
CS420 – Lecture 13

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 13 Fall 2018 1 / 75



Quiz 3

Marc Snir CS420 – Lecture 13 Fall 2018 2 / 75



Choose all possible outputs to the following program. Assume exactly two threads are used.

int sum = 0;
int x = 0;
# pragma omp parallel {

# pragma omp single
# pragma omp task depend (out: x)

x = 2;
# pragma omp single nowait

# pragma omp task depend (in: x) {
int y = 3*x;
# pragma omp atomic write

sum = y;
}
# pragma omp single nowait

# pragma omp task depend (in: x) {
int y = 5*x;

# pragma omp atomic write
sum = y;

}
# pragma omp taskwait

}
printf ("%d\n", sum );

nowait: other threads do not
have to wait for the completion
of the statement
First task will execute first;
second and third may complete
out of order.
Third task executes the
assignment to sum last: 10
printed
Second task executed the
assignment to sum last: 6
printed.
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Consider two MPI processes, P1 and P2. Answer on the likelihood of the following program
deadlocking:
P1: P2:
MPI_Send(P2) MPI_Send(P1)
MPI_Recv(P2) MPI_Recv(P1)

Answer
Never deadlock
May deadlock
Always deadlock
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# define SIZE 12

int main(int argc , char *argv []) {
int rank;
int myResult = 0, result ;
float sendbuf [SIZE] = {10 ,12 ,8 ,6 ,3 ,9 ,16 ,9 ,5 ,8 ,5 ,10};
float recvbuf [3];
MPI_Init (&argc , &argv );
MPI_Comm_rank ( MPI_COMM_WORLD , &rank );

MPI_Scatter (sendbuf , 3, MPI_FLOAT , recvbuf , 3, MPI_FLOAT , 0,
MPI_COMM_WORLD );

for (int i = 0; i < SIZE / 4; i++)
myResult += recvbuf [i];

MPI_Reduce (& myResult , &result , SIZE , MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD );

if (0 == rank) {
printf ("The sum is %d.\n", result );
}

MPI_Finalize ();
}
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What is the outout of mpirun -np 1 a.out

Only one process is executing code. Process 0 will send to itself the first 3 elements of
sendbuf, and the reduction copies myresult to result
The sum is 10 + 12 + 8 = 30.

Based on the aforementioned code in Question 3, what is the output of mpirun -np 4 a.out?
Four processes participate. Process 0 is sending 3 elements to each; they compute, respectively,
10 + 12 + 8 = 30 , 6 + 3 + 9 = 18 , 16 + 9 + 5 = 30, and 8 + 5 + 10 = 23. The reduce sums
these four numbers ant sets sum to 30 + 18 + 30 + 23 = 101.
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Consider two MPI processes, P1, P2, and P3. Answer on the likelihood of the following
program deadlocking:
P1: P2: P3:
MPI_Send(P2) MPI_Send(P3) MPI_Recv(P2)
MPI_Recv(P3) MPI_Recv(P1) MPI_Send(P1)

Answer
Never deadlock
May deadlock
Always deadlock
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Mid-Term
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Exam-Q3

# include <omp.h>
# define N 1000
int a[N][N];

int main () {
int i,j;
for(i=0;i<N;i++)
a[i][0]=a[i][i]=1;
for(i=1;i<N;i++)
for(j=1;j<i;j++)
a[i][j]=a[i -1][j -1]+a[i -1][j];

}

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1

Binomial coefficients (
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)
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n

)
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)
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Dependencies

1

1 1

1 1

1 1

1

1 1

1

i

j

Can parallelize in j dimension, but not in i
dimension – can parallise only inner loop.
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Tiled code

for(ii =1; ii <N; ii+=T) {
iinext = ii+T<N?ii+T:N;
for(jj =1; jj < iinext ; jj+=T)
for(i=ii; i< iinext ; i++) {

jnext = jj+T<i?jj+T:i;
for(j=jj; j<jnext; j++)
a[i][j]=a[i -1][j -1]+a[i -1][j];

}
}

1

1 1

1

1 1

1

1 1

1

1
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Any improved sequential performance from tiling?
Tiling is advantageous if it reduces cache misses, by improving temporal locality –
reducing reuse distance.
Each entry of array a is accessed three times = one write and two reads
(a[i][j]=a[i-1][j-1]+a[i-1][j])
About 2N accesses to distinct entries are separating the first and second access to
a[i][j], and one other access spearate the second and third access.
If N is much smaller than the cache size, then only the first access can be a cache miss.
So temporal locality is not improved
Nor is spatial locality improved – tiling cannot improve it
Tiled code is likely to perform worse
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Parallel Code

Will have each tile computed by a separate task.
Need to enforce dependencies: Before tile is computed, need to complete computing tile to
the left, above and diagonally left above
Sufficient to enforce first two dependencies (left and above).
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It does not matter which variables we pick to enforce the dependencies, as long as the
"in-out" pairs enforce the right order, and the references are valid.
Can pick depend(out: a[ii][jj]), depend(in: a[ii-1][jj], a[ii][jj-1])
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code

