
CS420 – Lecture 14

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 14 Fall 2018 1 / 34

Application Examples

Marc Snir CS420 – Lecture 14 Fall 2018 2 / 34

Particle Code – Molecular Dynamics

Simulate movement of bunch of atoms, each with its charge
Highly simplified description: Repeat, for millions of steps

Compute forces between atoms
Coulomb forces, due to atom charge
Bond forces

Update velocity
Update location

No need to maintain velocity:

∆2~xn
∆t2 =

~xn+1−~xn
∆t − ~xn−~xn−1

∆t
∆t = ~xn+1 − 2~xn + ~xn−1

∆t2 = ~Fn · mass

~xn+1 = 2~xn − ~xn−1 + ~Fn · mass ∆t2.

Usually compute forces only for nearby atoms, use another method to handle long-range
interactions

Marc Snir CS420 – Lecture 14 Fall 2018 3 / 34

Algorithm outline
foreach pair of atoms x,y {
dist = || ~x .loc − ~y .loc||;
if dist < C {

~direction = (~x .loc − ~y .loc)/dist;
force = −(x .charge · y .charge)/dist2;

~x .force− = force · ~direction;
~y .force+ = force · ~direction;

}
}
foreach atom x {

~temp = ~x .loc;
~x .loc = 2 · ~temp − ~x .oldloc + ~x .force · x .mass;

~x .oldloc = ~temp;
}

Marc Snir CS420 – Lecture 14 Fall 2018 4 / 34

Will assume world is 2D – to shorten code
C does not have vector operations – need to define them. We do this with C macros
define v_assign (x,y) {y[0]=x[0]; y[1]=x[1];} /* vec=vec */
define s_times_v (s,x,y) {y[0]=s*x[0]; y[1]=s*x[1];} /* vec= scalar *vec */
define v_plus_v (x,y,z) {z[0]=x[0]+y[0]; z[1]=x[1]+y[1];} /* vec=vec+vec */
define v_minus_v (x,y,z) {z[0]=x[0]-y[0]; z[1]=x[1]-y[1];} /* vec=vec -vec */
define v_norm (x) sqrt(x[0]*x[0]+x[1]*x[1]) /* vector norm */

Can use functions – but then would want the compiler to inline them
static inline void
assign (double x[2], double y[2])
{
y[0] = x[0]; y[1] = x[1];
}

Inlining: No function call; the code of the function is inserted in place of a function call.
C compiler compiles each file speparately; can inline a static function – it will not be invoked
from another file; otherwise need to inline at link time (-flto – link time optimization)

Marc Snir CS420 – Lecture 14 Fall 2018 5 / 34

Data Structure

typedef struct Atom {
double loc [2]; /* current location */
double oldloc [2]; /* previous location */
double mass; /* mass */
double charge ; /* charge */
double force [2]; /* force operating on atom */
} Atom;

Marc Snir CS420 – Lecture 14 Fall 2018 6 / 34

Compute interaction between two atoms

void interact (Atom *x, Atom *y) {
double force , dist , direction [2];

v_minus_v (x->loc , y->loc , direction)
dist = v_norm (direction);
if (dist < C) {

s_times_v ((1/ dist), direction , direction);
force = -(x-> charge * y-> charge)/(dist*dist);
s_times_v (force , direction , direction);
v_minus_v (x->force , direction , x->force);
v_plus_v (y->force , direction , y->force);
}

}

Marc Snir CS420 – Lecture 14 Fall 2018 7 / 34

Move atom
Assume ∆t = 1.
void move(Atom *x) {

double temp [2];
for (i=0; i <2; i++) {

temp[i] = x->loc[i];
x->loc[i] = 2* temp[i] - x-> oldloc [i] + x->force[i]*x->mass;
x-> oldloc [i] = temp[i];
}

}

or
...
v_assign_v (x->loc , temp);
v_plus_v (temp , temp , x->loc);
v_minus_v (x->loc , x->oldloc , x->loc);
s_times_v (x->mass , x->force , part);
v_plus_v (x->loc , part , x->loc);
V_assign_v (temp ,x-> oldloc)

