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Jacobi

d o u b l e a [ 2 ] [M] [ N ] ;
. . .

w h i l e ( ! c o n v e r g e d ){
f o r ( i =1; i<N−1; i ++)

f o r ( j =1; j<M−1; j ++)
a[1−k ] [ i ] [ j ]=0 .2 5∗ ( a [ k ] [ i −1] [ j ]

+a [ k ] [ i +1] [ j ]+a [ k ] [ i ] [ j −1]
+a [ k ] [ i ] [ j + 1 ] ) ;

k = 1−k ;
}

Assume cache can hold
more than 4 rows
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What row is accessed at each iteration of i

Read

(1)

Write

(1)

(1,2,3)

(1,2)

(2,3,4)

(3,4)

(1)

(2)

(3)

(4)
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Cache content after 1st iteration

Read Write
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Cache content middle of 2nd iteration

Read Write

possibly evicted
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Cache content after 2nd iteration

Read Write
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Cache content after 3rd iteration

Read Write
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If cache can hold more than 4 rows than each line is accessed once

Number of misses is ∼ 2N2/8 = N2/4

Assume ideal cache – actual performance may vary
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Cache cannot hold 4 rows

Cache content middle of 1st iteration

Read Write

Marc Snir CS420 – Lecture 4 Fall 2018 9 / 46



Each row of left matrix is read from memory again at each iteration.

∼ 3N2/8 misses on left matrix

N2/8 misses on right matrix

Total of ∼ N2/2 misses
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Case study: transpose

f o r ( i =0; i<N; i ++)
f o r ( j =0; j<N; j ++)

b [ i ] [ j ]=a [ j ] [ i ] ;

a b c d

e f g h

i j k l

m n o p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

ba

If a[] is traversed by rows, then b[] is traversed by columns; and vice-versa!

If matrix is large, have ∼ N2/16 + N2 = 17
16N2 cache misses (assuming 16 words per

cache line)
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Read cache line (good), write 16 cache lines (bad)

Marc Snir CS420 – Lecture 4 Fall 2018 12 / 46



Should fill up the remainder of the 16 cache lines soon after filling the first column
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Should read the first cache lines in the next 15 rows soon after reading the first cache line in
the first row the first column

Better to read & write larger tile, as long as it fits in cache (prefetch)
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Tiled transpose

In effect, tiles are read to cache, transposed within cache and written back to destination tile

a b c d

e f g h

i j k l

m n o p

a

b

i

j

e

f

m

n

c

d

k

l

g

h

o

p

a

b

e

f

k

l

o

p

i

j

m

n

c

d

g

h
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Tiled transpose

// L d i v i d e s N
f o r ( l =0; l<N; l+=L )

f o r (m=0;m<N;m+=L )
f o r ( i=l ; i< l+L ; i ++)

f o r ( j=m; j<m+L ; j ++)
b [ i ] [ j ] = a [ j ] [ i ] ;

2 outer loops iterate over 2D tiles

2 inner loops permute a tile and store it to its final
location (one tile read and one tile written)

Choose tile size so that 2 tiles fit in cache

Have ∼ 2N2/16 = N2/8 cache misses (close to ×8
improvement)
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Transpose illustrated, assuming two words per cache line, and 4 lines per cache
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Transpose illustrated 1

b c d

e f g h

i j k l

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

a b

a b

a 2

cache

b[0][0]=a[0][0]

a 1 a

m n o p
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Transpose illustrated 2

b c d

e f g h

i j k l

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

a b

a b

a e

cache

b[0][1]=a[1][0]

a 1 a

m n o p

e f
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Transpose illustrated 3

b c d

e f g h

i j k l

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

a b

a b

a e

cache

b[1][0]=a[0][1]

a 1 a

m n o p

e f

6b
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Transpose illustrated 4

b c d

e f g h

i j k l
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a b
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b[1][1]=a[1][1]

a 1 a
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e f

b f
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Transpose illustrated 5

b c d

e f g h

i j k l

a b cache

b[2][0]=a[0][2]

a
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9

13

e
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Transpose illustrated 6

b c d

e f g h

i j k l

a b cache

b[3][0]=a[0][3]
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Transpose illustrated 7

b c d

e f g h

i j k l

a b cache

b[3][1]=a[1][3]

a

b
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e
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Experiment

Transpose of 10,000×10,000 matrix, naive code: running time =811ms ± 17

Transpose of 10,000×10,000 matrix, tiled code, tile size = 50: running time = 182 ± 10

∼ ×15 improvement – more than expected.

