BN 0
Marc Snir
Fall 2018

?

Can use Compare-and-Swap to implement such operations.

atomic.compare_exchange_strong(T& expected, T desired)
desired and the method returns true
returns false

@ Read atomic

@ If the current value of atomic is equal to expected then this value is replaced by

@ Otherwise, it does not update atomic, returns in expected the value of atomic, and
faster, but may fail spuriously.

Generic algorithm for atomic updates:

atomic.compare_exchange_weak(T& expected, T desired) has same semantics, is
@ Compute new value of atomic

@ Attempt to update atomic with new value, using CAS

=} F

@ If successful (there was no other update since last read), DONE; otherwise, start again.

int previous

void atomic_max(volatile std::atomic<int>* counter,
counter.load () ;

while (previous < val &&

lcounter ->compare_exchange_weak (previous,
¥

int val) {

val)) {}
Very efficient if conflicts are rare. Need locks or backoff if conflicts are frequent

@ Parallel versions of the STL algorithms

@ Previous constructs are part of C++11 and are supported by most compilers.
@ New constructs have been added in C++17 and may not be fully supported.

std::vector<int> v (100000);

// sequential sort
std::sort(v.begin(), v.end());

// parallel sort
std::sort(std::execution::par, v.begin(), v.end());

STL library methods accept an extra argument, an execution policy

std::execution::seq sequential execution (default)
std::execution::par multithreaded execution
std::execution::par_unseq multithreaded execution + vectorization

Implementations may ignore the policies...

C++ transform applies a unary operation to each element of a rangee at returns the results
in new range

Or apply binary operation to each pair of elements in two ranges and returns result in new range
std::vector<float> X= {...};
std::vector<float> Y(X,size());

std::transform(
begin(X), end(X),

// 4nput range
begin(Y),

// start of output
[J(float x) {return x*2.0f} // operation (lambda ezpression)
);

Will execute sequentially Y=2.0%X.

std::vector<float> X= {...};
std::vector<float> Y(X,size());

std::transform(
std::execution::par,
begin(X), end(X), // input range

begin(Y), // start of output
[1(float x) {return x*2.0f} // operation (lambda ezpression)
);

Does the same, but in parallel

std::vector<float> X(10000), Y(100000), Z(100000);
float product;

std::transform/(
std::execution::par,
begin(X), end(X), // input range

begin(Y), begin(Z), // start of output
[1(float x, y) {return x*xy} // operation
)5

product = std::reduce(Z.first(), Z.last(), 0.0);

Reduce uses a binary tree algorithm, as distinct from std:accumulate that preserves order

May execute in parallel iterates that conflict

But need to protect them with a lock or otherwise resolve conflicts

std::vector<int> vec (1000);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> output;

std::mutex m;

std::for_each(std::execution::par,
vec.begin(), vec.end(),
[output, &m](int& elem) {
if (elem % 2 == 0) {
std::lock_guard guard(m);
output.push_back(elem);
¥

b

e Each evaluation of the lambda expression uses (captures) output and m.
@ Each evaluation is protected by the lock

@ Code will be correct but very slow.

adjacent_difference
adjacent_ find
all_of

any_of

copy

copy_if
copy_n

count
count_if

equal
exclusive_scan
fill

fill_n

find

find_end
find_first_of
find_if

find_if_not
for_each
for_each_n
generate
generate_n
includes
inclusive_scan
inner__product
inplace_merge
is_heap
is__heap__until
is_partitioned
is_sorted
is_sorted
is_sorted__until
lexicographical_compare
max__element

merge
min__element
minmax_element
mismatch

move

none_of
nth_element
partial__sort
partial_sort_ copy
partition
partition__copy
remove

remove_ copy
remove_copy__if
remove__if
replace
unique

replace__copy
replace_copy_if

replace_if

reverse

reverse_copy transform

rotate transform__exclusive_scan
rotate__copy transform__inclusive__scan
search transform__reduce
search_n uninitialized__copy
set_difference uninitialized__copy_n
set_intersection uninitialized_fill
set_symmetric_difference uninitialized_fill_n
set_union unique_copy

