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Matrix Product

Can allocate to each processor a tile to compute – provided the computation of distinct
tiles are independent
If tile in k dimension need to add a reduction.
Always want to parallelize outermost loop (get large tasks)
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If tile in k dimension, need to add reduction.
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Tile i

# include <omp.h>
# include <stdio.h>
# define N 500
double a[N][N],b[N][N],c[N][N];
int main(int argc , char *argv []) {

int i, j, k, n;
double time;
for (n=0; n <10; n++) {

time = omp_get_wtime ();
omp_set_num_threads (4);

# pragma omp parallel for
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];
printf ("%d ", (int )(1000.0 *

( omp_get_wtime ()- time )));
}
printf ("\n");

}

omp_get_wtime returns time in seconds.
Only outermost (i) loop is executed in
parallel
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Tile j

# pragma omp parallel for
for (j=0; j<N; i++)

for (i=0; i<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];

Tile k

# pragma omp parallel for \
reduction (+:a [:][:])

for (k=0; k<N; k++)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
a[i][j] += b[i][k] *c [k][j];

The reduction clause takes an array
section argument (will be discussed later)

Tile both i and j

# pragma omp parallel for collapse (2)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

a[i][j] += b[i][k] * c[k][j];

collapse(2) indicates that two
outermost loops should be taken as one
loop (with N×N iterates) and executed in
parallel
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Different tiling = different partitions

b c ax =
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Tile i: Each thread computes product of horizontal tile of b with c that yields a horizontal tile
of a.
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Different tiling = different partitions

b c ax =
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Tile j: Each thread computes product of b with vertical tile of c that yields a vertical tile of a.
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Different tiling = different partitions

b c ax =
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Tile i,j: Each thread computes product of horizontal tile of b with a vertical slice of c that
yields a 2D tile of a.
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Different tiling = different partitions

b c ax =
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Tile k: Each thread computes product of vertical tile of b with a horizontal slice of c that
yields an N×N matrix; the resulting matrices need to be added.
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Running time

Code Time (msec)
Tile i 1277±57
Tile j 1623 ±43
Tile i,j 992±14
Tile k bus error

Reduction on array sections is new feature – may not be well-supported
Tiling choices impact locality
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Sequential Jacobi

...
do {

err = 0;
k = 1-k;
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr );
...
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Parallel Jacobi

...
do {

err = 0;
k = 1-k;
# pragma omp parallel for collapse (2) reduction (max:err)
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr );
...

collapse(2): the two outer loops are handled as one parallel loop with MN iterations
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Possibly better
Tile the nested loops and allocate to threads full tiles

stencil computation

Tiling

Marc Snir CS420 – Lecture 7 Fall 2018 13 / 47



...
do {

err = 0;
k = 1-k;
# pragma omp parallel for reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr );
...

Only outer loop is executed in parallel
Tiling provides the same improvements in cache hit ratio as for sequential code
Assuming tiles are cache line aligned
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Possibly better

Solution 1: Use 2D tiles
\* N=n*T1+2, M=m*T2+2 *\
...
do {

err = 0; k = 1-k;
# pragma omp parallel for \

collapse (2) reduction (max:err)
for (ii =1; ii <N -1; ii += T1)

for (jj =1; jj <M -1; jj += T2)
for (i=ii; i<ii+T2; i++)

for (j=jj; j<jj+T2; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
} while (err > maxerr );
...

2D Tiling
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Solution 2: Use nested parallelism
...
do {

err = 0;
k = 1-k;
# pragma omp parallel for reduction (max:err)
for (jj =0; jj <n; jj ++) {

# pragma omp parallel for reduction (max:err)
for (i=0; i<M; i++) {

for (j=jj*T1 +1; j<(jj +1)* T1 +1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
}

}
} while (err > maxerr );
...
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What happens with nested parallelism?

