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Message Passing

Basic communication mechanism: sending & receiving messages
send(to, data) −→ recv(from,data)

Who is communicating?
In MPI the communication is between processes. Typically, processes will be on different
nodes, but they could be on the same node.

Need process ids
An MPI computation involves a group of processes. The initial group is MPI_COMM_WORLD.
Each process has a rank within MPI_COMM_WORLD; ranks are from 0 to N − 1, if there are N
processes. (Actually, MPI_COMM_WORLD is a communicator; more about this later.)
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Hello world

#include <mpi.h>
#include <stdio.h>

int main(int argc , char ** argv )) {
int rank , size;

MPI_Init (&argc , &argv );

MPI_comm_rank ( MPI_COMM_WORLD , &rank );
MPI_Comm_size ( MPI_COMM_WORLD , &size );
printf (‘‘I am %d of %d\n", rank , size );

MPI_Finalize ();
return 0;
}

main is executed by each process.
Number of processes is fixed
MPI_comm_rank() returns rank
of calling process
MPI_comm_size() returns
number of processes
Initialization and finalization is
required
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Simple communication

# include <mpi.h>
# include <stdio.h>

int main(int argc , char ** argv)
{
int rank , val [100];

MPI_Init (&argc , &argv );

MPI_Comm_rank ( MPI_COMM_WORLD , &rank );

if (rank == 0)
MPI_Send (val , 100, MPI_INT , 1, 0, MPI_COMM_WORLD );
else if (rank == 1)
MPI_Recv (val , 100, MPI_INT , 0, 0, MPI_COMM_WORLD ,
MPI_STATUS_IGNORE );

MPI_Finalize ();
return 0;
}
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MPI_Send(val, 100, MPI_INT, 1, 0, MPI_COMM_WORLD)

I am sending data that is stored in a buffer starting at val (send buffer)
I am sending 100 items
These items are integers
The destination is the process with rank 1 in MPI_COMM_WORLD

The message is tagged with the value 0.

MPI_Send(sendbuf, count, type, dest, tag, comm)
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MPI_Recv(val, 100, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

I am receiving data into the buffer starting at location val (receive buffer)
I am receiving (up to) 100 items
These items are integers
The source should be the process with rank 0 in MPI_COMM_WORLD

The message should be tagged with the value 0.
I don’t need for MPI to return in status information on how the communication
completed

MPI_Recv(recvbuf, count, type, source, tag, comm, status)
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Rules

The receive will match a message sent to the right destination (communicator and rank,
with the correct information on the “envelope”: sender and tag.
The programmer must ensure that

The datatypes match
The sent message does not overflow the receive buffer (OK to send fewer items, the status
parameter will tell how many were actually received).

The send will complete as soon as the message was copied out of the sender memory
Possibly before the receive started, if there is buffering
Possibly only after the receive is posted, if there is no buffering

The receive will complete as soon as all the data has been copied into the receive buffer
Mismatched sends and receives can cause deadlocks!
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Communicators

A communicator is
An ordered set of processes
A context, a “color”

A process can be in multiple communicators, with a different rank in each
Communications with different communicators do not interfere with each other

Important in the design of parallel libraries
Simple programs only use MPI_COMM_WORLD
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Example
(Naive) parallel sort with 2 processes

8 23 19 67 45 35 1 24 13 30 3 5

1 24 13 30 3 5

1 3 5 13 24 30

8 19 23 35 45 67

8 19 23 35 45 67 1 3 5 13 24 30

8 19 23 35 45 67 1 3 5 13 24 30

Process 0 Process 1

send
!(N) communication

sort
!(NlgN) computation

send

!(N) communication

sort
recv

recv

merge !(N) computation
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# include <mpi.h>
# include <stdio.h>
int main(int argc , char ** argv)
{
int rank;
int a [1000];

MPI_Init (&argc , &argv );
MPI_Comm_rank ( MPI_COMM_WORLD , &rank );
if (rank == 0) {
MPI_Send (&a[500] , 500, MPI_INT , 1, 0, MPI_COMM_WORLD );
sort(a, 500);
MPI_Recv (&a[500] , 500, MPI_INT , 1, 0, MPI_COMM_WORLD , & status );
merge(a);
}
else if (rank == 1) {
MPI_Recv (a, 500, MPI_INT , 0, 0, MPI_COMM_WORLD , & status );
sort(a, 500);
MPI_Send (a, 500, MPI_INT , 0, 0, MPI_COMM_WORLD );
}
MPI_Finalize (); return 0;
}
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Is the parallel algorithm faster than sequential?

