
CS420 – Lecture 6

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 6 Fall 2018 1 / 25

Quiz 1

Marc Snir CS420 – Lecture 6 Fall 2018 2 / 25

Q1:Prefetching cannot hurt performance.
True
False

Question 2: All dependencies can be removed by register-renaming.
True
False

Only false dependencies can be removed, not RAW

Question 3: What is the typical latency for accessing memory?
1 cycle
2-4 cycles
100-200 cycles
10-15 cycles

Can be even higher

Marc Snir CS420 – Lecture 6 Fall 2018 3 / 25

Q1:Prefetching cannot hurt performance.
True
False

Question 2: All dependencies can be removed by register-renaming.
True
False

Only false dependencies can be removed, not RAW

Question 3: What is the typical latency for accessing memory?
1 cycle
2-4 cycles
100-200 cycles
10-15 cycles

Can be even higher

Marc Snir CS420 – Lecture 6 Fall 2018 3 / 25

Q1:Prefetching cannot hurt performance.
True
False

Question 2: All dependencies can be removed by register-renaming.
True
False
Only false dependencies can be removed, not RAW

Question 3: What is the typical latency for accessing memory?
1 cycle
2-4 cycles
100-200 cycles
10-15 cycles

Can be even higher

Marc Snir CS420 – Lecture 6 Fall 2018 3 / 25

Q1:Prefetching cannot hurt performance.
True
False

Question 2: All dependencies can be removed by register-renaming.
True
False
Only false dependencies can be removed, not RAW

Question 3: What is the typical latency for accessing memory?
1 cycle
2-4 cycles
100-200 cycles
10-15 cycles
Can be even higher

Marc Snir CS420 – Lecture 6 Fall 2018 3 / 25

Question 4: Please choose the most appropriate option from the following which describes why
pipelining improves performance.
Decreases latency
Increases latency
Increases bandwidth
Decreases bandwidth

Latency often increases

Marc Snir CS420 – Lecture 6 Fall 2018 4 / 25

Question 4: Please choose the most appropriate option from the following which describes why
pipelining improves performance.
Decreases latency
Increases latency
Increases bandwidth
Decreases bandwidth
Latency often increases

Marc Snir CS420 – Lecture 6 Fall 2018 4 / 25

Question 5: How many cycles will the following code take to execute? Please assume that
each stage of the pipeline takes 1 cycle to execute and there are two separate ALUs for
addition (3-stage) and multiplication (5-stage), but the other hardware units are shared. One
instruction can be issued at every cycle. The format of an instruction is: op dest src1 src2

Code:
add R2 R1 R1
mult R2 R1 R2
add R3 R3 R2
mult R4 R4 R2

issue add 1
issue mult 2
issue add 3
issue mult 4
add 2,3,4
mult 5,6,7,8,9
add 10,11,12
mult 10,11,12,13,14

Marc Snir CS420 – Lecture 6 Fall 2018 5 / 25

Question 6: A computer has a 256 KByte, 4-way set associative data cache with block size of
32 Bytes. The processor sends 32 bit addresses to the cache controller.
The number of bits in the tag field of an address is
11
16
17
27

The cache contains 256K/32 = 8K lines, hence 2K sets.

Option A: No hashing – line address determines including set: 5 bits address byte within
line, 11 bits address set; the remaining 32-11-5=16 bits form the tag

Option B: Hashing – a line can be in any set. 32-5=27 bits are used as tag.

Marc Snir CS420 – Lecture 6 Fall 2018 6 / 25

Question 6: A computer has a 256 KByte, 4-way set associative data cache with block size of
32 Bytes. The processor sends 32 bit addresses to the cache controller.
The number of bits in the tag field of an address is
11
16
17
27
The cache contains 256K/32 = 8K lines, hence 2K sets.

Option A: No hashing – line address determines including set: 5 bits address byte within
line, 11 bits address set; the remaining 32-11-5=16 bits form the tag

Option B: Hashing – a line can be in any set. 32-5=27 bits are used as tag.

Marc Snir CS420 – Lecture 6 Fall 2018 6 / 25

false sharing

#i n c l u d e <omp . h>
#i n c l u d e <t ime . h>
#i n c l u d e < s t d l i b . h>
#i n c l u d e <s t d i o . h>
#d e f i n e N 10000000
i n t a [2] [1 6]

a t t r i b u t e ((a l i g n e d (6 4))) ;
i n t main () {

i n t k ;
t i m e t t ime ;
omp set num threads (2) ;
f o r (k=0;k<10; k++) {

t ime=c l o c k () ;

#pragma omp p a r a l l e l
{

i n t i , j ;
j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [j] [0] = a [j] [] + 1 ;
}
t ime=c l o c k ()− t ime ;
p r i n t f (”% l d ”,

t ime ∗1000/CLOCKS PER SEC) ;
}

p r i n t f (”\ n ”) ;
}

Marc Snir CS420 – Lecture 6 Fall 2018 7 / 25

false sharing

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [j] [0] = a [j] [1] + 1 ;

No false sharing
Running time: 50.7 ms ±2.1

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [0] [j] = a [1] [j]+1;

