BN 0
Marc Snir
Fall 2018

?

Examples

5420 - Lecture 7 Fall2018 2/47

@ Can allocate to each processor a tile to compute — provided the computation of distinct
tiles are independent

o If tile in k dimension need to add a reduction.

@ Always want to parallelize outermost loop (get large tasks)

a
a
ki
by o
by o
T
by N N)
b c

If tile in k dimension, need to add reduction.

#include <omp.h>
#include <stdio.h>
#define N 500
double a[N][N],b[N][N],c[N][N]T;
int main(int argc, char *argv[]) {
int i, j, k, n;
double time;
for (n=0; n<10; n++) {
time = omp_get_wtime ();
omp_set_num_threads (4);

#pragma omp parallel for
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
alil[j] += bl[il[k] * c[k][j];
printf("%d ", (int)(1000.0 *
(omp_get_wtime ()-time)));

}
printf ("\n");
}

@ omp_get_wtime returns time in seconds.

@ Only outermost (i) loop is executed in
parallel

Tile j

#pragma omp parallel for
for (j=0; j<N; i++)
for (i=0; i<N; j++)
for (k=0; k<N; k++)
alil[j] += bl[il[k]

Tile k

#pragma omp parallel for
reduction(+:al[:]1[:])
for (k=0; k<N; k++)
for (i=0; i<N; i++)
for (j=0; j<N; j++)
alil[j] += b[i][k]

@ The reduction clause takes an array
section argument (will be discussed later)

Tile both i and j
#pragma omp parallel for collapse (2)
* clk1ljl; for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
\ alil[j] += bl[il[k] * c[k1[j];

@ collapse(2) indicates that two
outermost loops should be taken as one
sc [k1[31; loop (with NxN iterates) and executed in
parallel

K
of a.

Cc = a
Tile i: Each thread computes product of horizontal tile of b with c that yields a horizontal tile
S = = T 9ac
T Cs420-lecture7 . Fall2018 6/47

b
yields a 2D tile of a.

(03 = a
Tile i, j: Each thread computes product of horizontal tile of b with a vertical slice of ¢ that
S = = T 9ac
T CSs420-lecture7 . Fall2018 8/47

yields an NxN matrix; the resulting matrices need to be added.

Tile k: Each thread computes product of vertical tile of b with a horizontal slice of ¢ that

@ Reduction on array sections is new feature — may not be well-supported

@ Tiling choices impact locality

Code

Time (msec)

Tile i 1277457
Tile j 1623 +43
Tile i,j 992+14
Tile k bus error

do {
err = 0;
k = 1-k;
for (i=1; i<M-1;

i++)
for (j=1; j<N-1; j++) {
al1-k]J[i]1[j] = 0.25 * (alk][i-11[j] + alk]I[i+1]1[j] +
alk]l[il[j-11 + alk]J[il[j+11);
err = fmax(err, fabs(al[1]l[i]J[jl-al0l[i]1[j1));
}

} while (err > maxerr);

do {
err = 0;
k = 1-k;

#pragma omp parallel for collapse(2) reduction(max:err)
for (i=1; i<M-1; i++)
for (j=1; j<N-1; j++) {
al1-k1[i]1[j] = 0.256 * (alk][i-11[j] + alk]l[i+1]1[j] +
alk]l[i1[j-1]1 + alkI[il[j+11);

err = fmax(err, fabs(al1]l[i]J[jl-al0l[i]1[j1));
¥

} while (err > maxerr);

collapse(2): the two outer loops are handled as one parallel loop with MN iterations

Tile the nested loops and allocate to threads full tiles

stencil computation

—)

Tiling

do {
err = 0;
k = 1-k;
#pragma omp parallel for reduction(max:err)
for (jj=1; jj<N-1; jj += T)
for (i=1; i<M-1; i++)
for (j=jj; j<jj+T; j++) {
al1-k1[i]1[j] = 0.25 * (alk]l[i-11[j] + alkI[i+11[j] +
alk][il[j-11 + alk]l[il[j+11);
err = fmax(err, fabs(al1][il[jl-al0]J[i]1[jI1));
}

} while (err > maxerr);

Only outer loop is executed in parallel
Tiling provides the same improvements in cache hit ratio as for sequential code
Assuming tiles are cache line aligned

Solution 1: Use 2D tiles
* N=n*xT1+2, M=m*xT2+2 x*\
do {

err = 0;

k

2D Tiling
1-k;