Functions should be inlined, if possible
Marc Snir CS420 – Lecture 14 Fall 2018 8 / 34

parallel (message-passing) algorithm

Divide the (2D) domain into cells; assign a cell to
each process.
Results in OK load balancing if atom density is close
to constant. (True of molecular simulations, not of
cosmology simulations.)
Usually, cell dimension � cutoff radius. Atoms may
interact only with atoms in nearby cells.
Array is periodic

Marc Snir CS420 – Lecture 14 Fall 2018 9 / 34

Algorithm outline

Repeat
1 Broadcast atoms to neighbor cells
2 Compute atom-atom interactions
3 Collect back computed forces
4 Update locations
5 Move particles that crossed cell boundaries

To compute each force only once, send in 4
directions and receive from 4 directions

Marc Snir CS420 – Lecture 14 Fall 2018 10 / 34

Interactions

Atoms at the boundary of a cell
interact with atom on the
corresponding boundary of the
neighboring cell
Can use “ghost cell” pattern –
but need to recompute boundary
at each iteration (atom moves!)
Have a pretty good estimate of
number of atoms in each slice (∼
constant density)

Marc Snir CS420 – Lecture 14 Fall 2018 11 / 34

Simplified algorithm

Assume all atoms could interact with
atoms in neighboring cells (they are all “on
the boundary”)
Superflous work and communication but
correct, since check cuttoff before
computing atom-atom interaction
“boundary” communicated to four other
processess (NE, N, NW, W)
Process stores 4 ghost cells, where it
receives atoms from E, SE, S, SW

ghost cell

ghost cell ghost cell ghost cell

“boundary”

Marc Snir CS420 – Lecture 14 Fall 2018 12 / 34

Implementation choices

No need to communicate all atom fields: Need to broadcast location and charge and
receive back (reduce) forces– might be worthwhile to keep these fields separately
How do we store atom list?

Don’t care the order in which they are stored
Need to insert and delete atoms in the list (when they move from cell to cell)
But few atoms change cell at each iteration (pragmatic knowledge)

Marc Snir CS420 – Lecture 14 Fall 2018 13 / 34

linked list Easy to insert or delete
Data not contiguous and links take
space

contiguous array Easy to insert (at array end)
Expensive to delete, if deletes are at
arbitrary locations
Easy to delete (and compress) if
deletes done while traversing the array
sequentially

Array with “holes”: Deleted items are marked invalid

Easy to insert or delete
OK if deletes are small fraction of
accesses: Can compress periodically

Marc Snir CS420 – Lecture 14 Fall 2018 14 / 34

linked list Easy to insert or delete
Data not contiguous and links take
space

contiguous array Easy to insert (at array end)
Expensive to delete, if deletes are at
arbitrary locations
Easy to delete (and compress) if
deletes done while traversing the array
sequentially

Array with “holes”: Deleted items are marked invalid

Easy to insert or delete
OK if deletes are small fraction of
accesses: Can compress periodically

Marc Snir CS420 – Lecture 14 Fall 2018 14 / 34

linked list Easy to insert or delete
Data not contiguous and links take
space

contiguous array Easy to insert (at array end)
Expensive to delete, if deletes are at
arbitrary locations

Easy to delete (and compress) if
deletes done while traversing the array
sequentially

Array with “holes”: Deleted items are marked invalid

Easy to insert or delete
OK if deletes are small fraction of
accesses: Can compress periodically

Marc Snir CS420 – Lecture 14 Fall 2018 14 / 34

linked list Easy to insert or delete
Data not contiguous and links take
space

contiguous array Easy to insert (at array end)
Expensive to delete, if deletes are at
arbitrary locations
Easy to delete (and compress) if
deletes done while traversing the array
sequentially

Array with “holes”: Deleted items are marked invalid

Easy to insert or delete
OK if deletes are small fraction of
accesses: Can compress periodically

