
CS420 – Lecture 26

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 26 Fall 2018 1 / 39

Parallel Programming Models and Systems

Marc Snir CS420 – Lecture 26 Fall 2018 2 / 39

Parallel programming model: What are the parallel constructs and operations
Parallel programming systems: How are those expressed

A model (e.g., one-sided communication) can be expressed by libraries or languages
A system may support different models: E.g., OpenMP supports loop parallelism and task
parallelism

Marc Snir CS420 – Lecture 26 Fall 2018 3 / 39

Implicit Parallelism

Write sequential program, lean on compiler and hardware to execute in parallel.

Instruction level parallelism (ILP): Execute multiple instructions per cycle, while preserving
dependencies in sequential code

Compiler helps by ordering instructions so that many can execute
simultaneously (e.g. by executing loads as soon as possible, and avoiding, if
possible, dependencies between successive instructions
Hardware helps by using register renaming to avoid “false dependencies” and
by checking loads against the store queue

Vectorization: Use instructions that perform vector operations
Compiler helps by compiling simple loops into vector operations
Hardware helps by providing vector registers and vector ALUs

Marc Snir CS420 – Lecture 26 Fall 2018 4 / 39

Implicit Parallelism

Write sequential program, lean on compiler and hardware to execute in parallel.
Instruction level parallelism (ILP): Execute multiple instructions per cycle, while preserving

dependencies in sequential code
Compiler helps by ordering instructions so that many can execute
simultaneously (e.g. by executing loads as soon as possible, and avoiding, if
possible, dependencies between successive instructions
Hardware helps by using register renaming to avoid “false dependencies” and
by checking loads against the store queue

Vectorization: Use instructions that perform vector operations
Compiler helps by compiling simple loops into vector operations
Hardware helps by providing vector registers and vector ALUs

Marc Snir CS420 – Lecture 26 Fall 2018 4 / 39

Implicit Parallelism

Write sequential program, lean on compiler and hardware to execute in parallel.
Instruction level parallelism (ILP): Execute multiple instructions per cycle, while preserving

dependencies in sequential code
Compiler helps by ordering instructions so that many can execute
simultaneously (e.g. by executing loads as soon as possible, and avoiding, if
possible, dependencies between successive instructions
Hardware helps by using register renaming to avoid “false dependencies” and
by checking loads against the store queue

Vectorization: Use instructions that perform vector operations
Compiler helps by compiling simple loops into vector operations
Hardware helps by providing vector registers and vector ALUs

Marc Snir CS420 – Lecture 26 Fall 2018 4 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")
Write code that is easy to vectorize
Write code that access data with good (temporal/spatial) locality
Use appropriate compiler options
Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")

Write code that is easy to vectorize
Write code that access data with good (temporal/spatial) locality
Use appropriate compiler options
Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")
Write code that is easy to vectorize

Write code that access data with good (temporal/spatial) locality
Use appropriate compiler options
Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")
Write code that is easy to vectorize
Write code that access data with good (temporal/spatial) locality

Use appropriate compiler options
Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")
Write code that is easy to vectorize
Write code that access data with good (temporal/spatial) locality
Use appropriate compiler options

Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Programmer’s role

Write code that compiler can “understand” (facilitate alias analysis – e.g., "restrict")
Write code that is easy to vectorize
Write code that access data with good (temporal/spatial) locality
Use appropriate compiler options
Don’t write your own code if a library is available

Marc Snir CS420 – Lecture 26 Fall 2018 5 / 39

Shared Memory Explicit Parallelism

Language vs. pragmas vs. overloading
Extensions to existing language (C++, Java) vs. something totally different (Chapel)
More declarative (what to compute) vs. more imperative (how to compute)
Data-driven partitioning vs. control-driven partitioning

Marc Snir CS420 – Lecture 26 Fall 2018 6 / 39

Vector Parallelism

Fortran code:

real A(10,20), B(10 ,20)
logical L(10 ,20)
A = A + 1.0

A = SQRT(A)
L = A .EQ. B
A(1:7 ,3) = B(2:8 ,1)*B(4:10 ,1)

real A(20,20,2)
A(:,:,1) = 0.25*(CSHIFT(A(:,:,0),1,1)+ CSHIFT(A(:,:,0),-1,1)

+CSHIFT(A(:,:,0),1,2)+ CSHIFT(A(:,:,0),-1,2))

real A(20)
integer IDX (20)
A = A(IDX)

Marc Snir CS420 – Lecture 26 Fall 2018 7 / 39

Vector operations in language can be compiled into hardware vector instructions or SIMT
code or multithreaded code: "Easiest" form of parallelism.
Irregular code does not vectorize well

Marc Snir CS420 – Lecture 26 Fall 2018 8 / 39

Vector operations in language can be compiled into hardware vector instructions or SIMT
code or multithreaded code: "Easiest" form of parallelism.

