
CS420 – Lecture 7

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 7 Fall 2018 1 / 47

Examples

Marc Snir CS420 – Lecture 7 Fall 2018 2 / 47

Matrix Product

Can allocate to each processor a tile to compute – provided the computation of distinct
tiles are independent
If tile in k dimension need to add a reduction.
Always want to parallelize outermost loop (get large tasks)

b c

a

a

k
j
i

Can split in i and j dimensions

c0

a

T

N Nb0

a

b1 c0

b2 c0

If tile in k dimension, need to add reduction.
Marc Snir CS420 – Lecture 7 Fall 2018 3 / 47

Tile i

include <omp.h>
include <stdio.h>
define N 500
double a[N][N],b[N][N],c[N][N];
int main(int argc , char *argv []) {

int i, j, k, n;
double time;
for (n=0; n <10; n++) {

time = omp_get_wtime ();
omp_set_num_threads (4);

pragma omp parallel for
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];
printf ("%d ", (int)(1000.0 *

(omp_get_wtime ()- time)));
}
printf ("\n");

}

omp_get_wtime returns time in seconds.
Only outermost (i) loop is executed in
parallel

Marc Snir CS420 – Lecture 7 Fall 2018 4 / 47

Tile j

pragma omp parallel for
for (j=0; j<N; i++)

for (i=0; i<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];

Tile k

pragma omp parallel for \
reduction (+:a [:][:])

for (k=0; k<N; k++)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
a[i][j] += b[i][k] *c [k][j];

The reduction clause takes an array
section argument (will be discussed later)

Tile both i and j

pragma omp parallel for collapse (2)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];

collapse(2) indicates that two
outermost loops should be taken as one
loop (with N×N iterates) and executed in
parallel

Marc Snir CS420 – Lecture 7 Fall 2018 5 / 47

Different tiling = different partitions

b c ax =

i

k

k

j

i

j

Tile i: Each thread computes product of horizontal tile of b with c that yields a horizontal tile
of a.

Marc Snir CS420 – Lecture 7 Fall 2018 6 / 47

Different tiling = different partitions

b c ax =

i

k

k

j

i

j

Tile j: Each thread computes product of b with vertical tile of c that yields a vertical tile of a.

Marc Snir CS420 – Lecture 7 Fall 2018 7 / 47

Different tiling = different partitions

b c ax =

i

k

k

j

i

j

Tile i,j: Each thread computes product of horizontal tile of b with a vertical slice of c that
yields a 2D tile of a.

Marc Snir CS420 – Lecture 7 Fall 2018 8 / 47

Different tiling = different partitions

b c ax =

i

k

k

j

i

j

+

Tile k: Each thread computes product of vertical tile of b with a horizontal slice of c that
yields an N×N matrix; the resulting matrices need to be added.

Marc Snir CS420 – Lecture 7 Fall 2018 9 / 47

Running time

Code Time (msec)
Tile i 1277±57
Tile j 1623 ±43
Tile i,j 992±14
Tile k bus error

Reduction on array sections is new feature – may not be well-supported
Tiling choices impact locality

Marc Snir CS420 – Lecture 7 Fall 2018 10 / 47

Sequential Jacobi

...
do {

err = 0;
k = 1-k;
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr);
...

Marc Snir CS420 – Lecture 7 Fall 2018 11 / 47

Parallel Jacobi

...
do {

err = 0;
k = 1-k;
pragma omp parallel for collapse (2) reduction (max:err)
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr);
...

collapse(2): the two outer loops are handled as one parallel loop with MN iterations

Marc Snir CS420 – Lecture 7 Fall 2018 12 / 47

Possibly better
Tile the nested loops and allocate to threads full tiles

stencil computation

Tiling

Marc Snir CS420 – Lecture 7 Fall 2018 13 / 47

...
do {

err = 0;
k = 1-k;
pragma omp parallel for reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr);
...