#pragma omp parallel for \

for (ii=1; ii<N-1;
for (jj=1;

ii += T1)

jj += T2)
i<ii+T2;
for (j=jj; j<jj+T2;
al1-kJ[i]1[j]

collapse(2) reduction(max:err)
jj<M-1;
for (i=ii;

i++)

err

j++) {

0.25 * (alk][i-11[j] + alk][i+1][j] +
= fmax (err,
}

} while (err > maxerr);

alk][il[j-11 + alk]1[iI[j+11);
fabs(al11[il1[jl-al0l1[i1[j1));

Solution 2: Use nested parallelism

do {
err = 0;
k = 1-k;
#pragma omp parallel for reduction(max:err)
for (jj=0; jj<m; ji++) {
#pragma omp parallel for reduction(max:err)
for (i=0; i<M; i++) {
for (j=jj*T1+1; j<(jj+1)*T1i+1; j++) {
al1-kJ1[il1[j] = 0.25 * (alk]J[i-11[j] + alk][i+11[j] +
alk]l[i1[j-11 + alkI[il1[j+11);
err = fmax(err, fabs(al[1]l[i]l[jl-al0l[i]1[j1));

}
}

} while (err > maxerr);

@ Might not be supported (get error) — controlled by ICV
could be one

o OMP_MAX_ACTIVE_LEVELS, omp_set_max_active_levels, omp_get_max_active_levels

@ Even if it is supported it id not obvious how many threads will execute a nested loop —

void report_num_threads (int level) {
printf ("Level %d: team size = %d\n",
level, omp_get_num_threads ());

}

int main(int argc, char xargv[]) {
printf ("available threads = %d\n",
omp_get_max_threads ());
#pragma omp parallel num_threads (2)
{
report_num_threads (1) ;
#pragma omp parallel num_threads (2)
{
report_num_threads (2);
#pragma omp parallel num_threads (2)
report_num_threads (3);

Executed:

export OMP_MAX_THREADS=7
./a.out

Output was:

available threads = 7
Level 1: team size 2
Level 1: team size = 2
Level 2: team size = 1
Level 3: team size = 1
Level 2: team size = 1
Level 3: team size = 1

u]

8
I
i

!

Use it at your own peril: Many implementations do not use “spare” threads to increase
parallelism at lower levels
Note:

#pragma omp parallel for

is equivalent to

#pragma omp parallel
#pragma omp for

first statement creates team; second statement does work sharing across team
Problem: Nested team creation might use only parent thread

Marc Snir

SparseMV: a = b + Cd where C is a sparse matrix: most entries are zero.

@ How does one store the matrix so that only non-zeros are stored?
@ How does on avoid the multiplications by zero?

CRS: Compressed Row Storage

0o 1 2 3 4
of -4 2 |—4|2|2|8| |—5|10|-5|10|—6
11 2 8
2 8 -5 10
) - \\ //
4 10 -6 | 0 | 2 | | 7 | 8 | 10|
matrix B

val
nonzero entries
in matrix

col_idx
col index
of nonzero entries

row_ptr
index of first entry
for each row

for (i=0; i<N; i++)
alil = b[il;

for (j=row_ptrl[il;

ali]l += val[j]l * dlcol_idx[j]]

j<row_ptr[i+1l; j++)

of -4 | 2 |—4|2|2|8|8|—5|10|-5|10|_6|
1| » s
|0|1|0|2|1|3|4|2|2|4|
2 8 5 | 10
3 P \\
4 10 -6 |0|2|4|7|8|10|
matrix B

val
nonzero entries
in matrix

col_idx
col index
of nonzero entries

row_ptr
index of first entry
for each row

If rows have roughly the same number of non-zeros, then get good load balancing by statically

tiling rows

#pragma omp parallel for schedule(static,T)
for (i=0; i<N; i++) {
alil = bl[il;
for (j=row_ptr[il; j<row_ptr[i+1]; j++)
ali] += vall[jl * dlcol_idx[j1];
}

T chosen so that tasks are large enough

|

+ L

[]
[]

for (i=0;
alil

i<N;

}

#pragma omp parallel for schedule(dynamic,T)
i++) {
bl[il;

for (j=row_ptr[il;

If rows have very different number of non-zeros, need to use dynamic load balancing.

j<row_ptr[i+1]-1;
alil += vall[j]l * dlcol_idx[jl]1;

j++)

T chosen so that tasks are large enough, but number of tasks still large wrt number of threads

