
CS420 – Lecture 25

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 25 Fall 2018 1 / 36



How about atomic operations not supported by C++?

Can use Compare-and-Swap to implement such operations.
atomic.compare_exchange_strong(T& expected, T desired)

If the current value of atomic is equal to expected then this value is replaced by
desired and the method returns true
Otherwise, it does not update atomic, returns in expected the value of atomic, and
returns false

atomic.compare_exchange_weak(T& expected, T desired) has same semantics, is
faster, but may fail spuriously.

Generic algorithm for atomic updates:
Read atomic
Compute new value of atomic
Attempt to update atomic with new value, using CAS
If successful (there was no other update since last read), DONE; otherwise, start again.

Marc Snir CS420 – Lecture 25 Fall 2018 2 / 36



Atomic max

...
void atomic_max(volatile std::atomic <int >* counter , int val) {

int previous = counter.load ();
while(previous < val &&
!counter ->compare_exchange_weak(previous , val)) {}

}

Very efficient if conflicts are rare. Need locks or backoff if conflicts are frequent

Marc Snir CS420 – Lecture 25 Fall 2018 3 / 36



C++17

Previous constructs are part of C++11 and are supported by most compilers.
New constructs have been added in C++17 and may not be fully supported.
Parallel versions of the STL algorithms

Marc Snir CS420 – Lecture 25 Fall 2018 4 / 36



std::vector <int > v(100000);
...
// sequential sort
std::sort(v.begin(), v.end ());

// parallel sort

std::sort(std:: execution ::par , v.begin(), v.end ());

STL library methods accept an extra argument, an execution policy

std::execution::seq sequential execution (default)
std::execution::par multithreaded execution
std::execution::par_unseq multithreaded execution + vectorization

Implementations may ignore the policies...

Marc Snir CS420 – Lecture 25 Fall 2018 5 / 36



Examples

C++ transform applies a unary operation to each element of a rangee at returns the results
in new range
Or apply binary operation to each pair of elements in two ranges and returns result in new range
std::vector <float > X= {...};
std::vector <float > Y(X,size ());

std:: transform(
begin(X), end(X), // input range
begin(Y), // start of output
[]( float x) {return x*2.0f} // operation ( lambda expression )
);

Will execute sequentially Y=2.0*X.

Marc Snir CS420 – Lecture 25 Fall 2018 6 / 36



std::vector <float > X= {...};
std::vector <float > Y(X,size ());

std:: transform(
std:: execution ::par ,
begin(X), end(X), // input range
begin(Y), // start of output
[]( float x) {return x*2.0f} // operation ( lambda expression )
);

Does the same, but in parallel

Marc Snir CS420 – Lecture 25 Fall 2018 7 / 36



Vector product

std::vector <float > X(10000) , Y(100000) , Z(100000);
float product;
...
std:: transform(

std:: execution ::par ,
begin(X), end(X), // input range
begin(Y), begin(Z), // start of output
[]( float x, y) {return x*y} // operation

);

product = std:: reduce(Z.first(), Z.last(), 0.0);

Reduce uses a binary tree algorithm, as distinct from std:accumulate that preserves order

Marc Snir CS420 – Lecture 25 Fall 2018 8 / 36



Handling races

May execute in parallel iterates that conflict
But need to protect them with a lock or otherwise resolve conflicts

Marc Snir CS420 – Lecture 25 Fall 2018 9 / 36



Creating vectors of even integers

std::vector <int > vec (1000);
std::iota(vec.begin(), vec.end(), 0);
std::vector <int > output;
std:: mutex m;

std:: for_each(std:: execution ::par ,
vec.begin(), vec.end(),
[&output , &m](int& elem) {

if (elem % 2 == 0) {
std:: lock_guard guard(m);
output.push_back(elem);
}

});

Each evaluation of the lambda expression uses (captures) output and m.
Each evaluation is protected by the lock
Code will be correct but very slow.

