BN 0
Marc Snir
Fall 2018

?

Multithreading

CS420 — Lecture 5

Fall 2018

2/33

Thread of execution: The execution of a sequence
of instructions.

Notwithstanding caches, a thread may often wait
for slow memory accesses, idling the ALUs

= Can improve ALU utilization by having it shared
by multiple hardware threads: simultaneous
multithreading (SMT).

Modern processors support 2-4 HW threads per core
User can control how many HW threads use a core

Higher thread count good for memory latency
bound executions

Lower thread count can work better for memory
bandwidth bound executions

Marc Snir

instruction pipeline

The OS may handle a large number
of concurrent SW threads, but only
one per HW thread can run
simultaneously. one at a time

u]
8
I
i
!
5
£
Pl

@ Run out of opportunities to enhance single CPU
performance, and have room for more transistors on
chip

@ = Can put multiple cores on a chip

CS420 — Lecture 5

Shared L3 Cach:

i i3
-

Multiple cores each running multiple
hardware threads connected to common

shared memory

Each hardware thread executes its own e e e e
program

All cores can read and write shared

variables in shared memory

Each thread can run an independent MEMORY
program; but if we want to speed up a
computation, the threads need to
collaborate on one computation.

Can be private

s
s

|L_LiD L1D

or shared, too

L2 Cache L2 Cache. L2 Cache L2 Cache
256K8 256KB. 256K8 256KB

o
o
o
o

s2<e @) |[L1][ke 0 |

L2 Cache Cache. Cache. Cache
256K8 256K8. 2568 256KB

u]
8

I

i
!
S
o
i)

Thread 0
a:5,

barrier;

Thread 1

barrier;

b=a

|l o
b —

No caches

MEMORY

Thread 0

Thread 1
a=5:
barrier; barrier :

b=a

a=5

b o

No caches

Q¢

MEMORY

Thread 0
a:5;

No caches
Thread 1
a=5
.. barrier barrier
barrier; barrier :
b=a
a —1 »5
MEMORY
P
=} =2 -) o

Thread 0

Thread 1 azs
.. barrier
barrier ;
b—a

Thread 0
a::5;

barrier:

Thread 1

barrier :

b=a

b —

CACHE

L 0

CACHE

L >0

MEMORY

F

325;

barrier:

barrier:

b=a

With caches

a=5

CACHE

QG

CACHE

| oo
bi

L >0

MEMORY

=

Thread 0
a ::5;

barrier;

Thread 1

barrier;
b=a

a=5
barrier

a—

With caches

5

CACHE

>0

"lll'lll) barrier (lll'lll')

CACHE

L >0

MEMORY

F

Thread 0 Thread 1
a=>h; ..
barrier

barrier
b=a
Caches are not consistent — wrong result!

a=5
barrier

With caches

CACHE

L »0

a——»

b—

0

’ barner ’

CACHE

L »0

MEMORY

=

Protocol that ensure that all caches have same value for variable cached in multiple caches
MESI protocol (AKA lllinois protocol):

A cache line can have four states:

Modified: Only in that cache and different from memory value (Need to be written back to
memory, if evicted)

Exclusive: Only in that cache (can be modified)
Shared: In other caches as well (cannot be modified)
Invalid: Invalid

More states can be used to further reduce coherence traffic

Thread 0

a=>; .

barrier; barrier;
b=a

Thread 1

intervene, if needed

All caches “snoop” on memory accesses and

CACHE

L »0

CACHE

b — 0

MEMORY

[}

(g

Thread 0

a=>h;

All caches “snoop” on memory accesses and
intervene, if needed
Thread 1 as
barrier; barrier;
b=a
aﬁ;’:‘;‘;" CACHE CACHE
MEMORY
BUS
a —r*>0
b — 0
MEMORY
o = = = DA

Thread 0

a=bh;

All caches “snoop” on memory accesses and
intervene, if needed
Thread 1 as
barrier; barrier;
b:a (modified) a — 1~ 5
CACHE CACHE
‘ MEMORY
' BUS
a —*>0
b ——>0
MEMORY
=] = - = = DA

Thread 0
a=>h;

barrier;

Thread 1

barrier;

b=a

All caches “snoop” on memory accesses and

intervene, if needed

a=5
barrier

(modified) a —

barrier
b=a

anybody
has a?
CACHE GACHE
a —f»0
b —f>0
MEMORY
=} F = E E A

Thread 0

a=>h;

barrier;

Thread 1

barrier;

intervene, if needed

All caches “snoop” on memory accesses and

a=5 barrier
barrier b=a
b= a (sharedya —T™> 5 S+— (shared)
CACHE CACHE
a —r*5
b ——0
MEMORY
=} =2 = E E A

Thread 0
a=bh;
barrier;

Thread 1

barrier;
b=a

All caches “snoop” on memory accesses and
intervene, if needed

a=5 barrier
barrier b=a

anybody
has b?

