
CS420 – Lecture 8

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 8 Fall 2018 1 / 44

Jacobi

...
pragma omp parallel

{
do {

pragma omp for collapse (2) \
reduction (max:err) private (i,j)
for (i=1;i<N -1; i++)

for(j=1;j<N -1;j++) {
a[1-l][i][j]=0.25*(a[l][i -1][j]

+a[l][i+1][j]+a[l][i][j -1]
+a[l][i][j+1]);

err = fmax(err ,
fabs(a[1][i][j]-a[0][i][j]));

}
l=1-l;

} while(err > maxerr);
pragma omp single

ll =1;
}

printf ("\n \n");
for (i=0;i<N;i++) {

for(j=0;j<N;j++)
printf ("%5.2f ",a[ll][i][j]);

printf ("\n");

do test done at each thread
implicit barrier at end of for block
Can use master, rather than single

Marc Snir CS420 – Lecture 8 Fall 2018 2 / 44

Slight improvement

pragma omp parallel
{
do {

pragma omp for collapse (2) reduction (max: notdone) private (i,j)
for (i=1;i<N -1; i++)

for(j=1;j<N -1;j++) {
a[1-l][i][j]=0.25*(a[l][i -1][j]+a[l][i+1][j]

+a[l][i][j -1]+a[l][i][j+1]);
if(err > maxerr || err <-maxerr) ++ notdone ;

}
l=1-l;

} while (notdone);
pragma omp single

ll =1;
}

Marc Snir CS420 – Lecture 8 Fall 2018 3 / 44

Tasks

Parallel loops are convenient for nice iteration domains, but not for irregular computations
where it is not clear upfront what tasks need to be generated.
The task construct helps for this purpose.

Within a parallel section
pragma omp task
{...}

will start a task that can execute on any of the available threads; the calling task may continue
executing in parallel with the newly created task.

Marc Snir CS420 – Lecture 8 Fall 2018 4 / 44

A terrible example: Fibonacci

fib(0) = 0; fib(1)=1;
fib(n)=fib(n-1)+fib(n-2)
int fib(int n) {

int i, j;
if (n <2) return n;
else {

pragma omp task shared (i)
i=fib(n -1);

pragma omp task shared (j)
j=fib(n -2);

pragma omp taskwait
return i+j;

}
}

task: spawns a task that can execute
separately
taskwait: wait for all spawned tasks to
complete before continuing
shared: parent’s variable shared with child

Marc Snir CS420 – Lecture 8 Fall 2018 5 / 44

Why terrible?

Can be computed in constant time:
fib(n) = 1√

5

(
(1+
√
5

2)n − (1−
√
5

2)n
)
≈ 1√

5

(
(1+
√
5

2)n
)

Can be computed in linear time using the linear recursion
Number of tasks spwaned by the parallel algorithm is
ntasks(n) = ntasks(n − 1) + ntasks(n − 2); i.e., ntasks(n) = fib(n). Exponential amount
of compute work!

Marc Snir CS420 – Lecture 8 Fall 2018 6 / 44

Example: Graph traversal

1 2

3

4 5

6

7

9

8

Mark all the nodes that can be reached from
node 1

1 2

3

4 5

6

7

9

8

Marc Snir CS420 – Lecture 8 Fall 2018 7 / 44

Example: Graph traversal

1 2

3

4 5

6

7

9

8

Mark all the nodes that can be reached from
node 1

1 2

3

4 5

6

7

9

8

Marc Snir CS420 – Lecture 8 Fall 2018 7 / 44

Adjacency list representation

1 2

3

4 5

6

7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 6

1 2 4

3 5

4 6

2 5 7

6

8

9

Marc Snir CS420 – Lecture 8 Fall 2018 8 / 44

Parallel traversal

\\ structure for node
typedef struct {

int visited ; \\ mark for visited node
int numneighbors ; \\ number of neighbors (degree)
int neighbors []; \\ array of neighbor ids

} Node;

Node * graph[N]; \\ array of pointers to nodes

void visit(int i) {
int j,k,mark;

for(j=0; j<graph[i]-> numneighbors ; j++) {
k = graph[i]-> neighbors [j];
pragma omp atomic

mark = graph[k]-> visited ++;
if(mark ==0)

pragma omp task
visit(k);

}
}
}

Marc Snir CS420 – Lecture 8 Fall 2018 9 / 44

int main () {
pragma omp parallel \\ need to start all threads

pragma omp single \\ need to call only once
visit (0);

}

Marc Snir CS420 – Lecture 8 Fall 2018 10 / 44

Task Dependences

True dependence (aka RAW, aka flow dependence)
int main () {

int x = 1;
pragma omp parallel

pragma omp single {
pragma omp task shared (x) depend (out: x)

x = 2;
pragma omp task shared (x) depend (in: x)

printf ("x = %d\n", x); } return 0;
}

Will print x=2

Marc Snir CS420 – Lecture 8 Fall 2018 11 / 44

Task Dependences

Anti-dependence (aka WAR)
int main () {

int x = 1;
pragma omp parallel

pragma omp single
{
pragma omp task shared (x) depend (in: x)
printf ("x = %d\n", x);
pragma omp task shared (x) depend (out: x)
x = 2;
}

return 0;
}

Will print x=1

Marc Snir CS420 – Lecture 8 Fall 2018 12 / 44

Task Dependences

Output-dependence (aka WAW)
int main () {

int x;
pragma omp parallel

pragma omp single
{

pragma omp task shared (x) depend (out: x)
x = 1;

pragma omp task shared (x) depend (out: x)
x = 2;

pragma omp taskwait
printf ("x = %d\n", x);

}
return 0;

}

Will print x=2
If a dependence exists then tasks are executed in the order they were spawned.