False sharing
Running time: 91.1 ms ±7.4

Marc Snir CS420 – Lecture 6 Fall 2018 8 / 25

false sharing

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [j] [0] = a [j] [1] + 1 ;

No false sharing

Running time: 50.7 ms ±2.1

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [0] [j] = a [1] [j]+1;

False sharing

Running time: 91.1 ms ±7.4

Marc Snir CS420 – Lecture 6 Fall 2018 8 / 25

false sharing

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [j] [0] = a [j] [1] + 1 ;

No false sharing
Running time: 50.7 ms ±2.1

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [0] [j] = a [1] [j]+1;

False sharing
Running time: 91.1 ms ±7.4

Marc Snir CS420 – Lecture 6 Fall 2018 8 / 25

Even worse false sharing

Each thread executes

j=omp get thread num () ;
f o r (i =0; i<N; i ++)
a [j] [j] = a[1− j] [j]+1;

Running time:204.2±4.3
Can you figure out why this code has worse performance?

Marc Snir CS420 – Lecture 6 Fall 2018 9 / 25

Can broadcast the master value
to the local copies of private
variable at the entry to the
parallel section

i n t f i r s t =5;
omp set num threads (2) ;
#pragma omp p a r a l l e l \

f i r s t p r i v a t e (f i r s t)

{
i n t myid = omp get thread num () ;
p r i n t f (”at t h r e a d %d , f i r s t=%d ,

\n ”, myid , f i r s t) ;
f i r s t =myid ;
p r i n t f (”at t h r e a d %d , f i r s t=%d ,

\n ”, myid , f i r s t) ;
}
p r i n t f (”when done f i r s t=%d \n ”, f i r s t) ;

output is:

a t t h r e a d 0 , f i r s t =5,
at t h r e a d 1 , f i r s t =5,
at t h r e a d 0 , f i r s t =0,
at t h r e a d 1 , f i r s t =1,
when done f i r s t =5

Marc Snir CS420 – Lecture 6 Fall 2018 10 / 25

Shared memory Semantics

Always true: local operations appear to local thread to execute in program order

Sequential consistency: Operations appear to all threads to execute in same order
(operations from different threads can interleave arbitrarily).

Most processors ARE NOT sequentially consistent

User should write only race-free code: If two threads perform conflicting accesses to a
shared variable, then the accesses must be explicitly ordered by an OpenMP
synchronization operation

The OpenMP compiler and runtime will make sure that properly synchronized accesses
appear to occur in the right order

Marc Snir CS420 – Lecture 6 Fall 2018 11 / 25

Shared memory Semantics

Always true: local operations appear to local thread to execute in program order

Sequential consistency: Operations appear to all threads to execute in same order
(operations from different threads can interleave arbitrarily).

Most processors ARE NOT sequentially consistent

User should write only race-free code: If two threads perform conflicting accesses to a
shared variable, then the accesses must be explicitly ordered by an OpenMP
synchronization operation

The OpenMP compiler and runtime will make sure that properly synchronized accesses
appear to occur in the right order

Marc Snir CS420 – Lecture 6 Fall 2018 11 / 25

Shared memory Semantics

Always true: local operations appear to local thread to execute in program order

Sequential consistency: Operations appear to all threads to execute in same order
(operations from different threads can interleave arbitrarily).

Most processors ARE NOT sequentially consistent

User should write only race-free code: If two threads perform conflicting accesses to a
shared variable, then the accesses must be explicitly ordered by an OpenMP
synchronization operation

The OpenMP compiler and runtime will make sure that properly synchronized accesses
appear to occur in the right order

Marc Snir CS420 – Lecture 6 Fall 2018 11 / 25

Shared memory Semantics

Always true: local operations appear to local thread to execute in program order

Sequential consistency: Operations appear to all threads to execute in same order
(operations from different threads can interleave arbitrarily).

Most processors ARE NOT sequentially consistent

User should write only race-free code: If two threads perform conflicting accesses to a
shared variable, then the accesses must be explicitly ordered by an OpenMP
synchronization operation

The OpenMP compiler and runtime will make sure that properly synchronized accesses
appear to occur in the right order

Marc Snir CS420 – Lecture 6 Fall 2018 11 / 25

. . .
i n t i =1, j =3,k=4,m=5,n=6;
omp set num threads (2) ;
#pragma omp p a r a l l e l
{
i f (omp get thread num ()==0) {
i =7;m=j ; k=8;

#pragma omp b a r r i e r
}
e l s e {

#pragma omp b a r r i e r
n=i ; j =9;k =10;
}
}
p r i n t f (” i=%d , j=%d , k=%d ,m=%d , n=%d \n ”, i , j , k ,m, n) ;
}

n=i; j=9; k=10

i=1; j=3; k=4; m=5; n=6

i=7; m=j; k=8

barrier

printf

fork

join

Marc Snir CS420 – Lecture 6 Fall 2018 12 / 25

n=i; j=9; k=10

i=1; j=3; k=4; m=5; n=6

i=7; m=j; k=8

barrier

printf

fork

join

n=i; j=9; k=10

i=1; j=3; k=4; m=5; n=6

i=7; m=j; k=8

barrier

printf

fork

join

output is: i=7,j=9,k=10,m=3,n=7

Marc Snir CS420 – Lecture 6 Fall 2018 13 / 25

Synchronization

Ordering constructs: barrier, fork, join

Mutual Exclusion constructs: atomic, critical, lock

Marc Snir CS420 – Lecture 6 Fall 2018 14 / 25

Parallel Loops

Marc Snir CS420 – Lecture 6 Fall 2018 15 / 25

Work sharing

The parallel construct assigns
an implicit task (the execution of
a structured block of code) to
each thread.