Marc Snir CS420 – Lecture 25 Fall 2018 10 / 36



STL Algorithms that can run parallel
adjacent_difference
adjacent_find
all_of
any_of
copy
copy_if
copy_n
count
count_if
equal
exclusive_scan
fill
fill_n
find
find_end
find_first_of
find_if

find_if_not
for_each
for_each_n
generate
generate_n
includes
inclusive_scan
inner_product
inplace_merge
is_heap
is_heap_until
is_partitioned
is_sorted
is_sorted
is_sorted_until
lexicographical_compare
max_element

merge
min_element
minmax_element
mismatch
move
none_of
nth_element
partial_sort
partial_sort_copy
partition
partition_copy
remove
remove_copy
remove_copy_if
remove_if
replace
unique

Marc Snir CS420 – Lecture 25 Fall 2018 11 / 36



replace_copy
replace_copy_if
replace_if
reverse
reverse_copy
rotate
rotate_copy
search
search_n
set_difference
set_intersection
set_symmetric_difference
set_union
sort
stable_partition
stable_sort
swap_ranges

transform
transform_exclusive_scan
transform_inclusive_scan
transform_reduce
uninitialized_copy
uninitialized_copy_n
uninitialized_fill
uninitialized_fill_n
unique_copy

Marc Snir CS420 – Lecture 25 Fall 2018 12 / 36



A few new STL algorithms

for_each similar to for_each except returns void
for_each_n applies a function object to the first n elements of a sequence

reduce similar to accumulate, except out of order execution to allow parallelism
transform_reduce transforms the input elements using a unary operation, then reduces the

output out of order
exclusive_scan parallel version of partial_sum, excludes the i-th input element from the i-th

sum, out of order execution to allow parallelism
inclusive_scan parallel version of partial_sum, includes the i-th input element in the i-th sum,

out of order execution to allow parallelism
transform_exclusive_scan applies a functor, then calculates exclusive scan
transform_inclusive_scan applies a functor, then calculates inclusive scan

Marc Snir CS420 – Lecture 25 Fall 2018 13 / 36



Example

std::vector <int > v={1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto sumTransformed = std:: transform_reduce(

std:: execution ::par ,
v.begin(), v.end(), 0,
std::plus <int >{},
[]( const int& i) { return i * 2; }

);

sum is 110

Marc Snir CS420 – Lecture 25 Fall 2018 14 / 36



Partitioned Global Adress Space: UPC++

Marc Snir CS420 – Lecture 25 Fall 2018 15 / 36



Basic idea: Treat distributed memory system as if it had shared memory
Use global pointers: global_pointer = [process,address].
store is replaced by put
load is replaced by get
Done by compiler (UPC, X10,...) or done (in UPC++) by overloading pointers.

Marc Snir CS420 – Lecture 25 Fall 2018 16 / 36



Problems

get from remote memory takes ×10 longer than from local memory
Programmer has to be aware of where variables are kept

If each pointer is a global pointer then all references take longer
Need to distinguish between regular pointers and global pointers

There are no global coherent caches
User needs to "cache" explicitly, by copying data from remote memory to local memory, and
back

Marc Snir CS420 – Lecture 25 Fall 2018 17 / 36



1 Introduction

UPC++ is a C++11 library that supports Partitioned Global Address Space (PGAS) programming. It is
designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The PGAS
model is single program, multiple-data (SPMD) in which each separate thread of execution (referred to as a
process) has access to private memory as well as a global address space. This global address space is accessible
to all processes and is allocated in shared segments that are distributed over the processes (see Figure 1).
UPC++ provides various convenient methods for accessing and using this global memory, as will be described
later in this guide. In UPC++, all accesses to remote memory are explicit, via a special set of methods.
There is no implicit communication. This design decision was made to encourage programmers to be aware of
the cost of data movement, which may incur expensive communication. Moreover, all remote-memory access
operations are asynchronous by default. Together, these two constraints are intended to enable programmers
to write code that performs well at scale.

