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MD – process mesh (Cartesian topology)
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Splitting communicators
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Splitting communicators shift (1,1)

r,s
p=(r+1)/2,q=(s+1)/3
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Communicators defined at process (1,2)
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Each process calls MPI_Comm_split 6 times (i-shift of 0 and 1 and j-shift of 0,1 and 2).
In one of the calls it is passes argument color=MPI_UNDEFINRRED

Each process constructs 5 communicators each containing 5 processes
In each of these communicators, the process is in a different position of a 2×3 rectangle
that includes it (except the bottom left position)
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GPGPU
General Purpose Graphic Processing Unit

(with focus on NVIDIA)
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GPUs

Started as specialized graphic engines (70s-90s)
Leveraged massive parallelism – many pixels and per pixel processing
Supported stream processing: a sequence of transformations (kernels) applied to each part of
the image
Used fast memory (frame buffer)

Became increasingly programmable, to support higher level graphics
Started being used outside graphics (GPGPU, 00s)
GPUs specialized as scientific computing accelerators become available (00s)

64 bit, ECC
Increasingly focused on deep learning

Low precision linear algebra
Can provide better cost-performance than CPUs for throughput-oriented computations
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Different processor designs match different needs

Conventional CPU: Latency oriented –
Optimized for faster execution of
sequential code

High clock speed
Large memory with low latency
(DDR3/DDR4)
Large caches to further hide memory
latency
Branch prediction, out of order execution
Short ALU pipelines

Consumes more energy per operation and
requires more silicon
Best match for irregular code with limited
parallelism
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Graphic Processing Unit (GPU):
Throughput oriented

Slower clock speed
Higher bandwidth, higher latency, lower
capacity memory (HBM)
small caches to improve memory
throughput (aggregation)
Simpler control
Many ALUs
High level of "concurrent multithreading"
(multiple streams)

Consumes less energy per operation and
requires less silicon
Best match for regular code with massive
parallelism
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DDR vs. HBM
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Heterogeneous computing

Old idea: Combine mutiple types of compute units to get the best of both worlds
CPUs can be >10x faster than GPUs on some codes
GPUs can be >10x times faster than CPUs on some codes
⇒ Execute each part of the code on the most suitable engine

In particular, execute sequential code on CPU and suitable parallel code on GPU
Questions:

How are GPUs programmed?
How is control moved from CPU to GPU and back?
How is data moved from CPU to GPU and backs.
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How do we program GPUs?

OpenCL – standard supported by Apple, AMD, ARM, Intel, based on C++
CUDA – supported by NVIDIA; available for C, C++ and Fortran.
OpenACC – OpenMP-like language developed by Cray and NVIDIA
OpenMP 4.5 – OpenMP extensions designed to handle GPUs
CUDA is considered easier to use than OpenCL but is proprietary
OpenACC is usually ahead of OpenMP in GPU support and quality of implementation
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System with accelerators – current

CPU

CPU Memory

GPU 
Memory

GPU

GPU

GPU 
Memory

memory 
channels

memory 
channels

memory 
channels

IO Bus CPU memory larger and
optimized for low latency
GPU memory smaller and
optimized for high throughput
CPU and GPU can only access
their own memory
Data can be copied from one
memory to the other (DMA)
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System with accelerators –unified memory

CPU

CPU Memory

GPU 
Memory

GPU

GPU

GPU 
Memory

memory 
channels

memory 
channels

memory 
channels

Links

Each compute engine can access
all of the memories
But performance much better if
it accesses its own memory and
cache coherence operations are
expensive
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Execution models – core level

Single-threaded
One stream of instructions (one
instruction counter)
One set of registers (register file)
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Multi-threaded
Several streams of instructions
Several register files
Instruction streams are
independent of each other (but
share resources)
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SIMD – Single instruction, multiple
data

One stream of instructions
Vector register file
Each (vector) instruction
specifies the same operation
executed on multiple items.
Can be combined with
multithreading

Marc Snir CS420 – Lecture 15 Fall 2018 18 / 29



GPU model

SIMT – Single instruction, multiple
threads

One stream of instructions
Executed by multiple execution
units, each with its own register
file
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How is SIMT different from SIMD?

Not much until a branch is encountered:
Different threads could branch in different
directions
SIMT execution will continue, with each
branch evaluated in turn
Execution is correct, but performance will
suffer

execution

A

if (cond) then B else C

D

B

C

A

D

program
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Problem – memory accesses

Each thread can load from a
different address
Good case: accesses go to
different memory banks

Contiguous adresses are good
(memory is interleaved)

Bad case: random accesses
Conflicts will slow accesses and
reduce memory bandwidth
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Paliating memory bank conflicts

Address coalescing unit
repackages memory accesses so
as issue nonconflicting accesses
Takes advantage of large buffer
of pending accesses and (small)
caches
Similar logic exists in DDR
memory controllers, but buffer
sizes are smaller there
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GPU Parallelism in the large

CPU hides memory latency using
multithreading

Fixed number of concurrent threads
If one thread is waiting for data to arrive
from memory, an instruction from
another thread can execute

GPU hides memory latency using multiple
warps (Nvidia terminology)

Warp: bunch of 32 threads executing in
SIMT mode
If a warp is waiting for data to arrive
from memory, it is descheduled and
another warp executes.
Warp scheduler manages dependencies
between warps

SIMT0 SIMT1 SIMT2
Warp 1 1

Warp 1 2

Warp 1 3

Warp 2 1

Warp 2 2

Warp 4 1

Warp 3 1

Warp 3 2

Warp 4 2

Warp 3 3

Warp 3 4Warp 5 1

Warp 5 2

Warp 5 3

Warp 5 4

Warp 1 4

Warp 1 5

Warp 6 1

Warp 6 2

Warp 6 3

Time

Marc Snir CS420 – Lecture 15 Fall 2018 23 / 29



Example: Pascal (2016)

GPU = (up to) 60 streaming multiprocessors – each SM has 2 blocks
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Each block has 32 cores
Blocks execute warps: a SIMT sequential code with 32 threads.
Each SM can hold (up to) 64 warps: Two execute, the others wait to be scheduled

Simultaneous multithreading (CPU): 2-4 threads execute simultaneously; core maintains the
state of each.
Concurrent multithreading (GPU): One warp executes; when it stalls, it is replaced by another
one.

64K shared L1 per SM (32K per block, 1K per core)
4 MB shared L2 per GPU (≈ 1K per core)

Caches are use for fast synchronization between cores and for memory access aggregation –
not for leveraging temporal locality
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Pascal

1.328 - 1.480 GHz
60×64=3840 32-bit cores
120 concurrent instruction streams (one per block)
4096-bit memory interface (vs. 64 bits in DDR)
255 128-bit registers per core; total of 15,300 KB register file
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Typical execution model

CPU thread dispatches kernel to GPU, specifying
Which GPU will execute (if there are several)
What code will execute
What data needs to be copied from CPU memory to GPU memory before kernel executes
What data has to be copied back once kernel has completed

Thread waits for kernel to complete (not necessary)
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