Marc Snir CS420 – Lecture 14 Fall 2018 14 / 34

linked list Easy to insert or delete
Data not contiguous and links take
space

contiguous array Easy to insert (at array end)
Expensive to delete, if deletes are at
arbitrary locations
Easy to delete (and compress) if
deletes done while traversing the array
sequentially

Array with “holes”: Deleted items are marked invalid
Easy to insert or delete
OK if deletes are small fraction of
accesses: Can compress periodically

Marc Snir CS420 – Lecture 14 Fall 2018 14 / 34

Will use array
Will split parts to send and to receive
“struct of arrays”, rather than “array of structs”, so that parts sent and received are
contiguous, and vectorization easier.

/* atom data structures */
double loc[MAXATOMS][2];
double oldloc [MAXATOMS][2];
double mass[MAXATOMS];
double charge [MAXATOMS];
double force[MAXATOMS][2];

Not sure this is right choice; can decide via trial and error

Marc Snir CS420 – Lecture 14 Fall 2018 15 / 34

Communication

How do we communicate?
4 sends & 4 receives (of atom lists)
followed by 4 receives and 4 sends (of
forces) (13 in 3D)
1 broadast as root and 4 broadcasts as
receiver, followed by one reduce as root
and 4 reduces as senders (adding forces)
(1 and 13, in 3D)

Not sure which is better – will use collectives in
example

Marc Snir CS420 – Lecture 14 Fall 2018 16 / 34

Create Cartesian topology

/* create 2D torus */
MPI_Comm_size (MPI_COMM_WORLD , &size);
MPI_Dims_create (size , 2, dims);
if (int dim = dims [0] != dims [1]) exit (1); /* should be square */
period [0]= period [1]= true;
MP_Cart_create (MPI_COMM_WORLD ,2,dims ,periods ,true , &torus);
MPI_Comm_rank (torus , & myrank);
MPI_Cart_coords (torus , myrank , 2, mycoords); /* returns x,y coordinates */

...

Marc Snir CS420 – Lecture 14 Fall 2018 17 / 34

Basic algorithm

repeat:
1 Send atom list to neighbors in directions NE, N,

NW, W
2 Receive atom list from neighbors in directions E, SE,

S, SW
3 Compute all interactions between local atoms and

other atoms at process (local-local, local-E,
local-SE, local-S,local-SW

4 Gather and sum forces acting on local atoms from
neighbors in directions NE, N, NW, W and from
local-local interactions

5 Compute new positions for local atoms
6 Communicate atoms that crossed boundaries

Need four ghost cells

Broadcast

Reduce

Marc Snir CS420 – Lecture 14 Fall 2018 18 / 34

Communicators for broadcast-reduce

process is root in the
group containing itself,
and neighbors in
directions NW, N, NE,
E.
It participates in four
other groups rooted at
neighbors in directions
W, SW, S, SE

NW N NE

W E

SW S SE

NW N NE

W E

SW S SE

NW N NE

W E

SW S SE

NW N NE

W E

SW S SE

NW N NE

W E

SW S SE

Marc Snir CS420 – Lecture 14 Fall 2018 19 / 34

Splitting communicators

It is “easy” to split a communicator into
sub-communicators with disjoint process
groups; not possible to create overlapping
communicators.
Need to create the new communicators in
successive phases, where communicators
created at the same phase do not overlap
Can do it in 6 phases, assuming dimm
divides by 6: Slide basic template across
3 × 2 positions.