Only outer loop is executed in parallel
Tiling provides the same improvements in cache hit ratio as for sequential code
Assuming tiles are cache line aligned

Marc Snir CS420 – Lecture 7 Fall 2018 14 / 47

Possibly better

Solution 1: Use 2D tiles
* N=n*T1+2, M=m*T2+2 *\
...
do {

err = 0; k = 1-k;
pragma omp parallel for \

collapse (2) reduction (max:err)
for (ii =1; ii <N -1; ii += T1)

for (jj =1; jj <M -1; jj += T2)
for (i=ii; i<ii+T2; i++)

for (j=jj; j<jj+T2; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr);
...

2D Tiling

Marc Snir CS420 – Lecture 7 Fall 2018 15 / 47

Solution 2: Use nested parallelism
...
do {

err = 0;
k = 1-k;
pragma omp parallel for reduction (max:err)
for (jj =0; jj <n; jj ++) {

pragma omp parallel for reduction (max:err)
for (i=0; i<M; i++) {

for (j=jj*T1 +1; j<(jj +1)* T1 +1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
}

}
} while (err > maxerr);
...

Marc Snir CS420 – Lecture 7 Fall 2018 16 / 47

What happens with nested parallelism?

Might not be supported (get error) – controlled by ICV
OMP_MAX_ACTIVE_LEVELS, omp_set_max_active_levels, omp_get_max_active_levels

Even if it is supported it id not obvious how many threads will execute a nested loop –
could be one

Marc Snir CS420 – Lecture 7 Fall 2018 17 / 47

Let’s experiment

void report_num_threads (int level) {
printf ("Level %d: team size = %d\n",

level , omp_get_num_threads ());
}

int main(int argc , char *argv []) {
printf (" available threads = %d\n",

omp_get_max_threads ());
pragma omp parallel num_threads (2)
{

report_num_threads (1);
pragma omp parallel num_threads (2)
{

report_num_threads (2);
pragma omp parallel num_threads (2)
report_num_threads (3);

}
}

}

Executed:
export OMP_MAX_THREADS =7
./a.out

Output was:
available threads = 7
Level 1: team size = 2
Level 1: team size = 2
Level 2: team size = 1
Level 3: team size = 1
Level 2: team size = 1
Level 3: team size = 1

Marc Snir CS420 – Lecture 7 Fall 2018 18 / 47

Nested parallelism

Use it at your own peril: Many implementations do not use “spare” threads to increase
parallelism at lower levels
Note:
pragma omp parallel for

is equivalent to
pragma omp parallel
pragma omp for

first statement creates team; second statement does work sharing across team
Problem: Nested team creation might use only parent thread

Marc Snir CS420 – Lecture 7 Fall 2018 19 / 47

Sparse data structures
SparseMV: a = b + Cd where C is a sparse matrix: most entries are zero.

PRINTED BY: Marc Snir <snir@illinois.edu>. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior
permission. Violators will be prosecuted.

Marc Snir CS420 – Lecture 7 Fall 2018 20 / 47

CRS

How does one store the matrix so that only non-zeros are stored?
How does on avoid the multiplications by zero?

CRS: Compressed Row Storage

0 1 2 3 4

0

1

2

3

4 -610

-5

10-58

8

2-4

2

-610-510-5882-4 2

422431210 0

720 4 8 10

val
nonzero entries
in matrix

col_idx
col index
of nonzero entries

row_ptr
index of first entry
for each row

matrix B

Marc Snir CS420 – Lecture 7 Fall 2018 21 / 47

SparseMV

for (i=0; i<N; i++)
a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1]; j++)

a[i] += val[j] * d[col_idx [j]]

0 1 2 3 4

0

1

2

3

4 -610

-5

10-58

8

2-4

2

-610-510-5882-4 2

422431210 0

720 4 8 10

val
nonzero entries
in matrix

col_idx
col index
of nonzero entries

row_ptr
index of first entry
for each row

matrix B

Marc Snir CS420 – Lecture 7 Fall 2018 22 / 47

Parallel SparseMV

If rows have roughly the same number of non-zeros, then get good load balancing by statically
tiling rows

pragma omp parallel for schedule (static ,T)
for (i=0; i<N; i++) {

a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1]; j++)

a[i] += val[j] * d[col_idx [j]];
}

T chosen so that tasks are large enough

PRINTED BY: Marc Snir <snir@illinois.edu>. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior
permission. Violators will be prosecuted.