Irregular code does not vectorize well

Marc Snir CS420 – Lecture 26 Fall 2018 8 / 39

Vector operations in language can be compiled into hardware vector instructions or SIMT
code or multithreaded code: "Easiest" form of parallelism.
Irregular code does not vectorize well

Marc Snir CS420 – Lecture 26 Fall 2018 8 / 39

Explicit parallelism – Parallel Iterators

Execute code for each element of a collection (STL container)
Simplest: execute code for each element of a range
Works best if it easy to split collection and iterates are independent, or are combined using
a simple parallel algorithms, such as reduction

Java

double average = roster
.parallelStream ()
.filter(p -> p.getGender () == Person.Sex.MALE)
.mapToInt(Person :: getAge)
.average ()
.getAsDouble ();

C++: for_each, reduce, transform_reduce, copy_if ...

Marc Snir CS420 – Lecture 26 Fall 2018 9 / 39

Explicit Control parallelism – Multithreading

Shared memory – all threads can access all variables (subject to scoping rules)
static multithreading: A fixed number of threads coordinating through the use of shared
variables – e.g. an OpenMP parallel section
dynamic multithreading: A (possibly) fixed number of workers (called threads in OpenMP)
are executing dynamically created tasks (or chunks of parallel iterates in OpenMP) –
scheduler decides which worker executes which task,

Dynamic multithreading takes care of load balance
Full language support (Java) vs. pragmas (OpenMP) vs. library (C++)
More declarative (C++) or more imperative (OpenMP)

Marc Snir CS420 – Lecture 26 Fall 2018 10 / 39

Main constructs

Parallel iterator – Possibly nested
Fork-join – Possibly nested
Futures
Divide&Conquer

Parallel iterator can be implemented as fork-join, but direct implementation can be much more
efficient

Nested parallel loops and fork-join can generate irregular parallelism that stretches schedulers
because of the need for global load balancing.

Marc Snir CS420 – Lecture 26 Fall 2018 11 / 39

Full language support: e.g., Java

parallelFor (lb, ub) .exec (new Loop()
{
// Thread -local variable declarations (optional)

public void start ()
{
// One -time thread -local initialization (optional method)
}
public void run (int i)
{
// Loop body code for iteration i (required method)
}
public void finish ()
{
// One -time thread -local finalization (optional method)
}

});

Marc Snir CS420 – Lecture 26 Fall 2018 12 / 39

Pragmas/Directives – E.g. OpenMP

Less elegant than full language support
Pragmatically, may encourage “sequential thinking”
No fundamental differences

Marc Snir CS420 – Lecture 26 Fall 2018 13 / 39

Library

E.g. Threads Building Blocks (TBB)
Sequential code:
void SerialApplyFoo(float a[], size_t n) {

for(size_t i=0; i!=n; ++i)
Foo(a[i]);

}

Marc Snir CS420 – Lecture 26 Fall 2018 14 / 39

Parallel loop 1

Programmer creates code that can execute a chunk of iterates
class ApplyFoo {

float *const my_a;
public:

void operator ()(const blocked_range <size_t >& r) const {
float *a = my_a;
for(size_t i=r.begin (); i!=r.end(); ++i)

Foo(a[i]);
}
ApplyFoo(float a[]) :

my_a(a)
{}

};

Marc Snir CS420 – Lecture 26 Fall 2018 15 / 39

The function parallel_for is passed the entire iteration range and the newly defined class.
parallel_for will chunk the iteration range and allocate the chunks to threads

void ParallelApplyFoo(float a[], size_t n) {
parallel_for(blocked_range <size_t >(0,n), ApplyFoo(a));

}

No special compiler needed – only need to link to the TBB runtime library
Code might be less efficient since compiler does not “understand” parallelism
Syntax is more burdensome

Marc Snir CS420 – Lecture 26 Fall 2018 16 / 39

Futures & Remote Procedure Call (RPC)

RPC: a function call that can be executed on a separate thread

Is RPC executed synchronously or asynchronously?
Does it return a result?
What is the execution context?