Like Jacobi, except done in place (one array)

k1 k1) (kD) (K “
3,(,J) — 025(21(_1’1) + a,(’j_l) + af‘f‘)l,J + afdl‘l)
Sequential code
new
values
—> @ «—o
old
I values

for (i=1; i<M-1; i++)
for (j=1; j<N-1; j++)
alil[j] = 0.25 *
(ali-11[31 + alill[j-11 +
ali+11[j]1 + alil[j+11);
How do we parallelize?
How can we reorder the nested loop so as to have
many independent operations?
o <& =y «=» = 9DaC
T Cs420-lecture7 . Fall2018 25/47

Loop carried dependencies

Loop carried dependencies Wavefront

VR
% N
SRRGS

<-—
<-—
<“—

M=6

RN
NIV
RS

»

/* number of diagonals is M+N-5 */
for (d=0; d<M+N-5; d++) {
/% first & last diagomnal row */
ifirst = (d<M-1) ? d+1 : M-2;
ilast = (d<N-1) ? 1 : d-M+3;
#pragma omp parallel for
for (i=ifirst; i<=ilast; i++) {
j o= d+2-i;
alil[j] = 0.2 x (alil[j] +
ali-11[j]1 + ali+1]1[j] +
alill[j-1]1 + alil[j+11);

u]
8

I
i
!
N
o
P

@ Specify the set of iterations that need to be executed
@ Specify the dependencies that need to be obeyed.

#pragma omp for collapse(2) ordered(2)
for (i=1; i<N-1; i++)
for (j=1; j<M-1; j++) {
#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)
alill[jl = 0.2 * (ali-11[j] + ali+11[j] +
alillj-1]1 + alil[j+1] + alil[j1);
#pragma omp ordered depend(source)

}

/% both loops collapsed, must obey ordering constraints */
#pragma omp for collapse(2) ordered(2)
for (i=1; i<N-1; i++)
for (j=1; j<M-1; j++) {
/% must wait until (i-1,35) and (i,5-1) iterations complete */
#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)

alil[j] = 0.2 * (ali-11[j] + ali+11[j]1 +
alil[j-1]1 + alil[j+11 + alil[j1);

/% diteration (%i,7) complete, let dependencies proceed */
#pragma omp ordered depend(source)

@ Must likely inefficient because dependencies tracked at fine grain

o Can tile

29/47

#pragma omp for collapse(2) ordered(2)
for (ii=1; ii<N-1; ii += T)
for (jj=1; jj<M-1; j += T) {
#pragma omp ordered depend(sink: ii-1,jj) depend(sink: ii,jj-1)
for (i=ii; i<ii+T; i++)
for (j=jj; j<jj+T; j++)
alil(j]l = 0.2 x (ali-11[j] + ali+11(j] +
alil[j-11 + alil[j+1]1 + alil[jl);
#pragma omp ordered depend(source)

}

do {
err = 0;
k = 1-k;
#pragma omp parallel for reduction(max:err)
for (jj=1; jj<N-1; jj += T)
for (i=1; i<M-1; i++)
for (j=jj; j<jj+T; j++) {
al1-k1[i]1[j] = 0.25 * (alk][i-11[j] + alk]l[i+11[j] +
alk]l[i1[j-11 + alkI[il[j+11);
err = fmax(err, fabs(al[1]l[i]l[jl-al0l[i]1[j1));
}

} while (err > maxerr);

u]
8
I
i
!
S
o
i)

@ Do we have races?

€5420 = Lecture 7 ol myar

@ Do we have races?
o No

e err is a reduction variable

e During each iteration of the while loop we read one copy of a and write another copy — no
conflicts

o No thread starts next iteration of the while loop before all threads completed the previous
iteration — there is an implicit barrier at the end of the parallel section

while { parallel { } Qarallel{ } parallel }
for for for
read a[1]["]['] read a[0][*][*]
write a[0][*][*] write a[1][*][*]

5420 - Lecture 7 Fall2018 32/47

@ Do we have communication between threads?

5420 - Lecture 7 ool sayar

@ Do we have communication between threads?

@ Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.

while { Parallel ¢ } parallels y parallel
for for for }
read a[1]["]["] read a[0][*][*]
write a[0][*][*] write a[1][*]["]

5420 - Lecture 7 Fall2018 33/47

@ Do we have communication between threads?

@ Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.