…

…

Marc Snir CS420 – Lecture 14 Fall 2018 20 / 34

Splitting Communicators

MPI_Comm_split(comm, color, key, newcomm)

Called collectively by all processes in comm

One new communicator is created for each distinct value of color

All processes that provides the same ’color’ (an integer) end up in the same communicator
They are ordered in increasing value of key (with ties broken according to the old rank)

comm communicator being split
color integer used to partition the processes
key integer used to specify process order in new communicator

newcomm new communicator

Marc Snir CS420 – Lecture 14 Fall 2018 21 / 34

Splitting Communicators

MPI_Comm_split(comm, color, key, newcomm)

Called collectively by all processes in comm

One new communicator is created for each distinct value of color

All processes that provides the same ’color’ (an integer) end up in the same communicator
They are ordered in increasing value of key (with ties broken according to the old rank)

comm communicator being split

color integer used to partition the processes
key integer used to specify process order in new communicator

newcomm new communicator

Marc Snir CS420 – Lecture 14 Fall 2018 21 / 34

Splitting Communicators

MPI_Comm_split(comm, color, key, newcomm)

Called collectively by all processes in comm

One new communicator is created for each distinct value of color

All processes that provides the same ’color’ (an integer) end up in the same communicator
They are ordered in increasing value of key (with ties broken according to the old rank)

comm communicator being split
color integer used to partition the processes

key integer used to specify process order in new communicator
newcomm new communicator

Marc Snir CS420 – Lecture 14 Fall 2018 21 / 34

Splitting Communicators

MPI_Comm_split(comm, color, key, newcomm)

Called collectively by all processes in comm

One new communicator is created for each distinct value of color

All processes that provides the same ’color’ (an integer) end up in the same communicator
They are ordered in increasing value of key (with ties broken according to the old rank)

comm communicator being split
color integer used to partition the processes
key integer used to specify process order in new communicator

newcomm new communicator

Marc Snir CS420 – Lecture 14 Fall 2018 21 / 34

Splitting Communicators

MPI_Comm_split(comm, color, key, newcomm)

Called collectively by all processes in comm

One new communicator is created for each distinct value of color

All processes that provides the same ’color’ (an integer) end up in the same communicator
They are ordered in increasing value of key (with ties broken according to the old rank)

comm communicator being split
color integer used to partition the processes
key integer used to specify process order in new communicator

newcomm new communicator

Marc Snir CS420 – Lecture 14 Fall 2018 21 / 34

0 1 2 3 4 5ranks in comm

color

key

new communicators

new ranks

0 1 0 0 1 2

2 0 00 0 0
arguments passed
to MPI_Comm_split

2 0 10 1 0

Marc Snir CS420 – Lecture 14 Fall 2018 22 / 34

Assume dimm is a multiple of 6
Let (r , s) be the coordinates of a cell.
Compute p = r/2 and q = s/3.
Six processes, in the 2 × 3 rectangle with
cell 2p, 3q in the upper left corner, will
compute the same (p, q) values.
The plane will be tesselated by
(dimm/2)×(dimm/3) 2×3 rectangles

2p,3q+1 2p,3q+22p,3q

2p+1,3q+1 2p+1,3q+22p+1,3q

Marc Snir CS420 – Lecture 14 Fall 2018 23 / 34

Compute, for i = 0, 1 and j = 0, 1, 2
p = ((r + i) mod dimm)/2 and
q = ((s + j) mod dimm)/3.
Six processes, in the 2 × 3 rectangle with
cell (2p − i , 3q − j) in the upper left corner,
will compute the same (p, q) values.
Each 2 × 3 rectangle will obtain once
Only five of the processes in the rectangle
should be in the newly created
communicator

i=1
j=0

2p-1,3q+1 2p-1,3q+22p-1,3q

2p,3q+1 2p,3q+22p,3q

Marc Snir CS420 – Lecture 14 Fall 2018 24 / 34

Let m = (r + i) mod 2 and n = (s + j)
mod 2
If (m, n) = (1, 1) then process (r , s) is the
root of the broadcast
If (m, n) = (0, 0) then process (r , s)
receives a broadcast from SE process
If (m, n) = (0, 1) then process (r , s)
receives a broadcast from S process
If (m, n) = (0, 2) then process (r , s)
receives a broadcast from SW process
If (m, n) = (1, 2) then process (r , s)
receives a broadcast from W process
If (m, n) = (1, 0) then process should not
be in communicator.