Transpose of 10,000×10,000 matrix. with two levels of tiling: LL=250, L=50: running
time =162 ± 2.8.
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Reuse distance – measure of temporal locality

Reuse distance for an access to cache line v: How long since v was last accessed.

More precisely: how many different lines were accessed since last access to v .

Theorem

If the cache is fully associative then the access to v is a miss if and only if the reuse distance
of v is larger than the cache size

More convenient to discuss reuse distance for variable accesses (rather than lines).
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Matrix-vector

f o r ( i =0; i<M; i ++) {
a [ i ]=b [ i ] ;

f o r ( j =0; j<N; j ++)
a [ i ]=a [ i ]+C [ i ] [ j ]∗ d [ j ] ;

}

Compiler will optimize and keep temp

in register

f o r ( i =0; i<M; i ++) {
temp=b [ i ] ;

f o r ( j =0; j<N; j ++)
temp+=C [ i ] [ j ]∗ d [ j ] ;

a [ i ]=tmp ;
}

Compiler will generate Floading
Multiply-Add (FMA) operations
(a=b*c+d) )

a = b + C × d

= + x

a b C d
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Reuse distance

f o r ( i =0; i<M; i ++) {
temp=b [ i ] ;
f o r ( j =0; j<N; j ++)

temp +=C [ i ] [ j ]∗ d [ j ] ;
a [ i ]=temp
}

Approximate analysis or reuse distance, ignoring
first access

Focus on inner loop

a[i], b[i] and C[i][j] are not reused;

Each temp is accessed ∼ MN times with constant
reuse distances (Θ(1))

Each d[j] is accessed M times with reuse distance
Θ(N) (order N)
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Tiling improves reuse distance for accesses to d[][]

\\ T t i l e s i z e d i v i d e s N

f o r ( i =0; i<M; i ++)
a [ i ]=b [ i ] ;
f o r ( j j =0; j j <N; j j+=T)

f o r ( i =0; i<M; i ++) {
temp=a [ i ] ;
f o r ( j= j j ; j< j j +T ; j ++)

temp+=C [ i ] [ j ]∗ d [ j ] ;
a [ i ]=temp ;
}

Consider reuse distance in inner
loop

b[i] is not accessed and C[i][j] is not reused

temp is accessed ∼ MN times with constant reuse
distance (and MN/T times with Θ(T ) reuse
distance

d[j] is accessed M times with reuse distance Θ(T )

Pick T as large as possible while avoiding misses on
d[]

No more capacity misses on d[] (Θ(NM) gain);
more misses on temp and on a[] (Θ(NM/T ) loss).
Worthwhile, but gain is small (if at all)
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Matrix-matrix

a = a + b × c – all matrices are N × N

f o r ( i =0; i<N; i ++)
f o r ( j =0; j<N; j ++)

f o r ( k=0;k<N; k++)
a [ i ] [ j ]+= b [ i ] [ k ]∗ c [ k ] [ j ]

2N3 operations (N3 FMAs) and only 3N2 variables,
so good opportunity to achieve higher compute
intensity

Can compute FMAs in any order; which is best?

b[i][k] c[k][j]

a[i][j]=a[i][j]+    b[i][k]*c[k][j]

k

j
i

⌃
k

a[i][j]

Cube of FMAs
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No tiling – We ignore spatial locality in analysis

f o r ( i =0; i<N; i ++)
f o r ( j =0; j<N; j ++)

f o r ( k=0;k<N; k++)
a [ i ] [ j ]=a [ i ] [ j ]+b [ i ] [ k ]∗ c [ k ] [ j ]