# pragma omp parallel /* need to start team */
# pragma omp single /* need to start all tasks on one thread , */

/* so that they are generated once , in the right order */
for(ii =1; ii <N; ii+=T) {

iinext = ii+T<N?ii+T:N;
for(jj =1; jj < iinext ; jj+=T)
# pragma omp task depend (out: a[ii][jj]) \

depend (in: a[[ii -1][ jj],a[ii][jj -1]) \
firstprivate (ii ,jj) /* Need private copies of ii and jj */

for(i=ii; i< iinext ; i++) {
jnext = jj+T<i?jj+T:i;
for(j=jj; j<jnext; j++)

a[i][j]=a[i -1][j -1]+a[i -1][j];
}

}
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Matrix Product
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Communication time – Matrix product

Broadcast of n items: time ≈ (lg p)(` + n/b)
Reduce of n items ibid
Scatter of n items time ≈ (lg p)` + n/b
Gather of n items ibid

Note: All versions have same computation time
Assume all matrices are N × N ande are initially on process 0.Result is returned to process 0.
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1D tiling

Scatter a: t ≈ ` lg p + N2/b
Broadcast b: t ≈ ` lg p + N2 lg p/b
Gather c: t ≈ ` lg p + N2/b
Total: t = Θ(lg p(` + N2/b)
Communication time dominated by
broadcast of b.

a c

b

k
j

i
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2D tiling

a and b are partitioned into √p tiles; c is
partitioned into p tiles.

Scatter a to √p processes, next broadcast
each tile to √p processes:
t ≈ (0.5` lg p + N2/b) + (0.5 lg p(` +
N2/(b√p) =≈ ` lg p + N2/b
Scatter and broadcast b: ibid
Gather c: t ≈ ` lg p + N2/b
Total: t =≈ ` lg p + N2/b

a c

b

k
j

i
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3D Tiling

a, b and c are partitioned into p2/3 tiles.
Scatter a to p2/3 processes, next
broadcast each tile to p1/3 processes:
t ≈ 2

3` lg p + N2/b) + (13 lg p(` +
N2/(bp2/3) ≈ ` lg p + N2/b
Scatter and broadcast b: ibid
Reduce c: p2/3 parallel reductions of a
vector of length n2/p2/3 over p1/3

processes: t ≈ lg p(` + N2/(bp2/3))
Total: t ≈ ` lg p + N2/b

a c

b

k
j

i
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1D tiling: t ≈ ` lg p(N)2/b lg p
2D tiling t ≈ ` lg p + N2/b
3D tiling t ≈ ` lg p + N2/b
3D tiling only changes constants;
communication time is dominated by
scatter time.

Assume that matrices are already distributed
(over p, p1/2 or p2/3 processes, respectively)

1D tiling: t ≈ ` lg p + N2/b
2D tiling: t ≈ ` lg p + N2/(bp1/2)
3D tiling: t ≈ ` lg p + N2/(bp2/3)
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One-Sided Communication
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One sided

One cause of inneficiency in MPI is the overhead of matching sends to receives.
Comparing communicator, source and tag
Handling wildcard source and wildcard tag
Matching message in the right order

In may cases, this is superflous, since sender “knows” were the receive buffer is (same receive
buffer used again and again)
One sided communication can be used – only one side (sender or receiver) needs to call MPI.
put/get/accumulate
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Jacobi- 1D tiling

...

...
double a[2][M][N];
...
MPI_Isend (&a[l][1][1] ,N-2, MPI_DOUBLE ,

rank -1,0, MPI_COMM_WORLD ,& req [0]);
MPI_Irecv (&a[l][0][1] ,N-2, MPI_DOUBLE ,

rank -1,0, MPI_COMM_WORLD ,& req [1]);
...
MPI_Isend (&a[l][M -2][1] ,N-2, MPI_DOUBLE ,

rank +1,0, MPI_COMM_WORLD ,& req [2]);
MPI_Irecv (&a[l][M -1][1] ,N-2, MPI_DOUBLE ,

rank +1,0, MPI_COMM_WORLD ,& req [3]);
...
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With 1-sided communication

...
MPI_Win win; /* declare window */

MPI_Comm_rank ( MPI_COMM_WORLD , &rank );
MPI_Comm_size ( MPI_COMM_WORLD , &size );

/* expose array to remote accesses */
MPI_Win_create (a, sizeof (a), sizeof (a[0]) , NULL ,

MPI_COMM_WORLD , &win );

for(iter =0; iter <MAX; iter ++) {
/* compute first and last row */

for(j=1; j<N -1; j++)
a[1-k][1][j] = 0.25*( a[k][0][j]+a[k][2][j]