C++ future is an asynchronous RPC that (usually) returns a value and has its own context
(passed arguments and captured references)

Marc Snir CS420 – Lecture 26 Fall 2018 17 / 39

Divide&Conquer

If problem is small then solve problem sequentially
Else

Divide problem into (two) independent subproblems
Solve two subproblems in parallel
Combine two subproblem solutions

Quicksort: Divide&conquer sorting algorithm where all work is done in the divide part

Mergesort: Divide&conquer sorting algorithm where all work is done in the combine part

Divide&Conquer logic can be implemented using recursive fork-join

Marc Snir CS420 – Lecture 26 Fall 2018 18 / 39

Divide&Conquer in TBB

void ParallelQuicksort(T* begin , T* end) {
if(end -begin >=SMALL) {

using namespace std;
// Divide Code

T* mid = partition(begin+1, end , bind2nd(less <T>(),* begin));
swap(*begin , mid[-1]);

// Recursion
tbb:: parallel_invoke([=]{ ParallelQuicksort(begin , mid -1);},

[=]{ ParallelQuicksort(mid , end);});
} else {

// leaf code
SerialQuicksort(begin , end);
}

// empty combine code
}

TBB implements loop parallelism using the divide&conquer pattern.

Marc Snir CS420 – Lecture 26 Fall 2018 19 / 39

Distributed memory parallelism – E.g., MPI, Shmem

Static multiprocessing + distributed memory: A fixed number of processes, each with its
own address space.
Each process can only access its address space
Explicit calls are used to communicate across processes

1-sided: Put/get
2-sided: Send/receive

Collective: broadcast/reduce
MPI supports well send-receive and collectives; 1-sided is a later addition
Shmem (Openshmem) supports well 1-sided

Marc Snir CS420 – Lecture 26 Fall 2018 20 / 39

PGAS
People like the convenience of a global address space: Being able to access any entry in a large
(distributed) array using global “names”

0 m-1 m 2m-1 2m 3m-1

j

distributed array A

x=A[j] vs. x = Get(proc=sizeof(A)/numproc, disp= sizeof(A)%numproc)
PGAS model:

Shared and private segments
Global and local references
still use put/get (UPC++) or use regular indexing, dereferencing (UPC, CAF)

Compiler support needed if regular indexng expressions are used
Marc Snir CS420 – Lecture 26 Fall 2018 21 / 39

Solution

Example: Co-array Fortran (CAF) (now part of Fortran 2008)

real A(100) ! regular , local array
real B(100)[*] ! coarray : each process has an array with 100 entries
real C
C = B(15) ! access to the local copy of B -- regular load
C = B(15)[7] ! access to a possibly remote copy -- may need a get ()
A(:) = B(:)[3] ! copy the entire array from a possibly remote process

Code is executed by each process

Marc Snir CS420 – Lecture 26 Fall 2018 22 / 39

Example: Universal Parallel C (UPC)

shared float a[10][5]; // a is a global array distributed round -robin
float b; // local variable
b = a[3][2]; // access to a possibly remote entry

Code is executed at each process (called “thread” in UPC)

Marc Snir CS420 – Lecture 26 Fall 2018 23 / 39

User can control the chunk size in the distribution of a global array

Marc Snir CS420 – Lecture 26 Fall 2018 24 / 39

Partitioned Global Adress Space (PGAS)

UPC pointers can be local (address) or global (rank, address)
Dereferencing a global pointer is expensive (get/put)
Global pointer arithmetic in UPC is expensive (less so in CAF or in UPC++)
Hard to remember what is local and what is global in UPC (less so in CAF or UPC++)

Marc Snir CS420 – Lecture 26 Fall 2018 25 / 39

Example Chapel – sequential

const BigD = {0..n+1, 0..n+1},
D = BigD [1..n, 1..n],
LastRow = D.exterior (1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;
do {

forall (i,j) in D do
Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

Marc Snir CS420 – Lecture 26 Fall 2018 26 / 39

Chapel also supports sparse, irregular domains

Marc Snir CS420 – Lecture 26 Fall 2018 27 / 39

Chapel parallel

const BigD = {0..n+1, 0..n+1} dmapped Block ({1..n, 1..n}),
D = BigD [1..n, 1..n],
LastRow = D.exterior (1,0);

....