Might not be supported (get error) – controlled by ICV
OMP_MAX_ACTIVE_LEVELS, omp_set_max_active_levels, omp_get_max_active_levels

Even if it is supported it id not obvious how many threads will execute a nested loop –
could be one
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Let’s experiment

void report_num_threads (int level) {
printf ("Level %d: team size = %d\n",

level , omp_get_num_threads ());
}

int main(int argc , char *argv []) {
printf (" available threads = %d\n",

omp_get_max_threads ());
# pragma omp parallel num_threads (2)
{

report_num_threads (1);
# pragma omp parallel num_threads (2)
{

report_num_threads (2);
# pragma omp parallel num_threads (2)
report_num_threads (3);

}
}

}

Executed:
export OMP_MAX_THREADS =7
./a.out

Output was:
available threads = 7
Level 1: team size = 2
Level 1: team size = 2
Level 2: team size = 1
Level 3: team size = 1
Level 2: team size = 1
Level 3: team size = 1
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Nested parallelism

Use it at your own peril: Many implementations do not use “spare” threads to increase
parallelism at lower levels
Note:
# pragma omp parallel for

is equivalent to
# pragma omp parallel
# pragma omp for

first statement creates team; second statement does work sharing across team
Problem: Nested team creation might use only parent thread
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Sparse data structures
SparseMV: a = b + Cd where C is a sparse matrix: most entries are zero.

PRINTED BY: Marc Snir <snir@illinois.edu>. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior 
permission. Violators will be prosecuted.
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CRS

How does one store the matrix so that only non-zeros are stored?
How does on avoid the multiplications by zero?

CRS: Compressed Row Storage
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SparseMV

for (i=0; i<N; i++)
a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1]; j++)

a[i] += val[j] * d[ col_idx [j]]
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Parallel SparseMV

If rows have roughly the same number of non-zeros, then get good load balancing by statically
tiling rows

# pragma omp parallel for schedule (static ,T)
for (i=0; i<N; i++) {

a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1]; j++)

a[i] += val[j] * d[ col_idx [j]];
}

T chosen so that tasks are large enough

PRINTED BY: Marc Snir <snir@illinois.edu>. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior 
permission. Violators will be prosecuted.
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Parallel SparseMV

If rows have very different number of non-zeros, need to use dynamic load balancing.
# pragma omp parallel for schedule (dynamic ,T)
for (i=0; i<N; i++) {

a[i] = b[i];
for (j= row_ptr [i]; j< row_ptr [i+1] -1; j++)

a[i] += val[j] * d[ col_idx [j]];
}

T chosen so that tasks are large enough, but number of tasks still large wrt number of threads
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Gauss-Seidel

Like Jacobi, except done in place (one array)

a(k+1)
i ,j = 0.25(a(k+1)

i−1,j + a(k+1)
i ,j−1 + a(k)

i+1,j + a(k)
i ,j+1)

old
values

new
values

Sequential code
...
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++)
a[i][j] = 0.25 *

(a[i -1][j] + a[i][j -1] +
a[i+1][j] + a[i][j+1]);

...

How do we parallelize?
How can we reorder the nested loop so as to have
many independent operations?
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Wavefront

Loop carried dependencies

Wavefront

pa
rall
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sequential
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code

0 1 2 3

4

5

6

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

M=6

N=6

0

1

2

3

4

5

0 1 2 3 4 5

...
/* number of diagonals is M+N-5 */
for (d=0; d<M+N -5; d++) {

/* first & last diagonal row */
ifirst = (d<M -1) ? d+1 : M -2;
ilast = (d<N -1) ? 1 : d-M+3;
# pragma omp parallel for
for (i= ifirst ; i<= ilast; i++) {

j = d+2-i;
a[i][j] = 0.2 * (a[i][j] +

a[i -1][j] + a[i+1][j] +
a[i][j -1] + a[i][j+1]);

}
}
...
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Gauss-Seidel: Let the Compiler do the work

Specify the set of iterations that need to be executed
Specify the dependencies that need to be obeyed.