Figure 1: Figure 1. PGAS Memory Model.

This guide describes the LBNL implementation of UPC++, which uses GASNet for communication across a
wide variety of platforms, ranging from Ethernet-connected laptops to commodity InfiniBand clusters and
supercomputers with custom high-performance networks. GASNet is a language-independent, networking
middleware layer that provides network-independent, high-performance communication primitives tailored for
implementing parallel global address space languages and libraries such as UPC, UPC++, Co-Array Fortran,
Legion, Chapel, and many others. For more information about GASNet, visit http://gasnet.lbl.gov.

Although our implementation of UPC++ uses GASNet, in this guide, only the Installing, Compiling
and Running section is specific to the implementation. The LBNL implementation of UPC++ adheres
to the implementation-independent specification. Both are available at the UPC++ homepage at http:
//upcxx.lbl.gov/. Please report any problems in the issue tracker, http://upcxx.lbl.gov/issues.

UPC++ has been designed with modern object-oriented concepts in mind. Novices to C++ should avail
themselves of good-quality tutorials and documentation to refresh their knowledge of Template Meta
programming, the C++ standard library (std::), and lambda functions, which are used heavily in UPC++.

2 Installing, Compiling and Running UPC++ Programs

We present a brief description of how to install UPC++ and compile and run UPC++ programs. For more
detail, consult the INSTALL.md file that comes with the distribution.

Installing

This programming guide assumes that the source code file has been extracted to a directory,
<upcxx-source-path>. From the top-level of this directory, run the install script:

./install <upcxx-install-path>

3

Private segments can
be accessed only by
local process, using
regular pointers
Global segments can be
accessed all processes,
using global pointers.
Each process executes
the same program, as
in MPI

Marc Snir CS420 – Lecture 25 Fall 2018 18 / 36



Hello World

# include <iostream >
# include <upcxx/upcxx.hpp >
using namespace std;

int main(int argc , char *argv []) {

upcxx::init ();
cout << "Hello␣world␣from␣process␣" << upcxx:: rank_me () <<

"␣out␣of␣" << upcxx :: rank_n () << "␣processes" << endl;
upcxx:: finalize ();
return 0;

}

Marc Snir CS420 – Lecture 25 Fall 2018 19 / 36



Global memory allocation

upcxx:: global_ptr <int > gptr = upcxx ::new_ <int >(upcxx :: rank_me ());

Allocates an integer variable in the local shared segment, initializes it to local rank and returns
a global pointer pointing to this integer.

Global memory allocated with upcxx::new_ can be freed with upcxx::destroy_.

upcxx::new_array method can be used to allocate 1D-arrays
upcxx:: global_ptr <int > x_arr = upcxx ::new_array <int >(10);

An array of length 10 is allocated in the shared memory segment at each process.

Marc Snir CS420 – Lecture 25 Fall 2018 20 / 36



upcxx::finalize();
return 0;

}

The UPC++ runtime is initialized with a call to upcxx::init(), after which there are multiple processes
running, each executing the same code. The runtime must be closed down with a call to upcxx::finalize().
In this example, the call to upcxx::rank_me() gives the index for the running process, and upcxx::rank_n()
gives the total number of processes. The use of rank in the function names refers to the rank within a team,
which in this case contains all processes, i.e. team upcxx::world. Teams are described in detail in the Teams
section.

When this “hello world” example is run on four processes, it will produce output something like the following
(there is no expected order across the processes):

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

4 Global Memory

A UPC++ program can allocate global memory in shared segments, which are accessible by all processes. A
global pointer points at storage within the global memory, and is declared as follows:

upcxx::global_ptr<int> gptr = upcxx::new_<int>(upcxx::rank_me());

The call to upcxx::new_<int> allocates a new integer in the calling process’s shared segment, and returns a
global pointer (upcxx::global_ptr) to the allocated memory. This is illustrated in figure 2, which shows
that each process has its own private pointer (gptr) to an integer in its local shared segment. By contrast,
a conventional C++ dynamic allocation (int *mine = new int) will be in private local memory. Note
that we use the integer type in this paragraph as an example, but any type T can be allocated using the
upcxx::new_<T>() function call.