Sequential time: a + bn + cn lg n: fixed overhead (e.g., start program), linear overhead
(e.g., read/write array) and n lg n, for sorting.
Parallel time:a′+ bn + c(n/2) lg(n/2) + dn: fixed, larger overhead to start computation on
two nodes; same I/O overhead; sorting work roughly reduced by half; linear
communication time added.
Parallel algorithm is faster if a + bn + cn lg n > a′+ bn + c(n/2) lg(n/2) + dn or
a + cn

2 (lg n + 1) > a′+ dn
Parallel algorithm is faster for large n, and sequential algorithm is better for small n (since
a′ � a); crossing point will depend on exact values of the various coefficients.
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We assumed communication time is linear in message size.
Actual measurements on Blue Waters

A better approximation to communication time is ` + n/b or max(`, n/b): ` is latency (fixed
overhead of send and receive calls and transfer time in network) and b is bandwidth.
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Communication Protocols

Basic problem of send-receive communication (aka 2-sided communication): The processes
have no common clock, so the send can occur before the receive or after the receive.
If send data as soon as send occurs, then it may arrive before the receive is posted and
needs to be buffered (eager protocol)
If send data only after receive is posted, then additional communication is needed to
inform the sender that the receive is posted (rendezvous protocol)
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Eager protocol

Eager protocol

late receive

send data 
sent

program comm lib

recv

data moved
to recv buffer

programcomm lib

early receive 

send data 
sent

program comm lib

recv

data copied
to temp buffer

programcomm lib

data copied
to recv buffer

return return

return

return
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Eager protocol

send data

recv

sender receiver

early send

recv
sender receiver

send data

early receive

send
send

Good: Simple protocol; send completes rapidly
Bad: Extra copying; need extra buffer space and need to run protocol to prevent buffer

overflow
Send returns before or after receive starts
Best if receive is posted ahead of send
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Rendezvous protocol

Rendezvous protocol

late receive

send request 
to send

program comm lib

recv

data moved
to recv buffer

programcomm lib

early receive 

program comm lib

recv

programcomm lib

data moved
to recv buffer

return

return
return

ack

send
data

send request 
to send

return

send
data

ack
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Rendezvous protocol

req to send

recv
OK to send

data transfer

sender receiver

early send

recv

OK to send
data transfer

sender receiver

req to send

early receive

send

send

Good: Data moved once; need much less buffering
Bad: Extra protocol messages

Send returns only after receives start
Best if receive is posted ahead of send
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Typical implementation

Uses eager protocol for short messages
Uses rendezvous protocol for long message, when overhead of extra copy larger than
overhead of extra messages .
Always good to post receives ahead of matching sends
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Jacobi

do {
err =0; l=1-l;
for (i=1;i<N -1; i++)
for(j=1;j<N -1;j++) {

a[1-l][i][j ]=0.25*( a[l][i -1][j]
+a[l][i+1][j]+a[l][i][j -1]
+a[l][i][j+1]);
err = fmax(err ,fabs(a[1][i][j]
-a[0][i][j]));

}
} while(err > maxerr );
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Parallel Jacobi

Need to distribute the two arrays
Need to distribute the computation
Data parallelism: distribution of computation follows the distribution of the data
Simplemost approach is to follow the owner compute rule: The process that “owns” an
entry (has it in its local memory) is responsible for updating it.
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Possible distributions

Need to split the two matrices across the processes

vertical horizontal 2D
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Communication among processes

vertical 2D

Communication will occur at the boundaries between partitions: Need to send boundary
row/column to neighbor
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Distribution

How should we split the matrices across processes?
It is good to have one partition per process
It is good to have both matrices distributed the same way
Communication is minimized for 2D partition

Assume P = p2 processes/partitions
vertical/horizontal partition: Communication volume is 2(P − 1) · N = 2(p2 − 1) · N
2D partition: Communication volume is 4(p − 1) · N
2(p2 − 1) > 4(p − 1) if p ≥ 3

Horizontal tiles better than vertical tiles: The have longer rows and communicate items
consecutive in memory. 2D reduces communication for large number of processes, but
communication is more expensive
Horizontal is probably better for small N/P and 2D for large N/P.
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Ghost cells (aka hallo cells)

Need place to receive copy of neighor rows.
Will add two ghost rows above and beyond
the rows owned by the process. These
become the boundary for the local Jacobi
iteration
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Algorithm outline

repeat {
update ghost rows;
compute new iteration ;
}
until( converged )

(0,1) (0,N-2)

(1,1) (1,N-2)

(M-2,1) (M-2,N-2)

(M-1,1) (M-1,N-2)

(2,1) (2,N-2)

(M-3,1) (M-3,N-2)
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Jacobi

Data distribution Sequential algorithm
do {

err =0; l=1-l;
for (i=1;i<N -1; i++)

for(j=1;j<N -1;j++) {
a[1-l][i][j ]=0.25*( a[l][i -1][j]

+a[l][i+1][j]+a[l][i][j -1]+a[l][i][j+1]);
err = fmax(err ,fabs(a[1][i][j]-a[0][i][j]));

}
}

while(err > maxerr );
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Algorithm outline

repeat {
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compute new iteration ;
}
until( converged )

(0,1) (0,N-2)

(1,1) (1,N-2)

(M-2,1) (M-2,N-2)

(M-1,1) (M-1,N-2)
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Code – first attempt (ignore convergence test)

double a[2][M][N];
MPI_Comm_rank ( MPI_COMM_WORLD ,& rank );
MPI_Comm_size ( MPI_COMM_WORLD ,& size );
...
/* assume (M -2)* size=N */
for(iter =0; iter <MAX;iter ++) {

if(rank >0) {
/* send up */
MPI_Send (&a[l][1][1] ,N-2, MPI_DOUBLE ,rank -1,0, MPI_COMM_WORLD );