# pragma omp for collapse (2) ordered (2)
for (i=1; i<N -1; i++)

for (j=1; j<M -1; j++) {
# pragma omp ordered depend (sink: i-1,j) depend (sink: i,j -1)
a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +

a[i][j -1] + a[i][j+1] + a[i][j]);
# pragma omp ordered depend ( source )

}
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/* both loops collapsed , must obey ordering constraints */
# pragma omp for collapse (2) ordered (2)
for (i=1; i<N -1; i++)

for (j=1; j<M -1; j++) {
/* must wait until (i-1,j) and (i,j -1) iterations complete */
# pragma omp ordered depend (sink: i-1,j) depend (sink: i,j -1)

a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +
a[i][j -1] + a[i][j+1] + a[i][j]);

/* iteration (i,j) complete , let dependencies proceed */
# pragma omp ordered depend ( source )

}

Must likely inefficient because dependencies tracked at fine grain
Can tile
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# pragma omp for collapse (2) ordered (2)
for (ii =1; ii <N -1; ii += T)

for (jj =1; jj <M -1; j += T) {
# pragma omp ordered depend (sink: ii -1,jj) depend (sink: ii ,jj -1)
for (i=ii; i<ii+T; i++)

for (j=jj; j<jj+T; j++)
a[i][j] = 0.2 * (a[i -1][j] + a[i+1][j] +

a[i][j -1] + a[i][j+1] + a[i][j]);
# pragma omp ordered depend ( source )

}
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Back to Jacobi

...
do {

err = 0;
k = 1-k;
# pragma omp parallel for reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr );
...
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Do we have races?

No
err is a reduction variable
During each iteration of the while loop we read one copy of a and write another copy – no
conflicts
No thread starts next iteration of the while loop before all threads completed the previous
iteration – there is an implicit barrier at the end of the parallel section

{ }parallel 
for

while { parallel 
for

{ } parallel 
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …
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Do we have communication between threads?

Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.
Are we sure that a thread picks same slice at successive iteration?
Not in general: allocation may change from parallel loop to parallel loop

{ }parallel 
for

while { parallel 
for

{ } parallel 
for

… }

read a[1][*][*]
write a[0][*][*]

read a[0][*][*]
write a[1][*][*] …
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Allocation does not change from one parallel for to the next if
Number of threads is fixed
Schedule is static

\* N=n*T+2 *\
...
omp_set_dynamic (0);
do {

err = 0;
k = 1-k;
# pragma omp parallel for schedule ( static ) reduction (max:err)
for (jj =1; jj <N -1; jj += T)

for (i=1; i<M -1; i++)
for (j=jj; j<jj+T; j++) {

a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +
a[k][i][j -1] + a[k][i][j+1]);

err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));
}

} while (err > maxerr );
...
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Jacobi “static” style
Can we avoid the overhead of repeatedly forking and joining control?
# pragma omp parallel
{

n = omp_get_num_threads (); myid = omp_get_thread_num ();
myfirst = myid*N/n; nextfirst = (myid +1)*N/n;
do {

# pragma omp single
err = 0;
myerr = 0; k = 1-k;
for (i=1; i<M -1; i++)

for (j= myfirst ; j< nextfirst ; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
myerr = fmax(myerr , fabs(a[1][i][j]-a[0][i][j]));

}
# pragma omp critical
err = fmax(err , myerr );
# pragma omp barrier

} while (err > maxerr );
}
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Code has become more verbose.
No load balancing by OpenMP runtime – user has to do it, if needed
Cannot use reduction

Cannot use atomic for max(in C/C++)
May be better if starting/ending a parallel section is expensive
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Have your cake and eat it too

# pragma omp parallel
do {

# pragma omp single
{

err = 0;
k = 1-k;

}
# pragma omp for collapse (2) reduction (max:err)
for (i=1; i<M -1; i++)

for (j=1; j<N -1; j++) {
a[1-k][i][j] = 0.25 * (a[k][i -1][j] + a[k][i+1][j] +

a[k][i][j -1] + a[k][i][j+1]);
err = fmax(err , fabs(a[1][i][j]-a[0][i][j]));

}
/* implicit barrier at end of omp for */

} while (err > maxerr );
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Metrics
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Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)
Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47



Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)

Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47



Analyzing Parallel Performance

Sequential performance T1(n): time to solve a problem of size n. (Same as W (n),
computation work needed to solve the problem.)