Figure 2: Figure 2. Global pointers.

A UPC++ global pointer is fundamentally different from a conventional C++ pointer: it cannot be
dereferenced using the * operator; it does not support conversions between pointers to base and derived types;
and it cannot be constructed by the C++ std::addressof operator. However, UPC++ global pointers
support pointer arithmetic and may be passed by value.

The upcxx::new_ function calls the class constructor in addition to allocating memory. Since we are allocating
a scalar, we can pass arguments to the constructor. Thus, we don’t have to invoke the default constructor.
The upcxx::new_ function is paired with upcxx::delete_:

6

Marc Snir CS420 – Lecture 25 Fall 2018 21 / 36



Downcasting pointers

A global pointer that points to the local shared memory segment can be cast to a regular
pointer.
upcxx:: global_ptr <int > x_arr = upcxx ::new_array <int >(10);
int *local_ptr = x_arr.local ();
local_ptr[i] = ... // work with local ptr

A local pointer cannot be cast to a global pointer.

Marc Snir CS420 – Lecture 25 Fall 2018 22 / 36



local 
pointer

private global 
pointer

shared global
pointer

shared 
segments

private 
segments

P0 P1

Marc Snir CS420 – Lecture 25 Fall 2018 23 / 36



Collective allocations

Previous allocators are local:
if (upcxx :: rank_me () == 0)

upcxx ::global_ptr <int > x_arr = upcxx ::new_array <int >(10);

will allocate an array only in the shared memory segment of process 0; the returned pointer is
available only in the private memory of process zero.
Collective allocators are called collectively by all processes and return at each process a global
reference that can used to obtain a globval pointer pointing to any compnent.
upcxx:: dist_object <upcxx ::global_ptr <double >>

u_g(upcxx::new_array <double >(10));

Allocates an array of length 10 in each shared memory segment

Marc Snir CS420 – Lecture 25 Fall 2018 24 / 36



1D red-black iteration

We assume cyclic array

Marc Snir CS420 – Lecture 25 Fall 2018 25 / 36



Example: Sequential code

for (int step = 0; step < max_steps; step ++) {
for (int i = step % 2; i < n ; i += 2)
u[i] = 0.5*(u[(i - 1)%n] + u[(i + 1])%n);

}

Marc Snir CS420 – Lecture 25 Fall 2018 26 / 36



Parallel code
We assume vector length is a multiple of 2p, p number of processes.

add ghost 
cells

communicate
left

update red

communicate
right

update black

Marc Snir CS420 – Lecture 25 Fall 2018 27 / 36



UPC++ parallel code

int main(int argc , char **argv) {

upcxx::init ();
// initialize parameters - simple test case

const long N = 1000;
const long MAX_ITER = N * N * 2;
const int MAX_VAL = 100;

// get the bounds for the local panel , assuming 2* num_procs
// divides N evenly

int block = N / upcxx :: rank_n ();
// plus two for ghost cells

int n_local = block + 2;

// set up the distributed object
upcxx:: dist_object <upcxx ::global_ptr <double >>

u_g(upcxx::new_array <double >( n_local ));
// downcast to a regular C++ pointer -- points to start of local array

double *u = u_g ->local ();

Marc Snir CS420 – Lecture 25 Fall 2018 28 / 36



// initializes random number generator (" Mersenne Twister " with 19937 bits)
std:: mt19937_64 rgen(upcxx:: rank_me () + 1);

// fill with uniformly distributed random values
for (int i = 1; i < n_local - 1; i++)
u[i] = 0.5 + rgen() % MAX_VAL;