Each entry of arrray a, b, c is accessed N times.

a[i][j] has mostly reuse distance Θ(1)

b[i][k] has mostly reuse distance Θ(N)

c[k][j] has reuse distance Θ(N2)

If cache can hold all of c, a column of b and an entry of a
will have Θ(N2) misses

if N2 > C (cache size), all N3 accesses to c are misses.

b[i][k] c[k][j]

a[i][j]=a[i][j]+    b[i][k]*c[k][j]

k

j
i

⌃
k

a[i][j]
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What if not cube?

f o r ( i =0; i<L ; i ++)
f o r ( j =0; j<M; j ++)

f o r ( k=0;k<N; k++)
a [ i ] [ j ]=a [ i ] [ j ]+b [ i ] [ k ]∗ c [ k ] [ j ]

At least LM + MN + NL cache misses

Reuse distance 1 for a[i][j], N for b[i][k] and
MN for c[k][j]

If C > MN + N + 1 then have Θ(LM + MN + NL)
misses (optimal)

Should reorder loops in decreasing range size

If C � min(LM,MN,NL) then have
Θ(LM + MN + NL) misses

b c

k
j

i

a

L M

N
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Reduce reuse distance for c[][] – Tile inner loop

\\ T d i v i d e s N
f o r ( kk =0;kk<N; kk+=T)

f o r ( i =0; i<N; i ++)
f o r ( j =0; j<N; j ++)

f o r ( k=kk ; k<(kk+T ; k++)
a [ i ] [ j ]=a [ i ] [ j ]+b [ i ] [ k ]∗ c [ k ] [ j ]

Each iteration of outer loop one computes product
of N × T and T × N matrices

⇒ if C � NT then have N2 + 2NT misses for each
product, for a total of N

T (N2 + 2NT )

Pick T ∼ C/N so number of misses is

∼ N
T (N2 + 2NT ) = N2

C (N2 + 2C ) = N4

C + 2N2

If N > C we still have N3 misses.

c0

a

T

N Nb0

a

b1 c0

b2 c0

Marc Snir CS420 – Lecture 4 Fall 2018 33 / 46



Tile b and c

f o r ( j j =0; j j <N; j j+=T)
f o r ( kk =0;kk<N; kk+=T)

f o r ( i =0; i<N; i ++)
f o r ( j= j j ; j< j j +T ; j ++)

f o r ( k=kk ; k<kk+T ; k++)
a [ i ] [ j ]=a [ i ] [ j ]+b [ i ] [ k ]∗ c [ k ] [ j ]

Three inner loops compute product of N × T by
T × T matrices; there are (NT )2 such products.

If C >> T 2 then have ∼ 2NT + T 2 cache misses
for each product, for a total of (NT )2(2NT + T 2)

Pick T ∼
√

C so number of misses is
∼ (NT )2(2NT + T 2) = N2

C (2N
√

C + C ) = 2N3
√
C

+ N2

b c

a

a

k
j
i
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Tile a, b and c

Compute (NT )3 products of T × T matrices.

If C ∼ T 2 then have ∼ 3(NT )3T 2 = 3N3

T = 3N3
√
C

cache misses.

H

B C

A

A

k
j
i T
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Experiment

N=1024, T=32 (L1 cache 32K, L2 cache 256K)

H

code analysis (misses) measurement (ms)

Base ∼N3 = 240 19,371±186

Tile k ∼ N4/C + 2N2 ∼ 227 4353±96

Tile k & j ∼ 2N3/C + N2 ∼ 220 4153±121

Tile k, j & i ∼ 3N3/C ∼ 218 4625±212

Analysis did not take into account line size and factors other than misses

Usually need to experiment in order to find right tiling parameters
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Previous discussion assumed one cache level; how do we deal with multiple cache levels?

Usually, memory is main bottleneck; tile so as to reduce memory accesses.