/* receive from up */
MPI_Recv (&a[l][0][1] ,N-2, MPI_DOUBLE ,rank -1,0, MPI_COMM_WORLD ,

MPI_STATUS_IGNORE );
}

if(rank < size -1) {
/* send down */

MPI_Send (&a[l][M -2][1] ,N-2, MPI_DOUBLE ,rank +1,0, MPI_COMM_WORLD );
/* receive from down */

MPI_Recv (&a[l][M -1][1] ,N-2, MPI_DOUBLE ,rank +1,0, MPI_COMM_WORLD ,
MPI_STATUS_IGNORE );

}
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for (i=1;i<N -1; i++)
for(j=1;j<N -1;j++)

a[1-l][i][j ]=0.25*( a[l][i -1][j]+a[l][i+1][j]+a[l][i][j -1]+a[l][i][j+1]);
l=1-l;
}
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Deadlock is possible if send is not buffered

send 

send 
recv

recv

send 

send 
recv

recv

send 
recv

send 
recv

send 
recv

send 
recv

“may wait for”

process 0

process 1

send 
recv

“definitely 
waits for”

Deadlock: situation
where execution makes
no progress.
Typically due to a cycle
of dependences: A
waits for B to complete,
B waits for C to
complete, C waits for A
to complete
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Avoid deadlock, first solution

send 

send 
recv

recv

send 

send 
recv

recv

send 
recv

send 

recv

Alternate the order of sends and receives

Code is now deadlock-free
But communications are serialized!
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Avoid deadlock, second solution

send 

send 
recv

recv

send 

send 
recv

recv

send 
recv

send 

recv

Communicate in four
rounds:

2i to 2i + 1
2i + 1 to 2i
2i − 1 to 2i
2i to 2i − 1
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Step 1

Step 2

Step 3

Step 4
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Better – use nonblocking communication

Separate start of communication from completion of communication

...
int a[1000] , b [1000];
MPI_Request req [2];
MPI_Comm_rank ( MPI_COMM_WORLD ,& rank );
MPI_Isend (a ,1000 , MPI_INT ,rank +1,0,
MPI_COMM_WORLD ,& req [0])
MPI_IRecv (b ,1000 , MPI_INT ,rank -1,0,
MPI_COMM_WORLD ,& req [1]);
MPI_Wait (& req [0], MPI_STATUS_IGNORE );
MPI_Wait (& req [1], MPI_STATUS_IGNORE );

A nonblocking send returns (does
not block), even if matching
receive has not occurred
The request object identifies the
started communication
MPI_WAIT blocks until the
communication identified by the
request is complete.
Once both send and receive are
started, the communication will
complete – no further MPI call is
needed.
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Better

...
int a[1000] , b [1000];
MPI_Request req [2];
MPI_Comm_rank ( MPI_COMM_WORLD ,& rank );
MPI_Isend (a ,1000 , MPI_INT ,rank +1,0,
MPI_COMM_WORLD ,& req [0])
MPI_IRecv (b ,1000 , MPI_INT ,rank -1,0,
MPI_COMM_WORLD ,& req [1]);
MPI_Waitall (2,req , MPI_STATUSES_IGNORE );

Can wait for the completion of a
set of communications (sends or
receives)
Also have MPI_Wait_any,
MPI_Wait_some
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Back to Jacobi

...
double a[2][M][N];
MPI_Request req [4];
MPI_Comm_rank ( MPI_COMM_WORLD ,& rank );
MPI_Comm_size ( MPI_COMM_WORLD ,& size );
...
/* assume (M -2)* size=N */
for(iter =0; iter <MAX;iter ++) {
/* up */

if(rank >0) {
MPI_Isend (&a[l][1][1] ,N-2, MPI_DOUBLE ,rank -1,0, MPI_COMM_WORLD ,& req [0]);
MPI_Irecv (&a[l][0][1] ,N-2, MPI_DOUBLE ,rank -1,0, MPI_COMM_WORLD ,& req [1]);
}
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/* down */
if(rank <size -1) {

MPI_Isend (&a[l][M -2][1] ,N-2, MPI_DOUBLE ,rank +1,0, MPI_COMM_WORLD ,& req [2]);
MPI_Irecv (&a[l][M -1][1] ,N-2, MPI_DOUBLE ,rank +1,0, MPI_COMM_WORLD ,& req [3]);
}

if(rank ==0) MPI_Waitall (2,& req [2], MPI_STATUSES_IGNORE );
else if(rank ==( size -1)) MPI_Waitall (2,& req [0], MPI_STATUSES_IGNORE );
else MPI_Waitall (4,req , MPI_STATUSES_IGNORE );

for (i=1;i<N -1; i++)
for(j=1;j<N -1;j++)

a[1-l][i][j ]=0.25*( a[l][i -1][j]+a[l][i+1][j]+a[l][i][j -1]+a[l][i][j+1]);
l=1-l;

}

Marc Snir CS420 – Lecture 9 Fall 2018 37 / 51