// get access to left and right neighbor
upcxx:: global_ptr <double > uL = nullptr , uR = nullptr;

// retrieve global pointers for arrays at left and right neighbors
uL = u_g.fetch(( upcxx:: rank_me ()-1)% upcxx:: rank_n ()). wait ();
uR = u_g.fetch(( upcxx:: rank_me () + 1)% upcxx:: rank_n ()). wait ();

upcxx:: barrier ();

Marc Snir CS420 – Lecture 25 Fall 2018 29 / 36



// iteratively solve
for (int step = 0; step < MAX_ITER; step ++) {

// alternate between red and black
int start = step % 2;

// get the values for the ghost cells
if (! start)
u[0] = upcxx ::rget(uL + block ).wait;

else
u[n_local - 1] = upcxx ::rget(uR + 1). wait ();

// compute updates
for (int i = start + 1; i < n_local - 1; i += 2)
u[i] = 0.5*(u[i - 1] + u[i + 1]);

// wait until all processes have finished calculations
upcxx :: barrier ();
}

}
upcxx:: finalize ();
return 0;

}

Marc Snir CS420 – Lecture 25 Fall 2018 30 / 36



fetch(rank)
Asynchronously retrieves a copy of the instance of the distributed object at the specified
process.
fetch(rank).wait also blocks until the operation is complete

rget(global_pointer)
starts an asynchronous get from the indicated address
rget(glogal_pointer).wait
also waits for its completion

Marc Snir CS420 – Lecture 25 Fall 2018 31 / 36



Overlap computation and communication

add ghost 
cells

communicate
left

update red

communicate
right

update black

compute leftmost (black) cell
start sending it to the left
compute (black) interior
complete communication
compute rightmost (red) cell
start sending it
compute (red) interior
complete communication

Marc Snir CS420 – Lecture 25 Fall 2018 32 / 36



UPC++ code

// iteratively solve
upcxx::future <> fut;
for (int step = 0; step < MAX_ITER; step ++) {
// alternate between red and black

int start = step % 2;
if (! start) {
u[1]=0.5*(u[0]+u[2]);

// remote put with future to test completion
upcxx ::rput(u[0], uL + block , operation_cx :: as_future(fut))
}

else {
u[block] = 0.5*u[block -1]+u[block +1]);
upcxx ::rput(u[block], uR+1, operation_cx :: as_future(fut))
}

Marc Snir CS420 – Lecture 25 Fall 2018 33 / 36



// update interior
for (int i = start + 1; i < n_local - 1; i += 2)

u[i] = 0.5*(u[i - 1] + u[i + 1]);
// complete remote put;
while (!fut.ready ()) upcxx:: progress ();
// wait until all processes have finished calculations
upcxx:: barrier ();
% }}
upcxx:: finalize ();
return 0;
}

Marc Snir CS420 – Lecture 25 Fall 2018 34 / 36



An asynchronous operation can be completed by a future or a procedure call.
"Completion" may mean completion at the source process
(upcxx::source_cx::as_future()) or completion of the operation at both source and
destination (upcxx::operation_cx::as_future())
fut.ready() tests the future is satisfied
progress() makes sure async operation make progress

Marc Snir CS420 – Lecture 25 Fall 2018 35 / 36



Atomics

First, create domain that specifies what atomic operations can be applied to a variable
atomic_domain <int64_t > ad_i64 ({ atomic_op ::load ,

atomic_op ::store , atomic_op :: fetch_add });

Next, can perform atomic operations from this set
global_ptr <int64_t > x = new_ <int64_t >(0);
// fetch &add returns future
future <int64_t > f = ad_i64.fetch_add(x, 2, std:: memory_order_relaxed );
// wait for future completion
int64_t res = f.wait ();

Marc Snir CS420 – Lecture 25 Fall 2018 36 / 36


