BN 0
Marc Snir
Fall 2018

?

#pragma omp parallel
{
do {

#pragma omp for collapse(2) \
reduction(max:err) private(i,j)
for (i=1;i<N-1; i++)

for(j=1;j<N-1;j++) {
al[1-11[i1[j1=0.25x(al1]1[i-11T[j]
+a[1][i+1]1[j]1+al11[i]1[j-1]
+a[1]1[i1[j+11);
err = fmax(err,
fabs(al[1][i][jl-al0][i1[j1));
}
1=1-1;
} while(err>maxerr);
#pragma omp single
11=1;

printf ("\n \n");
for (i=0;i<N;i++) {
for (j=0;j<N;j++)
printf ("%5.2f ",al[11]1[1i]1[j1);
printf ("\n");

@ do test done at each thread
@ implicit barrier at end of for block

o Can use master, rather than single

}

#pragma omp parallel
{
do {

for (i=1;i<N-1;

#pragma omp for collapse(2) reduction(max:notdone) private(i,j)
i++)

for(j=1;j<N-1;j++) {

al1-11[i]1[j]=0.25*%(al1][i-1]1[jl+al11[i+1][j]

+al[1]1[il10j-11+al11[4i]1[j+11);

if (err > maxerr ||

}

1=1-1;

} while(notdone);

err <-maxerr) ++notdone;
#pragma omp single
11=1;

@ The task construct helps for this purpose.
#pragma omp task
{..

Within a parallel section
.}

where it is not clear upfront what tasks need to be generated.

@ Parallel loops are convenient for nice iteration domains, but not for irregular computations

executing in parallel with the newly created task.

will start a task that can execute on any of the available threads; the calling task may continue
o <& = = E 9Dace
T CS420—Llecture8 . Fall2018 4/44

fib(0) = 0; fib(1)=1;
fib(n)=fib(n-1)+fib(n-2)

int fib(int n) {

int i, j;
if (n<2) return n; @ task: spawns a task that can execute
else { separately
#pragma omp task shared (i))
i=fib(n-1); @ taskwait: wait for all spawned tasks to
#pragma omp task shared(j) complete before continuing
j=£fib(n-2);

. @ shared: parent’s variable shared with child
#pragma omp taskwait

return i+j;
¥
}

@ Can be computed in constant time:
. _ 1 ((14\5 1-v5\n) o, 1 ((1+V5
fib(n) = 2 (A52)" - (150)") = J ((2)")

@ Can be computed in linear time using the linear recursion

@ Number of tasks spwaned by the parallel algorithm is

ntasks(n) = ntasks(n — 1) 4 ntasks(n — 2); i.e., ntasks(n) = fib(n). Exponential amount
of compute work!

Mark all the nodes that can be reached from
node 1

=] F = = E DAl

Mark all the nodes that can be reached from
node 1

o F = = E DAl

\\ structure for node

typedef struct {

int visited;

int numneighbors;

\\ mark for visited node
int neighbors[];
} Node;

\\ number of neighbors (degree)
\\ array of neighbor ids

Node * graph[N];

\\ array of pointers to nodes
void visit(int i) {

int j,k,mark;

for (j=0;

k

mark

j<graph[i]l->numneighbors; j++) {
graph[i]->neighbors[j];
#pragma omp atomic
= graph[k]->visited++;
if (mark==0)
#pragma omp task
visit (k);

}

}

int main() {

#pragma omp parallel \\ need to start all threads
#pragma omp single \\ need to call only once
visit (0);

€5420 - Lecture 8 ol 10y

True dependence (aka RAW, aka flow dependence)
int main() {
int x

1
#pragma omp parallel

#pragma omp single {

X =

2;

printf ("x
¥

#pragma omp task shared(x) depend(out: x)
#pragma omp task shared(x) depend(in:

hd\n", x);
Will print x=2

x)
} returmn O;

Anti-dependence (aka WAR)

int main() {
int x = 1;
#pragma omp parallel
#pragma omp single
{
#pragma omp task shared(x) depend(in: x)
printf ("x = %d\n", x);
#pragma omp task shared(x) depend(out: x)

x = 2;
}
return O;
}
Will print x=1

int main() {
int x;