0 1 2

3 4

(1,1)

(0,0) (0,1)

(1,0)

(0,2)

(1,2)

Marc Snir CS420 – Lecture 14 Fall 2018 25 / 34

Create communicators

for(i=0; i <2; i++)
for(j=0; j<3 ; j++) {

p= ((mycoords [0]+i)% dimm)/2; m = mycoords [0]%2;
q= ((mycoords [1]+j)% dimm)/3; n = myccords [1]%3;
color = 3*p+q;
if ((m==1) && (n ==0())) color = MPI_UNDEFINED ;
k = 3*m+n+1;
if(k==4) k=0; /* find communicator index */
if(k==6) k=4;
MPI_Comm_split (torus , color , 0, &comm[k]);
}

Each process belongs to 5 new communicators
In one of the 6 calls, the color was MPI_UNDEFINED and the call returned MPI_COMM_NULL

In each new communicator the processes are ordered in row major order (according to
previous rank), so root has rank 3 in each of the new communicators
Communicators are numbered as indicated in Figure

Marc Snir CS420 – Lecture 14 Fall 2018 26 / 34

communication

/* broadcast number of atoms at root process */
numreq =0;
MPI_Ibcast (& numatom ,1, MPI_INT , 3, req[numreq ++]);
for (k=1; k <5; k++)

MPI_Ibcast (& count[k], 1, MPI_INT , 3, comm[k], req[numreq ++]);
MPI_Waitall (5,req , MPI_STATUSES_IGNORE);
count [0]= numatoms ;

Marc Snir CS420 – Lecture 14 Fall 2018 27 / 34

Assume that locations are stored in an array loc[5][MAXATOMS][2]: One MAXATOMS×2
array for local coordinates and 4 for coordinates of atoms in neighbor cells. Charges are stored
in array charge[5][MAXATOMS]

/* broadcast atoms */
numreq =0;
for(k=0;k <5;k++)

MPI_Ibcast (loc[k][MAXATOMS], 2* count[k], MPI_DOUBLE , 3,
comm[k], req[numreq ++]);

MPI_Waitall (15, req , MPI_STATUSES_IGNORE);

Marc Snir CS420 – Lecture 14 Fall 2018 28 / 34

Reduce

Broadcast is followed by force computations, next by the gathering of the computed forces
/* collect forces */
numreq =0;
for(k=0;k <5;k++)

MPI_Ireduce (force[k][MAXATOMS], 2* count[k], MPI_DOUBLE , 3, comm[k],
req[numreq ++]);

MPI_Waitall (5, req , MPI_STATUSES_IGNORE);

Marc Snir CS420 – Lecture 14 Fall 2018 29 / 34

Algorithm steps

Shown how to implement the following:

1 Broadcast atom list to neighbors in directions NE, N, NW, W
2 Receive atom list from neighbors in directions E, SE, S, SW
3 Compute all interactions between local atoms and other atoms at process (local-local,

local-E, local-SE, local-S,local-SW
4 Gather and sum forces acting on local atoms from neighbors in directions NE, N, NW, W

and from local-local interactions.
5 Compute new positions for local atoms
6 Communicate atoms that crossed boundaries

Marc Snir CS420 – Lecture 14 Fall 2018 30 / 34

Algorithm steps

Shown how to implement the following:
1 Broadcast atom list to neighbors in directions NE, N, NW, W
2 Receive atom list from neighbors in directions E, SE, S, SW
3 Compute all interactions between local atoms and other atoms at process (local-local,

local-E, local-SE, local-S,local-SW
4 Gather and sum forces acting on local atoms from neighbors in directions NE, N, NW, W

and from local-local interactions.
5 Compute new positions for local atoms
6 Communicate atoms that crossed boundaries

Marc Snir CS420 – Lecture 14 Fall 2018 30 / 34

Possible Improvements (outline)

If cutoff radius is � cell size, will want to communicate only cells close to boundarty
Boundary regions Simplified view (cutting corners)

