
by 19%, 51% and 21%

Accessessing consecutive
locations in memory helps: 3.4x
faster

Having smaller data set
helps:3.4x faster

Memory access pattern has a
major impact on performance!

Marc Snir CS420 – Lecture 2 Fall 2018 14 / 26

Registers and Caches

ALU can execute (at least) 2–3 operations per nsec (2–3 GHz = 2–3 Gops/s)

It takes ∼100 nsec to load word from memory

Problem: If operands are always loaded from memory and stored back, then CPU will
run at memory speed (∼200 times slower)

Solutions: 1 Registers – can be accessed at CPU speed (by there are only a few tens of
them)

2 Load data earlier than needed for it to have time to arrive into register before
it is used

3 Caches
4 Cache prefetch – CPU guesses what will be loaded in the near future and

bring it into the cache ahead of time

Marc Snir CS420 – Lecture 2 Fall 2018 15 / 26

Registers and Caches

ALU can execute (at least) 2–3 operations per nsec (2–3 GHz = 2–3 Gops/s)

It takes ∼100 nsec to load word from memory

Problem: If operands are always loaded from memory and stored back, then CPU will
run at memory speed (∼200 times slower)

Solutions: 1 Registers – can be accessed at CPU speed (by there are only a few tens of
them)

2 Load data earlier than needed for it to have time to arrive into register before
it is used

3 Caches
4 Cache prefetch – CPU guesses what will be loaded in the near future and

bring it into the cache ahead of time

Marc Snir CS420 – Lecture 2 Fall 2018 15 / 26

Registers and Caches

ALU can execute (at least) 2–3 operations per nsec (2–3 GHz = 2–3 Gops/s)

It takes ∼100 nsec to load word from memory

Problem: If operands are always loaded from memory and stored back, then CPU will
run at memory speed (∼200 times slower)

Solutions: 1 Registers – can be accessed at CPU speed (by there are only a few tens of
them)

2 Load data earlier than needed for it to have time to arrive into register before
it is used

3 Caches
4 Cache prefetch – CPU guesses what will be loaded in the near future and

bring it into the cache ahead of time

Marc Snir CS420 – Lecture 2 Fall 2018 15 / 26

Registers and Caches

ALU can execute (at least) 2–3 operations per nsec (2–3 GHz = 2–3 Gops/s)

It takes ∼100 nsec to load word from memory

Problem: If operands are always loaded from memory and stored back, then CPU will
run at memory speed (∼200 times slower)

Solutions: 1 Registers – can be accessed at CPU speed (by there are only a few tens of
them)

2 Load data earlier than needed for it to have time to arrive into register before
it is used

3 Caches

4 Cache prefetch – CPU guesses what will be loaded in the near future and
bring it into the cache ahead of time

Marc Snir CS420 – Lecture 2 Fall 2018 15 / 26

Registers and Caches

ALU can execute (at least) 2–3 operations per nsec (2–3 GHz = 2–3 Gops/s)

It takes ∼100 nsec to load word from memory

Problem: If operands are always loaded from memory and stored back, then CPU will
run at memory speed (∼200 times slower)

Solutions: 1 Registers – can be accessed at CPU speed (by there are only a few tens of
them)

2 Load data earlier than needed for it to have time to arrive into register before
it is used

3 Caches
4 Cache prefetch – CPU guesses what will be loaded in the near future and

bring it into the cache ahead of time

Marc Snir CS420 – Lecture 2 Fall 2018 15 / 26

Cache

Can build large DRAM memory (off chip),
but access time is high and bandwdith is
low.

Can build fast SRAM memory (on chip),
but capacity is small and power
consumption is high

Idea: Use both to provide what looks like
memory with capacity of DRAM and
speed of SRAM

Keep frequently accessed data in cache

DIMM

Computer Board

Marc Snir CS420 – Lecture 2 Fall 2018 16 / 26

Cache

Main memory is slow. In order to get higher bandwidth, data is moved from memory to
cache in large blocks (typically 64 bytes) – cache lines.

Data is moved from cache to registers in single words (8 bytes).

A load first looks for the loaded word in cache; if it is not there, it is brought from
memory to cache

Marc Snir CS420 – Lecture 2 Fall 2018 17 / 26

Flow chart for a LOAD

Cache	Read	Operation	-
Flowchart

Marc Snir CS420 – Lecture 2 Fall 2018 18 / 26

How do we search the cache?

What do we do if the cache is
full?

Marc Snir CS420 – Lecture 2 Fall 2018 19 / 26

Cache organization

Typical numbers

Cache line = 64 bytes = 8 words (size of block transfered from memory)

Cache size = 64 KB = 1024 cache lines

Physical memory address is 48 bits – memory is byte addressable.

Typically, physical address is shorter than virtual address (i.e., value of pointer – 64 bits). We
will not discuss virtual to physical address. translation.

Marc Snir CS420 – Lecture 2 Fall 2018 20 / 26

Cache direct mapping

32 10 6

bytelinetag

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

select byteselect
line

compare

match
cache hit

no match
cache miss

…

tag byte
63

byte
0

…
cache line

Logic is simple

A byte can be in only
one location in cache;
location is determined
by last 16 bits of its
address. Two lines that
are k × 216 apart in
memory conflict in
cache.

When a line is loaded,
previous line in that
location is evicted

Marc Snir CS420 – Lecture 2 Fall 2018 21 / 26

Direct mapping improved

42 6

byte

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

select byte
select
line

compare

match
cache hit

no match
cache miss

hash function

10

Logic is slightly more
complicated

A memory line can be
in only one location in
cache; location is
determined by all 42
bits of its address

Regular access patterns
(e.g., strided) are not a
problem

But can still have
conflict misses

Marc Snir CS420 – Lecture 2 Fall 2018 22 / 26

Set-associative cache

42 6

byte

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

…w7 …… …… w0…

.

.

.

select byte

no match
cache miss

compare

match
cache hit

…w7 …… …… w0…

…w7 …… …… w0…

.

.

.

select
set

compare

match
cache hit

set associativity 2
512 sets

hash function

9

Logic is more
complicated

A line can be in only
one set, but in any line
in this set; set is
determined by all 42
bits of its address

Conflict misses are less
likely

Have a choice which
line to evict. Usually
evict ”older” line.

Marc Snir CS420 – Lecture 2 Fall 2018 23 / 26

Ideal cache: Fully associative cache

The entire cache is one associativity set: A cache line can be stored anywhere in the
cache.

Least Recently Used (LRU): Always evict the line that was not accessed for the longest
time.

Not practical: Would need to compare all tags

Practical caches are an approximation of a fully associative, LRU cache

One can analyze code behavior assuming ”ideal” caches

Marc Snir CS420 – Lecture 2 Fall 2018 24 / 26

Can have multiple cache levels

CPU

L2
unified cache
256KB 8-way

L1
data cache
32KB 4-way

L1
Instruction cache

32KB 4-way

Memory
8 GB

L3
2MB 16-wy

4 cycles,
pipelined

10 cycles

35 cycles

caches are
inclusive

Typical numbers
Marc Snir CS420 – Lecture 2 Fall 2018 25 / 26

A more complex processor

Figure 2 shows the instruction flow in POWER8 processor core.

Marc Snir CS420 – Lecture 2 Fall 2018 26 / 26