Marc Snir CS420 – Lecture 7 Fall 2018 23 / 47

Parallel SparseMV

If rows have very different number of non-zeros, need to use dynamic load balancing.
pragma omp parallel for schedule (dynamic ,T)
for (i=0; i<N; i++) {

a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1] -1; j++)

a[i] += val[j] * d[col_idx [j]];
}

T chosen so that tasks are large enough, but number of tasks still large wrt number of threads

Marc Snir CS420 – Lecture 7 Fall 2018 24 / 47

Gauss-Seidel

Like Jacobi, except done in place (one array)

a(k+1)
i ,j = 0.25(a(k+1)

i−1,j + a(k+1)
i ,j−1 + a(k)

i+1,j + a(k)
i ,j+1)

old
values

new
values

Sequential code
...
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++)
a[i][j] = 0.25 *

(a[i -1][j] + a[i][j -1] +
a[i+1][j] + a[i][j+1]);

...

How do we parallelize?
How can we reorder the nested loop so as to have
many independent operations?

Marc Snir CS420 – Lecture 7 Fall 2018 25 / 47

Wavefront

Loop carried dependencies

Wavefront

pa
rall
el

sequential

Marc Snir CS420 – Lecture 7 Fall 2018 26 / 47

Wavefront

Loop carried dependencies Wavefront

pa
rall
el

sequential

Marc Snir CS420 – Lecture 7 Fall 2018 26 / 47

code

0 1 2 3

4

5

6

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

M=6

N=6

0

1

2

3

4

5

0 1 2 3 4 5

...
/* number of diagonals is M+N-5 */
for (d=0; d<M+N -5; d++) {

/* first & last diagonal row */
ifirst = (d<M -1) ? d+1 : M -2;
ilast = (d<N -1) ? 1 : d-M+3;
pragma omp parallel for
for (i= ifirst ; i<= ilast; i++) {

j = d+2-i;
a[i][j] = 0.2 * (a[i][j] +

a[i -1][j] + a[i+1][j] +
a[i][j -1] + a[i][j+1]);

}
}
...

Marc Snir CS420 – Lecture 7 Fall 2018 27 / 47

Gauss-Seidel: Let the Compiler do the work

Specify the set of iterations that need to be executed
Specify the dependencies that need to be obeyed.

pragma omp for collapse (2) ordered (2)
for (i=1; i<N -1; i++)

for (j=1; j<M -1; j++) {
pragma omp ordered depend (sink: i-1,j) depend (sink: i,j -1)
a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +

a[i][j -1] + a[i][j+1] + a[i][j]);
pragma omp ordered depend (source)

}

Marc Snir CS420 – Lecture 7 Fall 2018 28 / 47

/* both loops collapsed , must obey ordering constraints */
pragma omp for collapse (2) ordered (2)
for (i=1; i<N -1; i++)

for (j=1; j<M -1; j++) {
/* must wait until (i-1,j) and (i,j -1) iterations complete */
pragma omp ordered depend (sink: i-1,j) depend (sink: i,j -1)

a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +
a[i][j -1] + a[i][j+1] + a[i][j]);

/* iteration (i,j) complete , let dependencies proceed */
pragma omp ordered depend (source)