Marc Snir CS420 – Lecture 8 Fall 2018 13 / 44

Back to Gauss-Seidel

pragma omp parallel
pragma omp single

for(ii =1;ii <N -1; ii+=T)
for(jj =1;jj <M -1;j+=T) {

pragma omp task depend (in:a[ii -1][jj],a[ii][jj -1]) \
depend (out:a[ii][jj+T-1],a[ii+T -1][jj])
{

for(i=ii;i<ii+T;i++)
for(j=jj;j<jj+T;j++)
a[i][j] =0.2*(a[i -1][j]+a[i+1][j]+a[i][j -1]+a[i][j+1]+a[i][j]);

}

Marc Snir CS420 – Lecture 8 Fall 2018 14 / 44

NUMA
Non-Uniform Memory Access

Marc Snir CS420 – Lecture 8 Fall 2018 15 / 44

cc-NUMA
Multisocket system

cc-NUMA: Cache-Coherent Non Uniform Memory Access.
All caches are coherent
Access to local memory (memory on same socket) is faster and has higher bandwidth than
access to remote memory.
Need to organize data so that core mostly accesses local data

Marc Snir CS420 – Lecture 8 Fall 2018 16 / 44

How does one control where data goes?
How does one control where threads run?

Environment variable OMP_PLACES define what is a location (place) and provides names
(numbers) for places in the system

setenv OMP_PLACES threads (or export OMP_PLACES=threads) – each place is a
hardware thread; places are numbered 0,1,2...
setenv OMP_PLACES cores – each place is a core
setenv OMP_PLACES socket – each place is a socket
setenv OMP_PLACES ”cores(4)” – the computation will use four cores
setenv OMP_PLACES ”{0,1},{2,3},{4,5},{6,7}” – the computation has 4 places,
each with 2 HW threads.

Marc Snir CS420 – Lecture 8 Fall 2018 17 / 44

We have the usual plethora of ICV querrying functions
omp_get_num_places ()
omp_get_place_num_procs ()
omp_get_place_proc_ids ()
omp_get_place_num ()
omp_get_partition_num_places .()
omp_get_partition_place_nums ()

We can control where a thread runs
pragma omp parallel proc_bind (...)

proc_bind(master) – all threads in the parallel thread team run in the same place as the
master (same hardware thread/same core / same socket)
proc_bind(close) – assign threads to consecutive places, starting with the master place
proc_bind(spread) – assign threads to places that are as distant from each other as
possible

Marc Snir CS420 – Lecture 8 Fall 2018 18 / 44

There is no explicit way of managing data location in OpenMP for cc-NUMA systems. There is
a numa library (#include <numa.h>) that can be used to control where threads run and
where memory is allocated.
NUMA memory allocators
numa_alloc_onnode(size, node)
numa_alloc_local(size)
numa_alloc_interleaved(size)
One can also control where memory is allocated by the OS when page faults occcur.
Control of affinity of computing to data in cc-NUMA systems is “work in progress”

Marc Snir CS420 – Lecture 8 Fall 2018 19 / 44

Message-Passing

Marc Snir CS420 – Lecture 8 Fall 2018 20 / 44

Beyond shared memory

Shared memory becomes expensive and hard to scale beyond a few sockets. Largest NUMA
system ever built had 1024 HW threads.
Instead we use distributed memory

Marc Snir CS420 – Lecture 8 Fall 2018 21 / 44

Distributed memory

memory memory memory memory

Network

Marc Snir CS420 – Lecture 8 Fall 2018 22 / 44

Hybrid shared memory/distributed memory

Network

NIC

memory

NIC

memory

NIC

memory

NIC

memory

Marc Snir CS420 – Lecture 8 Fall 2018 23 / 44

Basic communication mechanism

Hardware: Moves data from the memory of one node to the memory of another node.
Provides indication that transfer is complete

Software: Calls to move data from one memory to another
Calls to synchronize

Marc Snir CS420 – Lecture 8 Fall 2018 24 / 44

Message Passing

Communication is achieved by a matching pair of a send and a receive:
send(to, data) −→ recv(from,data)
The communication

Moves data (from sender to receiver)
Synchronizes (receive will complete after send started)

Marc Snir CS420 – Lecture 8 Fall 2018 25 / 44

MPI

MPI (Message Passing Interface) is a Standard Message passing library designed by an
open forum that is broadly used in HPC.
Standardization effort started in 1992, MPI-1 was published late 93. Current version is 3.1
and work is ongoing on version 4.0
Has C and Fortran binding

Marc Snir CS420 – Lecture 8 Fall 2018 26 / 44