The execution of the code is partitioned using the owner compute rule (data parallelism)
Chapel’s compiler compiles the codes to be executed on each process and the required
communication (ghost cell updates)

Marc Snir CS420 – Lecture 26 Fall 2018 28 / 39

A classification of distributed memory programming models

Data local – each process has its own address space
global – shared arrays can be accessed by all processes

Control local – code is executed by each process
global – there is logically one thread of execution; compiler distributes code
execution to the processes

Marc Snir CS420 – Lecture 26 Fall 2018 29 / 39

Control
local global

Data local MPI ?
global UPC Chapel

Marc Snir CS420 – Lecture 26 Fall 2018 30 / 39

Yet More Choice: Remorte Procedure Call

Some distributed memory libraries/languages (UPC++, X10, Charm++) support injecting calls
into remote processes; the calls execute in the context of the remote process.

Makes sense for a model with static, persistent threads, each with their own private data
environment.

Marc Snir CS420 – Lecture 26 Fall 2018 31 / 39

Charm++

Basic Object is Chare: Contains data and external methods that can be called by other
chares; the methods do not return values.
Chares are distributed across compute nodes; there are typically multiple chares per node,
and they can be migrated.

Marc Snir CS420 – Lecture 26 Fall 2018 32 / 39

Charm++ Hello World

Header file (hello.h)
class Hello : public CBase_Hello {

public:
Hello (); // C++ constructor

void sayHi(int from); // Remotely invocable "entry method "
};

Charm++ Interface file (hello.ci)
module hello {

array [1D] Hello {
entry Hello ();
entry void sayHi(int);

};
};

Marc Snir CS420 – Lecture 26 Fall 2018 33 / 39

Source file (hello.cpp)
include "hello.decl.h"
include "hello.h"

extern CProxy_Main mainProxy;
extern int numElements;

Hello:: Hello () {
// No member variables to initialize in this simple example

}

Marc Snir CS420 – Lecture 26 Fall 2018 34 / 39

void Hello ::sayHi(int from) {

// Have this chare object say hello to the user.
CkPrintf("Hello␣from␣chare␣#␣%d␣on␣processor␣%d␣(told␣by␣%d)\n",
thisIndex , CkMyPe(), from);

// Tell the next chare object in this array of chare objects
// to also say hello. If this is the last chare object in
// the array of chare objects , then tell the main chare
// object to exit the program .
if (thisIndex < (numElements - 1)) {

thisProxy[thisIndex + 1]. sayHi(thisIndex);
} else {

mainProxy.done ();
}

}

include "hello.def.h"

Marc Snir CS420 – Lecture 26 Fall 2018 35 / 39

Frameworks

Have a fixed (simple) template of how parallelism is effected
User plugs into the framework its own methods

Example: map-reduce
Example: Pregel (and many others) for graph analytics

Marc Snir CS420 – Lecture 26 Fall 2018 36 / 39

Pregel

Input is directed graph with values at vertices and edges
Computation consists of a sequence of "supersteps"
At each superstep each vertex can read values at incoming edges, update its own values,
update values at outgoing vertices and send messages to other vertices (typically, its
neighbors)
Messages sent by a vertex at superstep s is accessed by other vertices at superstep s + 1
(bulk synchronous parallel programming model). Same for edge updates.

Marc Snir CS420 – Lecture 26 Fall 2018 37 / 39

Pregel API

template <typename VertexValue ,
typename EdgeValue ,
typename MessageValue >
class Vertex {

public:
virtual void Compute(MessageIterator* msgs) = 0;
const string& vertex_id () const;
int64 superstep () const;
const VertexValue& GetValue ();
VertexValue* MutableValue ();
OutEdgeIterator GetOutEdgeIterator ();
void SendMessageTo(const string& dest_vertex ,
const MessageValue& message);
void VoteToHalt ();

};

User only needs to overwrite the Compute() method, and magic happens.

Marc Snir CS420 – Lecture 26 Fall 2018 38 / 39

How many programming systems?

The Holy Grail: One system used for mutithreading. distributed memory and accelerators
(GPUs)

Possible to achive only with high-level frameworks that are descriptive
MPI+X: One system for distributed memory and one for multithreading and GPUs

E.g., MPI + OpenMP
MPI+X+Y: One system for distributed memory, one for mutithreading and one for GPU

E.g., MPI + C++ + Cuda

Using programming models adjusted to each hardware system can lead to better
performance
It also leads to code that is hardware to develop and maintain

Marc Snir CS420 – Lecture 26 Fall 2018 39 / 39

There is much more
Evolving features of MPI, OpenMP
New evolving general languages
Domain specific languages (DSL)
Frameworks & libraries

Problem
Dominant systems (MPI, OpenMP) are inelegant but well-supported
Emerging systems are more elegant, but less well supported and may disappear

Marc Snir CS420 – Lecture 26 Fall 2018 40 / 39