}

Must likely inefficient because dependencies tracked at fine grain
Can tile

Marc Snir CS420 – Lecture 7 Fall 2018 29 / 47

pragma omp for collapse (2) ordered (2)
for (ii =1; ii <N -1; ii += T)

for (jj =1; jj <M -1; j += T) {
pragma omp ordered depend (sink: ii -1,jj) depend (sink: ii ,jj -1)
for (i=ii; i<ii+T; i++)

for (j=jj; j<jj+T; j++)
a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +

a[i][j -1] + a[i][j+1] + a[i][j]);
pragma omp ordered depend (source)

}

Marc Snir CS420 – Lecture 7 Fall 2018 30 / 47

Back to Jacobi

...
do {

err = 0;
k = 1-k;
pragma omp parallel for reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr);
...

Marc Snir CS420 – Lecture 7 Fall 2018 31 / 47

Do we have races?

No
err is a reduction variable
During each iteration of the while loop we read one copy of a and write another copy – no
conflicts
No thread starts next iteration of the while loop before all threads completed the previous
iteration – there is an implicit barrier at the end of the parallel section

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 32 / 47

Do we have races?
No

err is a reduction variable
During each iteration of the while loop we read one copy of a and write another copy – no
conflicts
No thread starts next iteration of the while loop before all threads completed the previous
iteration – there is an implicit barrier at the end of the parallel section

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 32 / 47

Do we have communication between threads?

Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.
Are we sure that a thread picks same slice at successive iteration?
Not in general: allocation may change from parallel loop to parallel loop

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 33 / 47

Do we have communication between threads?
Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.

Are we sure that a thread picks same slice at successive iteration?
Not in general: allocation may change from parallel loop to parallel loop

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 33 / 47

Do we have communication between threads?
Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.
Are we sure that a thread picks same slice at successive iteration?

Not in general: allocation may change from parallel loop to parallel loop

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 33 / 47

Do we have communication between threads?
Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.
Are we sure that a thread picks same slice at successive iteration?
Not in general: allocation may change from parallel loop to parallel loop

{ }parallel
for

while { parallel
for

{ } parallel
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …

Marc Snir CS420 – Lecture 7 Fall 2018 33 / 47

Allocation does not change from one parallel for to the next if
Number of threads is fixed
Schedule is static

* N=n*T+2 *\
...
omp_set_dynamic (0);
do {

err = 0;
k = 1-k;
pragma omp parallel for schedule (static) reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr);
...

Marc Snir CS420 – Lecture 7 Fall 2018 34 / 47

Jacobi “static” style
Can we avoid the overhead of repeatedly forking and joining control?
pragma omp parallel
{

n = omp_get_num_threads (); myid = omp_get_thread_num ();
myfirst = myid*N/n; nextfirst = (myid +1)*N/n;
do {

pragma omp single
err = 0;
myerr = 0; k = 1-k;
for (i=1; i<M -1; i++)

for (j= myfirst ; j< nextfirst ; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
myerr = fmax(myerr , fabs(a[1][i][j]-a[0][i][j]));

}
pragma omp critical
err = fmax(err , myerr);
pragma omp barrier

} while (err > maxerr);
}

Marc Snir CS420 – Lecture 7 Fall 2018 35 / 47

Code has become more verbose.
No load balancing by OpenMP runtime – user has to do it, if needed
Cannot use reduction

Cannot use atomic for max(in C/C++)
May be better if starting/ending a parallel section is expensive

Marc Snir CS420 – Lecture 7 Fall 2018 36 / 47

Have your cake and eat it too

pragma omp parallel
do {

pragma omp single
{

err = 0;
k = 1-k;

}
pragma omp for collapse (2) reduction (max:err)
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
/* implicit barrier at end of omp for */

} while (err > maxerr);

Marc Snir CS420 – Lecture 7 Fall 2018 37 / 47

Metrics

Marc Snir CS420 – Lecture 7 Fall 2018 38 / 47

Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)
Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47

Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)

Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47

Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)
Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47

Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).

S1(n) = 1
Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.

