|
Omri Mor
Fall 2018

?




Divide-and-Conquer




@ Suppose you have a large problem to solve,
but directly solving it is slow

o Repeatedly divide it into smaller problems
until you can solve

e Then combine solutions to solve larger
problems

@ Applications:
e Sorting
e Fast multiplication and matrix
multiplication

o Fast Fourier Transform
o ...

Subproblem

Partial soln

Problem

Divide

Subproblem

Partial soln




Given a list and a comparator, order the list

Many algorithms with different theoretical and empirical performance
Serial comparison-based sort can be done in Q(nlog n) time
Many algorithms can be faster on real-world data

Built-in serial implementations: gsort(array, count, size, compare),
std: :sort(first, last)

http://sortbenchmark.org/

823196745351 24

0
1819 23 24 35 45 67



http://sortbenchmark.org/

sorted list
18

19 23 24 35 45 67

8 19

23 67

1 o1 35

45



void mergesort (int[] 1list,
if (start + 1 < end) {
int mid =

int start,

(start + end) / 2;
mergesort (list, start, mid);

mergesort (list, mid, end);

merge (list, start, mid, end);

int end) {



void merge (int[] list, int start, int mid, int end) {
// copy_add_sentinal: copy list[a:b], append MAX_INT
int *left = copy_add_sentinal(list, start, mid);
int *right = copy_add_sentinal(list, mid, end);
int i = 0;
int j = 0;
for (int k = start; k < end; k++) {
if (left[i] <= right[jl) {
list[k] = leftl[il];
i++;
} else {
list [k]
j++;

right[j];

}

Note: Beware branch prediction!



}

void omp_mergesort(int[] 1list,
if (start + 1 < end) {

int mid = (start + end) / 2;

int start,

#pragma omp parallel sections

{
#pragma omp parallel section
omp_mergesort (list, start, mid);

#pragma omp parallel section
omp_mergesort (list, mid, end);

}

merge (list, start, mid, end);

}

int end) {




@ omp parallel sections defines blocks that are executed in parallel

@ omp_mergesort is called recursively: our threads spawn threads!
@ omp_set_nested(1): enable nested parallelism

@ Must beware of oversubscription and spawning too many tasks



Our code from before, but limit the number of tasks...

void omp_mergesort(int[] list, int start, int end, int threads) {
if (start + 1 < end) {
if (threads <= 1) {
mergesort (list, start, end);
return;

int mid = (start + end) / 2;
#pragma omp parallel sections
{
#pragma omp parallel section
omp_mergesort (list, start, mid, threads / 2);
#pragma omp parallel section
omp_mergesort (list, mid, end, threads - threads / 2);
merge (list, start, mid, end);

¥



@ At each level the list is split in half and processed in parallel

@ ... But we have to merge the results of the lower level



@ At each level the list is split in half and processed in parallel
@ ... But we have to merge the results of the lower level
e Takes O(n) time to merge at the top level!
@ Need to parallelize merge as well



complicated

e Split the larger list in half

@ Can use divide-and-conquer for the merge step as well, but the algorithm is more

o Split the other list into two parts based on the midpoint of the first list
o Merge the pairs of lists recursively
@ Will require a binary_search subroutine

startl

idx1

endl

@ Will need to use some secondary lists: no longer always merging contiguous lists
start2

idx2

end2
start3 out_median
o «F = = T 9ace
B CS420-lecture20 . Fall2018 12/14

o Parallel merge will run in O(log? n) time, and parallel mergesort in O(log® n) time




void omp_merge (int[] 1list, int startl, int endl, int start2, int end2,
int* out, int start3) {
if (threads <= 1) {
merge (list, startl, endl, start2, end2, out, start3); return;

}
int lenl = endl - startl;
int len2 = end2 - start2;
// Assume the first list is the longest; can swap if needed.
if (lenl == 0)
return;

int median_idx1 (startl + endl) / 2;

int median_idx?2 binary_search(list, start2, end2, list[median_idx1]);

int out_median = out_start + (median_idx1 - startl) + (median_idx2 - start2);
out [out_median] = list[median_idx1];

#pragma omp parallel sections

{
#pragma omp section
omp_merge (list, startl, median_idxl, start2, median_idx2, out, out_start,
threads / 2);
#pragma omp section
omp_merge (list, median_idx1+1, endl, median_idx2, end2, out, out_start,
threads - threads / 2);
}

}



@ A simple MPI implementation is similar to OpenMP
@ Send the chunk to be sorted to an MPI process

@ But this results in severe load imbalance

@ Instead pick multiple pivot points at the beginning to ensure every process has work