(exclusive) a — 5 S +—1 4 (shared)
CACHE CACHE
a—t»0
b —t>0
MEMORY
o & - = E DA

Thread 0

a=bh;

barrier;

Thread 1

intervene, if needed
barrier;

All caches “snoop” on memory accesses and

a=5 barrier
barrier b=a
s 5 <1— a (shared)
b—a (shared) a 5 <f—b (modified)
CACHE CACHE
a —1+0
b —>0
MEMORY
=] = = E E A

A (logical central) directory keeps track which
lines are in which cache

Thread 0 Thread 1

a=>b; ..

barrier; barrier;
b=a

b —

CACHE

L >0

>0

MEMORY

CACHE

DIRECTORY

A (logical central) directory keeps track which
lines are in which cache

Thread 0 Thread 1

a=>b; ..

barrier; barrier;
b=a

b —

a=!

CACHE

MEMORY

DIRECTORY

A (logical central) directory keeps track which =
lines are in which cache
s

Thread 0 Thread 1 ’
a:5, L CACHE CACHE
barrier; barrier; félT
b=a “
a —0
b — 0
MEMORY DIRECTORY

u]

8
I

i
!
S
o
i)

A (logical central) directory keeps track which
lines are in which cache

Thread 0 Thread 1

a=>; .

barrier; barrier;
b=a

barrier
a=5 b=a
barrier
a —»5
CACHE CACHE
o~
N
Bl g
y
—0 [a]1]0]
— 1 »0
MEMORY DIRECTORY

A (logical central) directory keeps track which
lines are in which cache

a=5 barrier
barrier ’ b=a ’
a share a a
Thread 0 Thread 1
a= 5 . CACHE CACHE
barrier barrier St‘"”j
b=a
a —*5 [al1]1]
b — 0
MEMORY DIRECTORY
o & = E E DAl

lines are in which cache

A (logical central) directory keeps track which

barrier
=5 <
zarrier ’ b=a ’
b5 S<+1— a
Thread 0 Thread 1 T
a=b>h; CACHE
barrier; barrier;
b=a
a —t+*»5
b ——0
MEMORY DIRECTORY
oy <@ =, «=» = ©ac

lines are in which cache

Thread 0
a=>h;

barrier;

A (logical central) directory keeps track which

Thread 1

barrier;

b=a

a=5

barrier/
b=a
barrier
—» 5

a

5<f— 3
5<f— p
6‘0
CACHE e/ CACHE
a

{ »5

b — 0

1]
K
MEMORY

l

DIRECTORY

Snooping Directory
Good: Lower latency — fewer Bad: Higher latency — more
communications per transaction communications per transaction
Bad: All caches are involved in all Good: Scales: Fixed amount of traffic
memory accesses — does not scale per transaction

Variants of snooping used for low core counts and directories used for high core counts

Coherence protocol works on full cache lines, not individual words
Thread 0
while (1)

a++;

Thread 1

while (1)
b+

Case 1: a and b are in distinct cache lines; there is no coherence traffic

Coherence protocol works on full cache lines, not individual words
Thread 0
while (1)

a++;

Thread 1

while (1)
b+

Case 1: a and b are in distinct cache lines; there is no coherence traffic
to the other

Case 2: a and b happen to be in same cache line; cache line “ping-pongs” from one cache

Coherence protocol works on full cache lines, not individual words
Thread 0
while (1)

a++;

Thread 1
while (1)
b++;

to the other

Case 1: a and b are in distinct cache lines; there is no coherence traffic

Case 2: a and b happen to be in same cache line; cache line "ping-pongs” from one cache
Keep variables mostly used by different cores in distinct cache lines
o T = = E 9ae
T CSs420-lecture5 . Fall2018 13/33

Use a thread library, such as Posix Pthreads library

pthread_exit(status)

Thread creation pthread_create(&thread, atttr, function, arg)
pthread_cancel (thread)

thread synchronization pthread_join(thread,&status)

< > -
Well-nested code: Forking thread Join in
reverse order of forks Spaghetti code
=] =2 = E = DA
T CS420-lecture5 . Fall2018 15/33

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_destroy

Thread 0 Thread 1
Lock Lock
A=2 A=A+1
Unlock Unlock

Mutual exclusion — but order is unknown; program is non-deterministic!