@ Are we sure that a thread picks same slice at successive iteration?

while { Parallel ¢ } parallels y parallel
for for for }
read a[1]["]["] read a[0][*][*]
write a[0][*][*] write a[1][*]["]

5420 - Lecture 7 Fall2018 33/47

@ Do we have communication between threads?

@ Yes - “orange” thread needs a column written by each of “purple” and “blue” threads at
previous “while” iteration, assuming threads pick same chunk at successive iterations.

@ Are we sure that a thread picks same slice at successive iteration?

@ Not in general: allocation may change from parallel loop to parallel loop

while { Parallel ¢ } parallels y parallel
for for for }
read a[1]["]["] read a[0][*][*]
write a[0][*][*] write a[1][*]["]

5420 - Lecture 7 Fall2018 33/47

Allocation does not change from one parallel for to the next if
@ Number of threads is fixed

@ Schedule is static

* N=n*xT+2 *\

omp_set_dynamic (0) ;
do {
err = 0;
k = 1-k;
#pragma omp parallel for schedule(static) reduction(max:err)
for (jj=1; jj<N-1; jj += T)
for (i=1; i<M-1; i++)
for (j=jj; j<jj+T; j++) {
al1-kJ1[il[j] = 0.25 * (alk]l[i-11[j] + alk][i+1]1[j] +
alk]J[il[j-11 + alk][i1[j+11);
err = fmax(err, fabs(al[1]l[i]l[jl-al0l[i]1[j1));
}

} while (err > maxerr);

34/47

Can we avoid the overhead of repeatedly forking and joining control?
#pragma omp parallel

{
n = omp_get_num_threads(); myid = omp_get_thread_num();
myfirst = myid#*N/n; nextfirst = (myid+1)*N/n;
do {
#pragma omp single
err = 0;
myerr = 0; k = 1-k;
for (i=1; i<M-1; i++)
for (j=myfirst; j<nextfirst; j++) {
al1-k1[i]1[j] = 0.25 * (alk][i-11[j] + alk][i+1]1[j]1 +
alkl[il[j-11 + alk]J[il[j+11);
myerr = fmax(myerr, fabs(al[1]l[il[jl-al0l[il[j1));
}
#pragma omp critical
err = fmax(err, myerr);
#pragma omp barrier
} while (err > maxerr);
¥

Code has become more verbose.
No load balancing by OpenMP runtime — user has to do it, if needed
Cannot use reduction

Cannot use atomic for max(in C/C++)

® 6 6 o o

May be better if starting/ending a parallel section is expensive

#pragma omp parallel
do {

{

#pragma omp single

err
k

=l

}

0;
_k;

#pragma omp for collapse(2) reduction(max:err)

for (i=1; i<M-1; i++)
for (j=1; j<N-1; j++) {
al1-k]1[i]1[j] =

err = fmax(err,

}

} while (err > maxerr);

0.25 * (alk][i-11[j] + alkI[i+1]1[j]1 +
fabs(al1]1[i1[jl-al01[il[j1));

alk][i]1[j-1]1 + alkI[il[j+11);
oy < =» «=» = Wac
T Cs420-lecture7 . Fall2018 37/47

/* implicit barrier at end of omp for */

Metrics

5420 - Lecture 7 Fall2018 38/47

World is not ideal.

computation work needed to solve the problem.)
o To simplify, assume (wrongly) each operation takes one time unit.

@ Sequential performance Ti(n): time to solve a problem of size n. (Same as W(n),

o Parallel performance T,(n): time to solve a problem of size n with p hardware threads

o Ideal world: Can run p time faster than with one hardware thread; T,(n) = T1(n)/p.

computation work needed to solve the problem.)

@ Sequential performance Ti(n): time to solve a problem of size n. (Same as W(n),
o To simplify, assume (wrongly) each operation takes one time unit.
World is not ideal.

o Parallel performance T,(n): time to solve a problem of size n with p hardware threads

o Ideal world: Can run p time faster than with one hardware thread; T,(n) = T1(n)/p.

o Parallel code does more work than sequential code (e.g., spawning threads)
o T = = E 9ae
T Cs420-lecture7 . Fall2018 39/47

@ Sequential performance Ti(n): time to solve a problem of size n. (Same as W(n),
computation work needed to solve the problem.)

o To simplify, assume (wrongly) each operation takes one time unit.

o Parallel performance T,(n): time to solve a problem of size n with p hardware threads

o Ideal world: Can run p time faster than with one hardware thread; T,(n) = T1(n)/p.
World is not ideal.

o Parallel code does more work than sequential code (e.g., spawning threads)
o Parallel code may not have enough parallelism — enough operations that can executed
independently on distinct threads

Speedup Ratio between sequential time and parallel time: S,(n) = T1(n)/ Tp(n).

