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Each process calls MPI_Comm_split 6 times (i-shift of 0 and 1 and j-shift of 0,1 and 2).
In one of the calls it is passes argument color=MPI_UNDEFINRRED

Each process constructs 5 communicators each containing 5 processes

In each of these communicators, the process is in a different position of a 2x3 rectangle
that includes it (except the bottom left position)



GPGPU
General Purpose Graphic Processing Unit
(with focus on NVIDIA)
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o Started as specialized graphic engines (70s-90s)
o Leveraged massive parallelism — many pixels and per pixel processing
e Supported stream processing: a sequence of transformations (kernels) applied to each part of
the image
o Used fast memory (frame buffer)

@ Became increasingly programmable, to support higher level graphics

o Started being used outside graphics (GPGPU, 00s)

o GPUs specialized as scientific computing accelerators become available (00s)
e 64 bit, ECC

@ Increasingly focused on deep learning
e Low precision linear algebra

@ Can provide better cost-performance than CPUs for throughput-oriented computations




@ Conventional CPU: Latency oriented —
Optimized for faster execution of
sequential code

e High clock speed
e Large memory with low latency

CPU
(DDR3/DDR4) ALU ALU
o Large caches to further hide memory Centics AL AL
latency [ ||

e Branch prediction, out of order execution
e Short ALU pipelines

e Consumes more energy per operation and
requires more silicon

@ Best match for irregular code with limited
parallelism




@ Graphic Processing Unit (GPU):
Throughput oriented
o Slower clock speed
o Higher bandwidth, higher latency, lower
capacity memory (HBM)
e small caches to improve memory

throughput (aggregation) EI
e Simpler control ==
e Many ALUs EI
e High level of "concurrent multithreading" ==
(multiple streams) EI

requires less silicon
@ Best match for regular code with massive
parallelism
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Old idea: Combine mutiple types of compute units to get the best of both worlds
@ CPUs can be >10x faster than GPUs on some codes
@ GPUs can be >10x times faster than CPUs on some codes
@ = Execute each part of the code on the most suitable engine

e In particular, execute sequential code on CPU and suitable parallel code on GPU
Questions:

@ How are GPUs programmed?

@ How is control moved from CPU to GPU and back?
@ How is data moved from CPU to GPU and backs.



@ OpenCL - standard supported by Apple, AMD, ARM, Intel, based on C+-+

o CUDA — supported by NVIDIA; available for C, C++ and Fortran.

@ OpenACC — OpenMP-like language developed by Cray and NVIDIA

@ OpenMP 4.5 — OpenMP extensions designed to handle GPUs

@ CUDA is considered easier to use than OpenCL but is proprietary

@ OpenACC is usually ahead of OpenMP in GPU support and quality of implementation
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10 Bus

CPU — GPU @ CPU memory larger and
memory optimized for low latency
channels
. . . . o GPU memory smaller and
optimized for high throughput
I @ CPU and GPU can only access
memory .
channels GPU their own memory

memory @ Data can be copied from one
channels memory to the other (DMA)




CPU

Links
‘ GPU

memory
channels

memory
channels

GPU

memory
channels

@ Each compute engine can access

all of the memories

@ But performance much better if
it accesses its own memory and
cache coherence operations are

expensive




Single-threaded

@ One stream of instructions (one
instruction counter)

single threaded

@ One set of registers (register file)

| Program }—'| Fetch | Decode
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Execute |
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register
file

Memory




Multi-threaded

@ Several streams of instructions multi threaded /m /-\

o Several register files [rrwan || emonsvon | o
Unit DE—

@ Instruction streams are \\-/

independent of each other (but
share resources)
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SIMD — Single instruction, multiple
data

@ One stream of instructions -

@ Vector register file

e Each (vector) instruction ) pr— .:—-:

specifies the same operation
. . vector
executed on multiple items. register

file

@ Can be combined with
multithreading
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SIMT — Single instruction, multiple
threads

@ One stream of instructions

SIMT

file

@ Executed by multiple execution
units, each with its own register
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program execution

A A

@ Not much until a branch is encountered:
Different threads could branch in different

directions g g B
A
@ SIMT execution V\.II” continue, with each if (cond) then B else C
branch evaluated in turn

@ Execution is correct, but performance will %
suffer




@ Each thread can load from a

different address * ~ Toank thread e

@ Good case: accesses go to
different memory banks

_ memory memory
o Contiguous adresses are good bank iz bank

(memory is interleaved)
@ Bad case: random accesses
o Conflicts will slow accesses and bank bank

reduce memory bandwidth
memory memory
thread  [¢—> bank thread bank
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@ Address coalescing unit
repackages memory accesses so
as issue nonconflicting accesses

-
A
-

o Takes advantage of large buffer
of pending accesses and (small)
caches

o Similar logic exists in DDR

memory controllers, but buffer
sizes are smaller there
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@ CPU hides memory latency using
multithreading

e Fixed number of concurrent threads
e If one thread is waiting for data to arrive
from memory, an instruction from
another thread can execute
GPU hides memory latency using multiple
warps (Nvidia terminology)
e Warp: bunch of 32 threads executing in
SIMT mode
e If a warp is waiting for data to arrive
from memory, it is descheduled and
another warp executes.
o Warp scheduler manages dependencies
between warps

Time

SIMTO

[m]



GPU = (up to) 60 streaming multiprocessors — each SM has 2 blocks




Each block has 32 cores
Blocks execute warps: a SIMT sequential code with 32 threads.

Each SM can hold (up to) 64 warps: Two execute, the others wait to be scheduled

o Simultaneous multithreading (CPU): 2-4 threads execute simultaneously; core maintains the
state of each.

o Concurrent multithreading (GPU): One warp executes; when it stalls, it is replaced by another
one.

64K shared L1 per SM (32K per block, 1K per core)
4 MB shared L2 per GPU (& 1K per core)

e Caches are use for fast synchronization between cores and for memory access aggregation —
not for leveraging temporal locality



1.328 - 1.480 GHz

60x64=3840 32-bit cores

120 concurrent instruction streams (one per block)

4096-bit memory interface (vs. 64 bits in DDR)

255 128-bit registers per core; total of 15,300 KB register file



@ What code will execute

CPU thread dispatches kernel to GPU, specifying

@ Which GPU will execute (if there are several)

@ What data has to be copied back once kernel has completed
Thread waits for kernel to complete (not necessary)

@ What data needs to be copied from CPU memory to GPU memory before kernel executes