Output-dependence (aka WAW)

{

#pragma omp parallel
#pragma omp single

X

1;

X

#pragma omp task shared(x) depend(out: x)
= 2;

#pragma omp task shared(x) depend(out: x)
#pragma omp taskwait
}

printf ("x = %d\n", x);
return O0;
}

Will print x=2

If a dependence exists then tasks are executed in the order they were spawned.
o T = = E 9ae
T CS420-lecture8 " Fal2018 13/44

#pragma omp parallel
#pragma omp single

for(ii=1;1i<N-1;1i+=T)

for(jj=1;3j<M-1;3+=T) {
{

for (i=ii;i<ii+T;i++)

#pragma omp task depend(in:alii-1]1[jjl,aliill[jj-11) \
depend (out:aliil[jj+T-1],alii+T-11[jj1)

for(j=3j;3<jj+T;j++
alillil

=0.2x(ali-11[jl+ali+11[j1+alil[j-1]1+alil[j+1]1+alil[j1);

NUMA

Non-Uniform Memory Access

T ol /e

Multisocket system

@ cc-NUMA: Cache-Coherent Non Uniform Memory Access.
@ All caches are coherent
@ Access to local memory (memory on same socket) is faster and has higher bandwidth than

access to remote memory.
@ Need to organize data so that core mostly accesses local data

Marc Snir

@ How does one control where data goes?

@ How does one control where threads run?
Environment variable OMP_PLACES define what is a location (place) and provides names
(numbers) for places in the system

@ setenv OMP_PLACES threads (or export OMP_PLACES=threads) — each place is a
hardware thread; places are numbered 0,1,2...

setenv OMP_PLACES cores — each place is a core
setenv OMP_PLACES socket — each place is a socket
setenv OMP_PLACES "cores(4)" — the computation will use four cores

setenv OMP_PLACES "{0,1},{2,3},{4,5},{6,7}" — the computation has 4 places,
each with 2 HW threads.

We have the usual plethora of ICV querrying functions

omp_get_num_places ()
omp_get_place_num_procs ()
omp_get_place_proc_ids ()
omp_get_place_num ()
omp_get_partition_num_places. ()
omp_get_partition_place_nums ()

We can control where a thread runs

#pragma omp parallel proc_bind(...)

@ proc_bind(master) — all threads in the parallel thread team run in the same place as the
master (same hardware thread/same core / same socket)

@ proc_bind(close) — assign threads to consecutive places, starting with the master place

@ proc_bind(spread) — assign threads to places that are as distant from each other as
possible

There is no explicit way of managing data location in OpenMP for cc-NUMA systems. There is
a numa library (#include <numa.h>) that can be used to control where threads run and
where memory is allocated.

NUMA memory allocators

numa_alloc_onnode(size, node)

numa_alloc_local(size)

numa_alloc_interleaved(size)

One can also control where memory is allocated by the OS when page faults occcur.

Control of affinity of computing to data in cc-NUMA systems is “work in progress”

Message-Passing

Fall 2018

20/ 44

system ever built had 1024 HW threads.

Shared memory becomes expensive and hard to scale beyond a few sockets. Largest NUMA
Instead we use distributed memory

Network

memory

memory

memory

memory

| Network |
NIC NIC NIC NIC
memory memory memory memory

Hardware:

Software:

@ Moves data from the memory of one node to the memory of another node.
@ Provides indication that transfer is complete

@ Calls to move data from one memory to another
o Calls to synchronize

Communication is achieved by a matching pair of a send and a receive:
send(to, data) — recv(from,data)
The communication

@ Moves data (from sender to receiver)

@ Synchronizes (receive will complete after send started)

@ MPI (Message Passing Interface) is a Standard Message passing library designed by an
open forum that is broadly used in HPC.

@ Standardization effort started in 1992, MPI-1 was published late 93. Current version is 3.1
and work is ongoing on version 4.0

@ Has C and Fortran binding