+a[k][1][j -1]+a[k][1][j+1]);
for(j=1; j<N -1; j++)

a[1-k][M -2][j] = 0.25*( a[k][M -3][j]+a[k][M -1][j]
+a[k][M -2][j -1]+a[k][M -2][j+1]);
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/* start communication */
MPI_Win_fence (0, win );

if (rank >0) /* send data to neighbor above */
MPI_Put (&a[k][1][1] , N-2, MPI_DOUBLE , rank -1,

(int )(&a[1-k][M -1][1] -a), N-2, MPI_DOUBLE , win );

if (rank <size -1) /* send data to neighbor below */
MPI_Put (&a[k][M -2][1] , N-2, MPI_DOUBLE , rank +1,

(int )(&a[1-k][0][1] -a), N-2, MPI_DOUBLE , win );
/* compute interior */

for(i=1;i<M -2;i++)
for(j=1;j<N -2;j++)

a[1-k][i][j] = 0.25*( a[j][i -1][j]+a[k][i+1][j]
+a[k][i][j -1]+a[k][i][j+1]);

MPI_Win_fence (0, win) /* complete communication */
k=1-k;

(0,1) (0,N-2)

(1,1) (1,N-2)

(M-2,1) (M-2,N-2)

(M-1,1) (M-1,N-2)

(2,1) (2,N-2)

(M-3,1) (M-3,N-2)
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MPI_Win_create(base, size, disp_unit, info, comm, win)

base: starting address of window
size: size of window in bytes

disp_unit: local unit size for displacements, in bytes
info: info argument

comm: processes involved
win: window object returned by the call

Also
MPI_Win_allocate – allocate new memory when window is created; and
MPI_Win_create_dynamic and MPI_win_attach – create zero size window and
dynamicall attach new memory as needed.
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MPI_Put(origin_addr, origin_count, origin_datatype, target_rank,
target_disp, target_count, target_datatype, win)

origin_addr: starting address of local buffer
origin_count: number of entries to put
origin_datatype: type of each entry in local buffer
target_rank: rank of remote process
target_disp: displacement from start of window to remote buffer
target_count: number of entries in remote buffer
target_datatype: type of each entry in remote buffer

win: window used for communication
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MPI_WIN_FENCE(assert, win)

assert information on type of communication
win window

Acts like a barrier: starts and complete a communication epoch
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MPI_WIN_FENCE(assert, win)

assert information on type of communication
win window

Acts like a barrier: starts and complete a communication epoch
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Example: Distributed table

Table too large to fit on one process – it is distributed across all processes
assume integer indices and double values
Three operations:

double read_table(int index)
void write_table(int index, double value)
void increment_table(int index, double increment)

Accesses to table are not bulk synchrounous – each process can access the distributed
table independently
Need to ensure atomicity of accesses (mutual exclusion)
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implementation

...
# define TABLE_SIZE 10000000000

int local_size ; /* local table size */

main () {
...
MPI_Comm_rank ( MPI_COMM_WORLD , &rank );
MPI_Comm_size ( MPI_COMM_WORLD , &size );
int local_size = ( TABLE_SIZE +size -1)/ size;
double table[ local_size ];
MPI_Win_create (table , sizeof (table), sizeof (table [0]) , 0,

MPI_COMM_WORLD , win );
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Cannot use fence, since each process can call the 3 functions at any point in time.
double read_table (int index) {
double value;
int target_rank = index%size;
int target_disp = index/size;
MPI_Win_lock ( MPI_LOCK_SHARED , target_rank , 0, win );
MPI_Get (& value , 1, MPI_DOUBLE , target_rank , target_disp , 1, MPI_DOUBLE , win );
MPI_Win_unlock ( target_rank , win );
return value;

void write_table (int index , double value) {
int target_rank = index%size;
int target_disp = index/size;
MPI_Win_lock ( MPI_LOCK_EXCLUSIVE , target_rank , 0, win ):
MPI_Win_put (& value , 1, MPI_DOUBLE , target_rank , target_disp , 1, MPI_DOUBLE ,

win );
MPI_Win_unlock (rank , win );
}
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void increment_table (int index , double value) {
int rank= index%rank;
int local_index = index/rank;
MPI_Win_lock ( MPI_LOCK_EXCLUSIVE , rank , 0, win ):
MPI_Accumulate (& value , 1, MPI_DOUBLE , rank , local_index , 1, MPI_DOUBLE ,

MPI_SUM , win );
MPI_Win_unlock (rank , win );
}
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MPI_Get(origin_addr, origin_count, origin_datatype, target_rank,
target_disp, target_count, target_datatype, win) – same arguments as
MPI_Put.
MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank,
target_disp, target_count, target_datatype, op, win) – same arguments as
MPI_Put, with the addition of the operation argument.
MPI_Win_lock(lock_type, rank, assertion, win)

MPI_Win_unlock(rank, win)
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