sort

stable_ partition

stable_sort

swap__ranges

for_each similar to for__each except returns void

for_each_n applies a function object to the first n elements of a sequence
reduce similar to accumulate, except out of order execution to allow parallelism

transform_reduce transforms the input elements using a unary operation, then reduces the
output out of order

exclusive_scan parallel version of partial_sum, excludes the i-th input element from the i-th
sum, out of order execution to allow parallelism

inclusive_scan parallel version of partial_sum, includes the i-th input element in the i-th sum,
out of order execution to allow parallelism

transform__exclusive_scan applies a functor, then calculates exclusive scan

transform_inclusive_scan applies a functor, then calculates inclusive scan

std::vector<int> v={1,

auto sumTransformed

2, 3, 4, 5, 6, 7, 8, 9,
= std::transform_reduce (
std::execution::par,
v.begin(), v.end(), O,
std::plus<int>{},
[1(C const int& i) { return i * 2; }
);
sum is 110

10};

Partitioned Global Adress Space: UPC++

TS ol 153

Basic idea: Treat distributed memory system as if it had shared memory

Use global pointers: global_pointer = [process,address].

store is replaced by put

load is replaced by get

Done by compiler (UPC, X10,...) or done (in UPC++) by overloading pointers.

® 6 6 o o

@ get from remote memory takes x10 longer than from local memory
e Programmer has to be aware of where variables are kept

@ There are no global coherent caches

@ If each pointer is a global pointer then all references take longer
e Need to distinguish between regular pointers and global pointers
back

e User needs to "cache" explicitly, by copying data from remote memory to local memory, and

@ Private segments can
be accessed only by
local process, using

1 1 1 .
Global address space sShared | Shared | Shared | Shared regular pointers
egment | Segment | Segment | Segment
3 3 i @ Global segments can be
Private : Private : Private : Private accessed all processes,
Segment 1 Segment 1 Segment 1 Segment using global pointers.
1 1 1
Rank 0 Rank 1 Rank 2 Rank 3 @ Each process executes
the same program, as
in MPI

5420 - Lecture 25 ol 183

#include <iostream>

#include <upcxx/upcxx.hpp>
using namespace std;

int main(int argc, char *argv[]) {
upcxx::init () ;
cout << "Hello,world, from,process_ " << upcxx::rank_me () <<
"Loutof " << upcxx::rank_n() << " processes"
upcxx::finalize ();
return 0;
¥

<< endl;

upcxx::global_ptr<int> gptr = upcxx::new_<int>(upcxx::rank_me());

Allocates an integer variable in the local shared segment, initializes it to local rank and returns
a global pointer pointing to this integer.

Global memory allocated with upcxx: :new_ can be freed with upcxx: :destroy_.

upcxx: :new_array method can be used to allocate 1D-arrays

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);

An array of length 10 is allocated in the shared memory segment at each process.

Rank,

M\

Rank, Rank,
m !
g .
o ' -
Tg | Lok [
¥ N
™ % ‘mine' ‘ mine: ‘
8 : :
0
(0] _gptr: | . gptr:

mine:

gptr:

CS420 — Lecture 25

Shared

Private

A global pointer that points to the local shared memory segment can be cast to a regular
pointer.

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);
int *local_ptr = x_arr.local();
local_ptr[i] = // work with local ptr

A local pointer cannot be cast to a global pointer.

shared global private global
pointer pointer
\

|

shared
D segments

local 1,

pointer D D

private
segments

PO P1

€5420 - Lecture 25 ol 233

Previous allocators are local:

if (upcxx::rank_me() == 0)

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);

will allocate an array only in the shared memory segment of process 0; the returned pointer is
available only in the private memory of process zero.