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_destroy

Thread 0 Thread 1
Lock Lock
A=2 A=A+1
Unlock Unlock

Mutual exclusion — but order is unknown; program is non-deterministic!
Final value of A is either 2 or 3

Thread 0 Thread 1
(2) str#2 A (1) Idr

I’]_ A
(3) add r1 r1 #1
(4) strorl A

Thread 0 Thread 1
(2) str #2 A (1) Idr

rl A
(3) add r1 r1 #1
(4) str r1 A
@ Without lock, final result of A=1 is possible

Thread 0 Thread 1
(2) str #2 A (1) Idr

rl A
(3) add r1 r1 #1
(4) str r1 A
@ Without lock, final result of A=1 is possible
@ Lock ensures atomicity of A=A+1

pthread_cond_init(&condition, attr) pthread_cond_destroy(condition)
pthread_cond_wait(condition,mutex)

pthread_cond_signal(condition) (pthread_cond_broadcast)

Thread 0 Thread 1
A=2 Wait
Signal A=A+1

Final result will be A=3

C++, Java,...

static const int num_threads = 10;
void xcall_from_thread (void x*) {

int main() {

std :: thread t[num_threads];

//Launch a group of threads

for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread);

}

std :: cout << "Launched from the main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {
t[i].join();

}

Language developed by committee — Architecture Review Board (ARB)
OpenMP V1.0 came out October 1997.
Current version is V4.5 (your compiler may be V4.0)

Mostly used in scientific computing (provides better control of how hardware threads are
used)

Exists as Fortran or as C/C++ extension

#include <omp.h>
#include <stdio.h>

int main(int argc, charxx argv) {

omp_set_num_threads (4);
printf ("running with max %d threads \n", omp_get_max_threads());

printf ("master is thread number %d of %d \n",
omp_get_thread_num (), omp_get_num_threads());
#pragma omp parallel

{

printf("thread number %d of %d says hello world \n",
omp_get_thread_num (), omp_get_num_threads());

}

} o
o> <& = = E 9Dace

master

thread
e Code consists of C/C++ (or Fortran), P
augmented with pragmas (or directives) P
@ It is executed by a team of threads | B

start parallel section
@ Thread 0 starts execution; when the

parallel statement is encountered, then
each thread in the team executes the
ensuing block; thread 0 resumes afterward

end parallel section

q--—————————

d--—————————

q-————————

running with

master
thread
thread
thread
thread

number
number
number
number

max 4 threads
is thread number 0

0

2
1
3

of 4
of 4
of 4
of 4

says
says
says
says

of 1
hello
hello
hello
hello

world
world
world
world

@ The number of threads in the team
may exceed the number of hardware
threads

@ The calls to printf () will occur in
an arbitrary order

How many threads in the team?
@ Can be set as an environment variable, or by default

@ Can be fixed (static) or varying (dynamic) — but does not change during the execution of
a parallel section

@ Good code is written to work with an arbitrary number of threads (possibly constant).

@ In particular, code should work with pragmas ignored (one thread)

@ Sum squares of
numbers from 1 to N

#include <omp.h>
#include <stdio.h>

int sum;

#pragma omp parallel

{
int myid,numthreads ,mysum, first ,next,i;
myid = omp_get_thread_num ();
numthreads=omp_get_num_threads ();
mysum=0;
first=myid«N/numthreads+1;
next=(myid+1)*N/numthreads+1;
for(i=first;i<next;i++)
mysum+=i * i ;

sum —+= mysum;

}

#include <omp.h>
#include <stdio.h>

int sum;

@ Sum squares of #pragma omp parallel
numbers from 1 to N {
@ Smart way: sum = int myid,numthreads ,mysum, first ,next,i;
n(n+1)(2n+1)/6 myid = omp_get_thread_num ();
numthreads=omp_get_num_threads ();
mysum=0;

first=myid«N/numthreads+1;
next=(myid+1)*N/numthreads+1;
for(i=first;i<next;i++)
mysum+=i * i ;

sum —+= mysum;

}

#include <omp.h>
#include <stdio.h>

int sum;