Speedup Ratio between sequential time and parallel time: S,(n) = T1(n)/ Tp(n).
° Sin) =1

() 51(!1) =1

Speedup Ratio between sequential time and parallel time: S,(n) = T1(n)/ Tp(n).

e Normally S,(n) < p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.

Speedup Ratio between sequential time and parallel time: S,(n) = T1(n)/ Tp(n).
() 51(!1) =1
e Normally S,(n) < p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
e Normally S,(n) > 1; but it is not rare to find that a parallel program runs

more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Speedup Ratio between sequential time and parallel time: S,(n) = T1(n)/ Tp(n).
() 51(!1) =1
e Normally S,(n) < p; there may be cases of superlinear speedup: p caches
have larger capacity than one cache.
e Normally S,(n) > 1; but it is not rare to find that a parallel program runs
more slowly than a sequential program solving the same problem (parallel
overheads and lack of parallelism)

Efficiency Ratio between speedup and number of hardware threads:

Ep(n) = Sp(n)/p = T1(n)/(p x Tp(n)); ratio between sequential work and
parallel work. Normally E,(n) < 1.

#include <omp.h>

#include <time.h>

#include <stdio.h>

#define N 10000

double a[N][N], b[N], c[NI;

int main(int argc, char *argv[]) {
int n[] = {1, 10, 20, 30, 40, 50,

60, 70, 80, 90, 100};
int m;
double time;
for (m=0; m<11; m++) {

omp_set_num_threads (n[m]);

#pragma omp parallel
{

}

int i, j;
time = omp_get_wtime ();
#pragma omp for collapse(2)
for (i=0; i<N; i++)
for (j=0; j<N; j++)
cli]l += alil[j]l * b[jl;
printf("%d ",(int) (1000000.0 =*
(omp_get_wtime () -time)));

printf ("\n");

}
}

"Fake" experiment: measuring running time of
each thread and taking maximum

=] F

matrix x vector
800000 120.00 . .
700000 100 @ Execution time decreases as number of
600000 5000 threads increase — But cannot decrease
500000 . .
400000 6000 below the time to execute the inner loop
20000 4000 (without code changes)
200000
100000 2000 @ Superlinear speedup i i
p peedup in some regions
0 0.00

1 10 20 30 40 50 60 70 80 90 100

—Time ideal speedup

speedup

5420 = Lecture 7 ol aayar

Theorem
sequential, then

Proof.

1
= —a)talp

.
——
Sp

—t(1-a)T
, -
B T o 1
hi(l-a)Ti (A-a)+a/p
O
=] F = E E A
T Cs420-lecture7 . Fall2018 43/47

Sl

If a computation has a fraction « that can be executed in parallel and a fraction 1 — « that is

@ Theorem holds as long as p does not exceed the level of available parallelism (N, in our
example).

@ Speedup can never exceed ﬁ the ratio between total work and sequential work.

T1 — number of operations

T~ — longest critical path in the execution
In our example T1(N) ~ N? and To(N) ~ N
Claiml: T, > max(%, To)

Claim2: One can load-balance execution so that T, = O(% + Two)

@ Amdahl's law was seen as evidence that
parallelism has limited hope — eventually,
the sequential part dominates.

@ What was missing is a realization that
larger machines are used to solve larger
problems

e Strong scaling: Consider a fixed size

problem and apply more and more
processors to its solution.

e Eventually, more processors do not help.
(Too many cooks spoil the broth.)

o Weak scaling: Increase problem size as the
number of processors is increased — keep
work per processor constant.

o ldeally, total compute time stays fixed

Strong Scaling
120000

100000

80000

60000

40000

20000

@ Strong scaling of Matrixxvector

@ Usually scaling is sublinear because of

overheads of communication and
synchronization

-
How do we study this?

e Study a function in two variables: T,(n)
or Sp(n)

e Fix n and plot execution time T,(n) as
function of n. This is strong scaling: Keep
the work fixed and increase the number of
workers; efficiency decreases

Speedup as function of n and p

@ Keep work per processor fixed and study
increase in compute time. This is weak
scaling

o Keep Efficiency fixed and study how
problem size increases:
ny/o(p) = min{n: Ey(n) > 0.5}