To simplify, assume (wrongly) each operation takes one time unit.
Parallel performance Tp(n): time to solve a problem of size n with p hardware threads
Ideal world: Can run p time faster than with one hardware thread; Tp(n) = T1(n)/p.
World is not ideal.

Parallel code does more work than sequential code (e.g., spawning threads)
Parallel code may not have enough parallelism – enough operations that can executed
independently on distinct threads

Marc Snir CS420 – Lecture 7 Fall 2018 39 / 47



Terminology

Speedup Ratio between sequential time and parallel time: Sp(n) = T1(n)/Tp(n).

S1(n) = 1
Normally Sp(n) ≤ p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
Normally Sp(n) ≥ 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.
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Efficiency Ratio between speedup and number of hardware threads:
Ep(n) = Sp(n)/p = T1(n)/(p × Tp(n)); ratio between sequential work and
parallel work. Normally Ep(n) < 1.
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Example: Matrix×vector

# include <omp.h>
# include <time.h>
# include <stdio.h>
# define N 10000
double a[N][N], b[N], c[N];
int main(int argc , char *argv []) {

int n[] = {1, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100};

int m;
double time;
for (m=0; m <11; m++) {

omp_set_num_threads (n[m]);

# pragma omp parallel
{

int i, j;
time = omp_get_wtime ();
# pragma omp for collapse (2)
for (i=0; i<N; i++)

for (j=0; j<N; j++)
c[i] += a[i][j] * b[j];

printf ("%d " ,(int )(1000000.0 *
( omp_get_wtime ()- time )));

}
printf ("\n");

}
}

"Fake" experiment: measuring running time of
each thread and taking maximum
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Execution time decreases as number of
threads increase – But cannot decrease
below the time to execute the inner loop
(without code changes)
Superlinear speedup in some regions
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Amdahl’s Law

Theorem
If a computation has a fraction α that can be executed in parallel and a fraction 1− α that is
sequential, then

Sp = 1
(1− α) + α/p

Proof.

Tp = αT1
p + (1− α)T1

Sp = T1
Tp

= T1
αT1

p + (1− α)T1
== 1

(1− α) + α/p
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Theorem holds as long as p does not exceed the level of available parallelism (N, in our
example).
Speedup can never exceed 1

1−α , the ratio between total work and sequential work.
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More general formulation

T1 – number of operations
T∞ – longest critical path in the execution
In our example T1(N) ∼ N2 and T∞(N) ∼ N
Claim1: Tp ≥ max(T1

p ,T∞)

Claim2: One can load-balance execution so that Tp = O(T1
p + T∞)
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Amdahl’s Law revisited

Amdahl’s law was seen as evidence that
parallelism has limited hope – eventually,
the sequential part dominates.
What was missing is a realization that
larger machines are used to solve larger
problems
Strong scaling: Consider a fixed size
problem and apply more and more
processors to its solution.

Eventually, more processors do not help.
(Too many cooks spoil the broth.)

Weak scaling: Increase problem size as the
number of processors is increased – keep
work per processor constant.

Ideally, total compute time stays fixed
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Strong scaling of Matrix×vector
Usually scaling is sublinear because of
overheads of communication and
synchronization
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How do we study this?

Study a function in two variables: Tp(n)
or Sp(n)
Fix n and plot execution time Tp(n) as
function of n. This is strong scaling: Keep
the work fixed and increase the number of
workers; efficiency decreases
Keep work per processor fixed and study
increase in compute time. This is weak
scaling
Keep Efficiency fixed and study how
problem size increases:
n1/2(p) = min{n : Ep(n) ≥ 0.5}

Speedup as function of n and p
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