NE

E

SE S SW

W

NWN

C
C

Marc Snir CS420 – Lecture 14 Fall 2018 31 / 34

Possible implementation

Keep 9 lists for atoms in each of the boundary
regions and in center

1 Start send or receive of atoms in boundary
regions

2 Compute interactions of atoms in center
region

3 complete send/receives
4 Compute interactions of atom in adjacent

boundary regions
5 Send/receive back forces
6 Sum forces
7 Update local atom locations
8 Move atoms crossing boundaries

NE

E

SE S SW

W

NWN

C
C

Marc Snir CS420 – Lecture 14 Fall 2018 32 / 34

Alternative Approach – Use Sparse Collectives

Can create a communicator that
has a directed graph topology
Can execute a Neighborhood
Gather collective call that sends
data on each outgoing edge and
receives data on each incoming
edge
Need a graph to send atoms and
a reverse graph to receive forces
(no reduce)

Marc Snir CS420 – Lecture 14 Fall 2018 33 / 34

Find neighbors

/* assume comm has a Cartesian topology */
...
enum directions {NW , N, NE , E, SE , S, SW , W};
int neighbors [8]; /* ranks of neighbors */
int coords [2], ncoords [2], dims [2], periods [2], neighbor [8];
MPI_Cart_get (comm , 2, dims , periods , coords)

/* returns info on Cartesian topology */
ncoords [0]=(coords [0] -1)% dims [1];
ncoords [1]=(coords [1] -1)% dims [1];
MPI_Cart_rank (comm , ncoords , & neighbors [NW]);

/* translates Cartesian coordinates into ranks */
ncoords [0]= (ncoords [0]+1)% dims [0];
MPI_Cart_rank (comm , ncoords , & neighbors [N]);
ncoords [0]= (ncoords [0]+1)% dims [0];
MPI_Cart_rank (comm , ncoords , & neighbors [NE]);
ncoords [1]= (ncoords [1]+1)% dims [1];
MPI_Cart_rank (comm , ncoords , & neighbors [E]);
...

Marc Snir CS420 – Lecture 14 Fall 2018 34 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure
maxdims number of dimensions

dims extent of each dimension
periods periodicity in each dimension
coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure

maxdims number of dimensions
dims extent of each dimension

periods periodicity in each dimension
coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure
maxdims number of dimensions

dims extent of each dimension
periods periodicity in each dimension
coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure
maxdims number of dimensions

dims extent of each dimension

periods periodicity in each dimension
coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure
maxdims number of dimensions

dims extent of each dimension
periods periodicity in each dimension

coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_get(comm, maxdims, dims, periods, coords)

comm communicator with Cartesian structure
maxdims number of dimensions

dims extent of each dimension
periods periodicity in each dimension
coords Cartesian coordinates of calling process

Marc Snir CS420 – Lecture 14 Fall 2018 35 / 34

MPI_Cart_rank(comm, coords, rank)

comm communicator with Cartesian topology
coords Cartesian coordinates of process
rank rank of process

Marc Snir CS420 – Lecture 14 Fall 2018 36 / 34

MPI_Cart_rank(comm, coords, rank)

comm communicator with Cartesian topology

coords Cartesian coordinates of process
rank rank of process

Marc Snir CS420 – Lecture 14 Fall 2018 36 / 34

MPI_Cart_rank(comm, coords, rank)

comm communicator with Cartesian topology
coords Cartesian coordinates of process

rank rank of process

Marc Snir CS420 – Lecture 14 Fall 2018 36 / 34

MPI_Cart_rank(comm, coords, rank)

comm communicator with Cartesian topology
coords Cartesian coordinates of process
rank rank of process

Marc Snir CS420 – Lecture 14 Fall 2018 36 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator

indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges

sources ranks of source nodes
outdegree number of outgoing edges

destinations ranks of destination nodes
weights weights of outgoing edges

info hints
reorder true if can reorder processes, false otherwise

newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges

destinations ranks of destination nodes
weights weights of outgoing edges

info hints
reorder true if can reorder processes, false otherwise

newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges

info hints
reorder true if can reorder processes, false otherwise

newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise

newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create communicator with graph topology

MPI_Dist_graph_create_adjacent(comm, indegree, sources, outdegree,
destinations, weights, info, reorder, newcomm)

comm old communicator
indegree number of incoming edges
sources ranks of source nodes

outdegree number of outgoing edges
destinations ranks of destination nodes

weights weights of outgoing edges
info hints

reorder true if can reorder processes, false otherwise
newcomm new communicator with graph topology.