@ Sum squares of #pragma omp parallel
numbers from 1 to N {
@ Smart way: sum = int myid,numthreads ,mysum, first ,next,i;
n(n+1)(2n+1)/6 myid = omp_get_thread_num ();
e Dumb way: numthreads=omp_get_num_threads ();
e Split the range 1..N mysum=0;
across threads first=myid«N/numthreads+1;
o Have each thread next=(myid+1)*N/numthreads+1;
sum its squares for(i=first;i<next;i++)

o Sum the results mysum--=i * i ;

sum —+= mysum;

}

#include <omp.h>

#include <stdio.h>

int sum;

#pragma omp parallel

{

int myid, numthreads ,mysum, first ,next,i;
myid = omp_get_thread_num ();

N=10 and team has 2 threads

numthreads=omp_get_num_threads ();
mysusz; thread 0 first=1 next=6

thread 1 first=6 next=11

first=myid«N/numthreads+1;
next=(myid+1)*N/numthreads+1;
for(i=first;i<next;i++)
mysum-—+=i x i ;

sum —+= mysum;

}

int sum;

#pragma omp parallel
int myid, numthreads,
mysum, first , next,i;

@ sum is a shared variable: all threads can
access it

@ myid, numthreads... are private
variables: Each thread has its own copy.

@ (This follows the usual scoping rules of

. C/C+)

int sum;

#pragma omp parallel

{

int myid, numthreads ,mysum, first ,next,i;
myid = omp_get_thread_num ();
numthreads=omp_get_num_threads ();
mysum=0;
first=myid«N/numthreads+1;
next=(myid+1)*N/numthreads+1;
for(i=first;i<next;i++)
mysum+=i * i ;

sum += mysum;

}

For N=3 the program computed wrong sum=3270

Thread 0

Idr
add
str

r2 sum
r2 r2
r2 sum

r3

Thread 1
load r2 sum
add r2 r2
str r2 sum

r3

Idrr2 sum —_ Idr 12 sum

addr2r2 r3 add 1212 13

str r2 sum
T~ strr2 sum

@ The final value of sum need not be the sum of all the added local sums!

@ Need to ensure that the increments be atomic

int sum;

#pragma omp parallel

{

int myid, numthreads ,mysum, first ,next,i;
myid = omp_get_thread_num ();
numthreads=omp_get_num_threads ();
mysum=0;
first=myid«N/numthreads+1;
next=(myid+1)«N/numthreads+1;
for(i=first;i<next;i++)
mysum-+=i * i ;

#pragma omp atomic

sum —+= mysum,;

}

€5420 - Lecture 5

The accesses to variable sum are
atomic; the outcome is as if the
variable is it read and written back by
each thread in turn, in some order

Fall 2018 30/33

nt sum;
#pragma omp parallel

{

int myid,numthreads ,mysum, first , next,i;
myid = omp_get_thread_num ();
numthreads=omp_get_num_threads ();

mysum=0;

first=myid«N/numthreads+1;
next=(myid+1)«N/numthreads+1;

for(i=first;i<next;i++)
mysum-+=i * i ;

#pragma omp critical

}

sum += mysum;

Aarc Snir

@ atomic can be used on for

operations of the form
share_var = shared_var op
val

critical ensures that the
entire code within the critical
section is executed atomically;
the outcome is as if the section
are executed by each thread in
turn, in some order

atomic can be significantly
faster than critical, but is less
general

u]
8
I
i
!
5
Pl

int N,sum;

#pragma omp parallel reduction(

—i—:sum) Each thread gets a copy of sum, initialized
{. . . . to 0

int myid,numthreads, first ,next,i;))
myid = omp_get_thread_num (); @ when the thre.ads exit the parallel section,
numthreads=omp_get_num_threads (); the global varlalt‘)le sum is set to the sum
first=myid«N/numthreads+1; of the local copies
next=(myid+1)*N/numthreads+1; e works for *, &, &&, max, min... (with the
for (i=first;i<next; |—|--|-) suitable initial value)
sum-—+=i*i ;

@ reduction reduces values of
copies to one master value at
exit from parallel section

@ Can also broadcast the master

value to the local copies at the
entry to the parallel section

int first=3;
omp_set_num_threads (2);
#pragma omp parallel firstprivate(first)

{

int myid = omp_get_thread_num ();
printf ("at thread %d, first=%d,

\n", myid, first);
first=myid;

printf ("when done first=%d \n", first);

output is:

at thread 0, first=3,
at thread 1, first=3,
when done first=3