Marc Snir CS420 – Lecture 7 Fall 2018 40 / 47

Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).
S1(n) = 1

Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.

Marc Snir CS420 – Lecture 7 Fall 2018 40 / 47

Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).
S1(n) = 1
Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.

Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.

Marc Snir CS420 – Lecture 7 Fall 2018 40 / 47

Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).
S1(n) = 1
Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.

Marc Snir CS420 – Lecture 7 Fall 2018 40 / 47

Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).
S1(n) = 1
Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.

Marc Snir CS420 – Lecture 7 Fall 2018 40 / 47

Example: Matrix×vector

include <omp.h>
include <time.h>
include <stdio.h>
define N 10000
double a[N][N], b[N], c[N];
int main(int argc , char *argv []) {

int n[] = {1, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100};

int m;
double time;
for (m=0; m <11; m++) {

omp_set_num_threads (n[m]);

pragma omp parallel
{

int i, j;
time = omp_get_wtime ();
pragma omp for collapse (2)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
c[i] += a[i][j] * b[j];

printf ("%d " ,(int)(1000000.0 *
(omp_get_wtime ()- time)));

}
printf ("\n");

}
}

"Fake" experiment: measuring running time of
each thread and taking maximum

Marc Snir CS420 – Lecture 7 Fall 2018 41 / 47

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0

100000

200000

300000

400000

500000

600000

700000

800000

1 10 20 30 40 50 60 70 80 90 100

matrix x vector

Time speedup ideal speedup

Execution time decreases as number of
threads increase – But cannot decrease
below the time to execute the inner loop
(without code changes)
Superlinear speedup in some regions

Marc Snir CS420 – Lecture 7 Fall 2018 42 / 47

Amdahl’s Law

Theorem
If a computation has a fraction α that can be executed in parallel and a fraction 1− α that is
sequential, then

Sp = 1
(1− α) + α/p

Proof.

Tp = αT1
p + (1− α)T1

Sp = T1
Tp

= T1
αT1

p + (1− α)T1
== 1

(1− α) + α/p

Marc Snir CS420 – Lecture 7 Fall 2018 43 / 47

Theorem holds as long as p does not exceed the level of available parallelism (N, in our
example).
Speedup can never exceed 1

1−α , the ratio between total work and sequential work.

Marc Snir CS420 – Lecture 7 Fall 2018 44 / 47

More general formulation

T1 – number of operations
T∞ – longest critical path in the execution
In our example T1(N) ∼ N2 and T∞(N) ∼ N
Claim1: Tp ≥ max(T1

p ,T∞)

Claim2: One can load-balance execution so that Tp = O(T1
p + T∞)

Marc Snir CS420 – Lecture 7 Fall 2018 45 / 47

Amdahl’s Law revisited

Amdahl’s law was seen as evidence that
parallelism has limited hope – eventually,
the sequential part dominates.
What was missing is a realization that
larger machines are used to solve larger
problems
Strong scaling: Consider a fixed size
problem and apply more and more
processors to its solution.

Eventually, more processors do not help.
(Too many cooks spoil the broth.)

Weak scaling: Increase problem size as the
number of processors is increased – keep
work per processor constant.

Ideally, total compute time stays fixed

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

Strong Scaling

Strong scaling of Matrix×vector
Usually scaling is sublinear because of
overheads of communication and
synchronization

Marc Snir CS420 – Lecture 7 Fall 2018 46 / 47

How do we study this?

Study a function in two variables: Tp(n)
or Sp(n)
Fix n and plot execution time Tp(n) as
function of n. This is strong scaling: Keep
the work fixed and increase the number of
workers; efficiency decreases
Keep work per processor fixed and study
increase in compute time. This is weak
scaling
Keep Efficiency fixed and study how
problem size increases:
n1/2(p) = min{n : Ep(n) ≥ 0.5}

Speedup as function of n and p

Marc Snir CS420 – Lecture 7 Fall 2018 47 / 47