Marc Snir CS420 – Lecture 14 Fall 2018 37 / 34

Create new communicators

...
MPI_Dist_graph_create_adjacent (comm , 4, neighbors [NW], 4,

& neighbors [SE], MPI_UNWEIGHTED , NULL , false , & outcomm);

MPI_Dist_graph_create_adjacent (comm , 4, neighbors [SE], 4,
& neighbors [NW], MPI_UNWEIGHTED , NULL , false , & outcomm);]
...

Marc Snir CS420 – Lecture 14 Fall 2018 38 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer

sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination

sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements

recvbuf receive buffer
recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source

recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements

comm communicator with topology structure
Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

sendbuf send buffer
sendcount number of elements sent to each destination
sendtype data type of sent elements
recvbuf receive buffer

recvcount number of elements received from each source
recvtype data type of received elements
comm communicator with topology structure

Same data sent to all destination processes; different data received from source processes
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm)

Marc Snir CS420 – Lecture 14 Fall 2018 39 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer

sendcounts number of elements sent to each destination
sdispls displacement to 1st element sent to each destination

sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination

sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements

recvbuf receive buffer
recvcounts number of elements received from each destination

rdispls displacement to 1st element received form each source
recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination

rdispls displacement to 1st element received form each source
recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements

comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Neighborhood collectives

Different data sent to different destinations
MPI_Neighbor_alltoall(sendbuf, sendcount,sendtype, recvbuf, recvcount,
recvtype, comm)
MPI_neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm)

sendbuf send buffer
sendcounts number of elements sent to each destination

sdispls displacement to 1st element sent to each destination
sendtype type of sent elements
recvbuf receive buffer

recvcounts number of elements received from each destination
rdispls displacement to 1st element received form each source

recvtype tyoe of received elements
comm communicator

Marc Snir CS420 – Lecture 14 Fall 2018 40 / 34

Communication

* numatoms -- number of atoms *\
* loc[k][i] -- coordinates of local atom i *\
* (k=0) or i-th atom received from k-th neighbor (k >0) *\
* mass , charge , force -- ibid *\

int atomcounts [4]; * number of atoms coords received *\
int displs [4]; * displacements *\
for(i=0; i <4;i++)

displs [i] = 2*i* MAXATOMS
* communicate atom counts *\
MPI_Neighbor_allgather (& numatoms , 1, MPI_INT ,

atomcounts , 1, MPI_INT , incomm);

* communicate atom locations *\
for(i=0;i <4;i++)

atomcounts [i]*=2;
MPI_Neighbor_allgatherv (loc , 2* numatoms , MPI_DOUBLE ,

loc[MAXATOMS], atomcounts , MPI_DOUBLE , incomm);
... * communicate masses and charges *\\

Marc Snir CS420 – Lecture 14 Fall 2018 41 / 34

Communication

... * compute forces *\
* communicate back forces *\
double outforces [5][MAXATOMS][2] * arrray of locally computed forces *\
double inforces [5][MAXATOMS][2] * array for received forces *\
MPI_Neighbors_alltoallv (outforces [1], atomcounts , displs , MPI_DOUBLE ,

inforces [1], 2* numatoms , displs , MPI_DOUBLE , outcomm);
* sum forces *\
for(i=0; i<numatoms , i++) {

v_assign_v (outforce [0][i], inforce [0][i]);
for(j=1,j <5;j++)

v_plus_v (inforce [j][i], inforce [0][i], inforce [0][i]);

Marc Snir CS420 – Lecture 14 Fall 2018 42 / 34