Good: Programmer is in full
control of what each thread
executes
Bad: Programmer needs to
fully control what each thread
executes

Load balancing: Ensure that
each thread has equal amount of
work (assuming they all run at
same speed)

iddle

Marc Snir CS420 – Lecture 6 Fall 2018 16 / 25

Work sharing

Assume there is a bag of independent tasks to
execute in parallel

Allocate them to threads statically (as for
sum of square example)

Good if know how long each task will run

Allocate them dynamically, at run time

Let the system do it (use work sharing
constructs)

. . .
#pragma omp p a r a l l e l f o r \

r e d u c t i o n (+:sum)
f o r (i n t i =0; i<N; i ++)

sum+=i ∗ i ;
. . .

The system will allocate iterates of the
loop to running threads using some
scheduling policy

Loops need be of simple form

Marc Snir CS420 – Lecture 6 Fall 2018 17 / 25

How is work sharing done?

Simplemost: Shared work queue

Parallel section start: iterates are
(virtually) queued

Threads pick work to execute from queue

Parallel section ends when queue is empty
and all threads are done (each tried to get
work from empty queue)

task
…
…
…
…
…

CPU CPU CPU

shared
queue

Marc Snir CS420 – Lecture 6 Fall 2018 18 / 25

Work sharing tradeoffs

Need tasks large enough in order to amortize the overhead of scheduling a task

Rule of thumb: 1000’s of instructions; one iteration in our example is much too small

Need tasks small enough so that load balancing works well

Rule of thumb: If execution time of tasks is not fixed, then number of tasks should be a
small multiple of number of threads: over-decomposition

Marc Snir CS420 – Lecture 6 Fall 2018 19 / 25

Loop schedule

Allocation of iterates to threads is
controlled by a schedule clause

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (s t a t i c , c h u n k s i z e) \
r e d u c t i o n (+:sum)

f o r (i n t i =0; i<N; i ++)
sum+=i ∗ i ;

. . .

Assume N = 11, numthreads=2. Tasks
(iterates) are ordered in queue

10
9
8
7
6
5
4
3
2
1
0

Marc Snir CS420 – Lecture 6 Fall 2018 20 / 25

Static

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (s t a t i c , 2)
f o r (i =0; i<N; i ++)

. . .

Iterates are allocated round robin, in
chunks of 2, to the threads

Best when iterates (and threads) are all
the same – low scheduling overhead

Same allocation at each execution (with
same number of threads)

10
9
8

7
6

5
4

3
2

1
0

Marc Snir CS420 – Lecture 6 Fall 2018 21 / 25

Dynamic

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (dynamic , 2)
f o r (i =0; i<N; i ++)

. . .

threads are dynamically picking iterates, in
chunks of 2

Best for load balancing, but higher
scheduling overhead

One possible execution

10

9
8

7
6
5
4
3
2

1
0

Marc Snir CS420 – Lecture 6 Fall 2018 22 / 25

Guided

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (guided , 2)
f o r (i =0; i<N; i ++)

. . .

threads are dynamically picking iterates, in
chunks of at least two. Number of iterates
picked is proportional to number of
iterates left divided by numthreads

Compromise between static and dynamic

One possible execution (assuming constant of
proportionality 0.7)

10
9
8
73
6
5
4

2
1
0

Marc Snir CS420 – Lecture 6 Fall 2018 23 / 25

Auto, runtime

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (auto)
f o r (i =0; i<N; i ++)

. . .

I have no idea what’s the right schedule;
compiler and runtime will do what they
think best

. . .
#pragma omp p a r a l l e l f o r \

s c h e d u l e (r u n t i m e)
f o r (i =0; i<N; i ++)

. . .

I delay to runtime the choice of the
schedule

Marc Snir CS420 – Lecture 6 Fall 2018 24 / 25

What’s the difference between auto and runtime?

Various OpenMP Internal Control Variables (ICV) can be set at runtime. Example:
number of active threads

Environment variable OMP_NUM_THREADS can be set before an OpenMP program starts
executing; this will be the default number of threads for the program execution
omp_set_num_threads() can be called inside a program; it will set the number of threads
for current team
omp_get_num_threads() can be called to query the current value of the ICV.

Example: default schedule for parallel loops
OMP_SCHEDULE, omp_set_schedule(sched, chunk_size) and
omp_get_schedule(sched, chunk_size)

schedule(runtime) will use the schedule defined by the current ICV value (same as a
loop with no schedule clause)

Marc Snir CS420 – Lecture 6 Fall 2018 25 / 25