Collective allocators are called collectively by all processes and return at each process a global
reference that can used to obtain a globval pointer pointing to any compnent.

upcxx::dist_object <upcxx::global_ptr<double>>
u_g (upcxx::new_array<double>(10));

Allocates an array of length 10 in each shared memory segment

We assume cyclic array

for (int step = O0;
for (int i

step % 2;

step < max_steps;
; 1 < n o, i +=

step++) {
2)
%0l + ul(i + 11)%n);

We assume vector length is a multiple of 2p, p number of processes.

add ghost
cells

communicate
left

EENE EEEE

communicate

update black

5420 - Lecture 25 ol 273

int main(int argc,

upcxx::init ();
/7

char xxargv) {
tnitialize parameters
const long N

1000;
const long MAX_ITER =
const int MAX_VAL
//

- simple test case
N * N x 2;
100;
// get the bounds for the local panel,
divides N evenly
int block

N / upcxx::rank_n();
// plus two for ghost cells
int n_local = block + 2;

assuming 2*num_procs
// set up the distributed object

double *u

upcxx::dist_object <upcxx::global_ptr <double>>

u_g (upcxx::new_array<double>(n_local));

// downcast to a regular C++ pointer -- points to start of local array
u_g->local();
o & = = ERNING
T CS420-lecture2s . Fal2018 28/36

// initializes random number generator ("Mersenne Twister" with 19937 bits)
std::mt19937_64 rgen(upcxx::rank_me() + 1);

// fill with uniformly distributed random values

for (int i = 1; i < n_local - 1; i++)
uli] = 0.5 + rgen() % MAX_VAL;

// get access to left and right neighbor

upcxx::global_ptr<double> ulL = nullptr, uR = nullptr;
// retrieve global pointers for arrays at left and right neighbors
ul = u_g.fetch((upcxx::rank_me()-1)%upcxx::rank_n()).wait();

uR = u_g.fetch((upcxx::rank_me() + 1)%upcxx::rank_n()).wait();

upcxx::barrier ();

// dteratively solve
for (int step = 0; step < MAX_ITER; step++) {
// alternate between red and black
int start = step % 2;
// get the walues for the ghost cells
if (!start)
ul[0] = upcxx::rget(ul + block).wait;
else
uln_local - 1] = upcxx::rget(uR + 1).wait();
// compute updates
for (int i = start + 1; i < n_local - 1; i += 2)
uli]l = 0.5%(Culi - 1] + uli + 1]1);
// wait until all processes have finished calculations
upcxx::barrier ();
}
}
upcxx::finalize ();
return O0;

}

fetch(rank)

Asynchronously retrieves a copy of the instance of the distributed object at the specified
process.

fetch(rank) .wait also blocks until the operation is complete

rget(global_pointer)

starts an asynchronous get from the indicated address
rget(glogal _pointer) .wait

also waits for its completion

add ghost
cells

compute leftmost (black) cell

start sending it to the left

communicate
left

compute (black) interior
complete communication
compute rightmost (red) cell
start sending it

compute (red) interior

complete communication

l:_:‘ l:_:‘ -

5420 - Lecture 25 ol sy

// iteratively solwve

upcxx::future<> fut;
for (int step = 0; step < MAX_ITER; step++) {
// alternate between red and black
int start = step % 2;
if (!start) {

ul1]=0.5%(ul0]+ul2]);

// rTemote put with future to test completion
upcxx::rput (ul0], ul + block,

¥

else {

ul[block] =

operation_cx::as_future (fut))

0.5%xulblock-1]+ulblock+1]);
upcxx::rput (ulblock], uR+1,
}

operation_cx::as_future (fut))

// update interior
for (int i = start + 1; i < n_local - 1; i += 2)
uli]l = 0.5%(uli - 1] + uli + 1]1);

// complete remote put;
while (!fut.ready()) upcxx::progress();

// watit until all processes have finished calculations
upcxx::barrier ();

h 3

upcxx::finalize ();

return O;

}

An asynchronous operation can be completed by a future or a procedure call.

"Completion" may mean completion at the source process
(upcxx: :source_cx: :as_future()) or completion of the operation at both source and
destination (upcxx::operation_cx::as_future())

(]

fut.ready() tests the future is satisfied

progress () makes sure async operation make progress

First, create domain that specifies what atomic operations can be applied to a variable

atomic_domain <int64_t > ad_i64 ({ atomic_op::load,
atomic_op::store, atomic_op:: fetch_add 1});

Next, can perform atomic operations from this set

global_ptr <int64_t> x = new_ <int64_t>(0);
// fetch&add returns future

future <int64_t > f = ad_i64.fetch_add(x, 2,
// wait for future completion

int64_t res = f.wait ();

std::memory_order_relaxed);