Often sufficient to tile for L2 locality

But can do hierarchical tiling: E.g., for transpose, can transpose 8× 8 in vector registers
(load 8 vectors of 8 words; transpose in registres; store 8 vectors)

For Matrix×Matrix can use recursive algorithm that tiles for successive cache levels
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Parallelism
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Vector operations

Single Instruction, Multiple Data
(SIMD): one instruction operates
simultaneously on multiple
entries of a vector.

Uses vector registers and vector
arithmetic units
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Why vector operations?

Reduce instruction decoding overhead

Hardware does not need to worry about dependences between operations

It is up to the programmer and the compiler to create groups of independent adds

Runs twice as fast if single precision is used

using single precision (with vector instructions) means twice as many flops – as well as better
use of memory capacity and bandwidth and better cache hit ratio Should be done whenever
higher precision is not required.
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How does on use vector instructions?

Trust the compiler to vectorize
loops (but verify)

works well for simple loops

Use vector intrinsics (buildin
functions recognized by the
compiler); they map onto
operations on vector registers.

Vector intrinsics are machine
specific; we illustrate with Intel
intrinsics

r e g i s t e r d o u b l e a [ 8 ] , b [ 8 ] , c [ 8 ] ;
. . .
f o r ( i =0; i <8; i ++)

a [ i ]=b [ i ]+ c [ i ] ;

. . .
m512d a , b , c ; \∗ 512 b i t v e c t o r

r e g i s t e r (8 d o u b l e s ) ∗\
. . .
a= mm512 add ( b , c ) ;

Marc Snir CS420 – Lecture 4 Fall 2018 41 / 46



What vector operations exist?

vector op vector apply operation element-wise

masked vector-vector apply operation element-wise where mask is 1

r e g i s t e r d o u b l e a [ 8 ] , b [ 8 ] , c [ 8 ] , d [ 8 ] ;
r e g i s t e r b o o l e a n mask [ 8 ] ;
. . .

f o r ( i =0; i <8; i ++)
a [ i ]=mask [ i ] ? b [ i ]+ c [ i ] : d [ i ] ;

. . .
m512d a , b , c , d ; mmask8 mask ;

. . .
a= mm512 mask add ( d , mask , b , c )

masked vector operations take (at least) as much time as regular vector operations!
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vector op scalar done as broadcast, followed by
vector-vector operation

r e g i s t e r d o u b l e a [ 4 ] , s
f o r ( i =0; i <4; i ++)

a [ i ]= s ∗b [ i ] ;

m512d ss , a , b ; d o u b l e s ;
. . .
s s = mm512 broadcastd pd ( s ) ;
a= mm512 mul pd ( ss , b )

s

s s s s

b[0] b[1] b[2] b[3]

x

s*b[0] s*b[1] s*b[2] s*b[3]

=

s s s s

b[4] b[5] b[6] b[7]

s*b[4] s*b[5] s*b[6] s*b[7]
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Reduction

sum elements of a vector

r e g i s t e r d o u b l e a [ 8 ] , s ;
f o r ( i =0; i <8; i ++)

s=s+a [ i ] ;

. . .
m512d a ; d o u b l e s ;

s= mmreduce add pd ( a ) ;
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load/store

load/store from/to consecutive memory
locations

r e g i s t e r a [ 8 ] ; d o u b l e ∗p ;
. . .
f o r ( i =0; i <8; i ++)

a [ i ] = p++

. . .
m512d a ; d o u b l e ∗p

a = mm512 load pd ( p )

vector
register

p{ {
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gather-scatter

gather nonconsecutive elements in
memory to a vector register

scatter elements in a vector register to
nonconsecutive memory location

r e g i s t e r d o u b l e a [ ] , b [ 8 ] ; l o n g p [ 8 ] ;
f o r ( i =0; i <8; i ++)

b [ i ]=a [ p [ i ] ] ;

. . .
mmd b ; m512i p ; d o u b l e a [ ] ;

b= mm512 i64gather pd ( p , a , 8 ) ;

b b f d c e c a

vector
of indices

a

b

c

d

e

f

g

1 1 5 3 2 4 2 0

vector
register

p

0

1

2

3

4

5

6

…0 1 2 73 4 5 6

Much less efficient than load/store.

May be required for irregular computations
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